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Abstract. The generalized Fresnel sine integral Sk(x) and its associated functions
Sk+(x) ; Sk

�

(x) are de�ned as locally summable functions on the real line. Some
convolutions and neutrix convolutions of the generalized Fresnel sine integral and its
associated functions are then found.

1. Introduction

The theory of distribution was �rst formulated by Sobolev and then developed system-

atically by L. Schwartz, [15]. It is a subject that is used not only in many mathematical

disciplines such as functional analysis and applied mathematics but also in physics and

engineering science, see [3, 4]. Together with Schwartz's theory, some singular functions

such as the Dirac delta function � and operations with them can be de�ned mathemati-

cally. But besides this, the theory has become insu�cient to satisfy all the needs of the

physicists, as for example evaluation of �2 or
p
� : Thus mathematicians started to develop

new mathematical approaches, as the approach introduced by Fisher, [5, 6, 8], where he

use the neutrix calculus to evaluate product and convolution products of distributions.

Besides the Dirac's delta function, the concept of �nite parts of divergent integrals are

at the origin of the theory. The Hadamard's �nite part is a way of resulting �nite values

to the integral of functions with the technique of neglecting appropriately de�ned in�nite

quantities, see [10]. Since taking the neutrix limit of a function is to extract a �nite part

from a divergent quantity, this method can be regarded as an application of the neutrix

calculus.

We also note that recently Ng and van Dam applied the neutrix calculus, in conjunction

with the Hadamard integral, developed by van der Corput, to the quantum �eld theories,

in particular to obtain �nite results for the coe�cients in the perturbation series. They

also applied neutrix calculus to quantum �eld theory, and obtained �nite renormalization

in the loop calculations, see [12, 13].
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In this paper we will evaluate some product and neutrix product of generalized Fresnel

integrals, see [1]. They are used in Fraunhfer di�raction and asymptotic of Weyl sums.

The generalized Fresnel sine integral is de�ned by

Sk(x) =

Z x

0

sin(uk)du ;

for k = 1; 2; : : : and the associated functions Sk+ (x) and Sk� (x) are de�ned by

Sk+ (x) = H (x)Sk (x) ; Sk� (x) = H (�x)Sk (x) ;
for k = 1; 2; : : : where H denotes Heaviside's function.

In the following we de�ne the function Lr;k by

Lr;k (x) =

xZ
0

ur sin
�
uk
�
du ;

for r = 0; 1; 2; ::: and k = 1; 2; :::.

In particular we have L0;2 (x) =
xR
0

sin
�
u2
�
du = �

2
S (x).

We de�ne the functions sin+x
k and sin�x

k by

sin+x
k = H (x) sinxk sin�x

k = H (�x) sinxk :

2. Convolution product

The de�nition for the convolution product of two functions f and g is as follows:

De�nition 2.1. Let f(x) and g(x) be two countinous functions with bounded support.

Their convolution produces a third function h(x), which is denoted by f � g

h (x) = (f � g) (x) =
+1Z
�1

f(t)g(x� t)dt:

If convolution product of two functions f and g, f � g exists then also g � f exists and

f � g = g � f :
If (f � g)0 and (f � g0) (or (f 0 � g)) exists, then

(f � g)0 = f � g0 (f 0 � g) :
Such de�ned convolution product cannot be used when f and g are arbitrary distributions

because, for one reason, two distributions cannot be multiplied in general. In order to

extend the convolution process f � g of two distributions f and g in D0 there is the follow
de�nition, see [16].

De�nition 2.2. Let f(x) and g(x) be two distributions in D0 and f and g has a

bounded support, moreover the both supports are bounded on the left (or right),

then the convolution products f � g of distributions is de�ned by expression

h(f � g) (x) ; ' (x)i = hf (y) ; hg (x) ; ' (x+ y)ii :
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The convolution of two distributions is commutative, see [16] and [9].

In the following we prove two theorems that are generalization of some results obtained

in [14].

Theorem 2.1. The convolution product (sin+ xk) � xr+ exists and

(2.1) (sin+ xk) � xr+ =

rX
i=0

�
r

i

�
(�1)r�iLr�i;k(x)x

i
+

for r = 0; 1; 2; : : : and k = 1; 2; : : :

Proof. If x < 0 then
�
sin+x

k
� � xr+ = 0:

If x > 0, then

�
sin+x

k
� � xr+ =

xR
0

sin tk(x� t)
r
dt =

=
xR
0

sin tk
rP

i=0

�
r

i

�
xi(�t)r�idt =

=
Pr

i=0

�
r

i

�
(�1)r�i

xR
0

tr�i sin tkxidt =

=
Pr

i=0

�
r

i

�
(�1)r�iLr�i;k (x)x

i
+

�

Corollary 2.1. The convolution product (sin� x
k) � xr

�
exists and

(2.2)
�
sin�x

k
� � xr

�
=

rX
i=0

�
r

i

�
Lr�i;k (x)x

i
�
:

for r = 0; 1; 2; : : : and k = 1; 2; : : :

Proof. The equation (2.2) follows on replacing x by �x in (2.1). �

Theorem 2.2. The convolution product Sk+(x) � xr+ exists and

(2.3) Sk+(x) � xr+ =
1

r + 1

r+1X
i=0

�
r + 1

i

�
(�1)r�i+1Lr�i+1;k(x)x

i
+

for r = 0; 1; 2; : : : and k = 1; 2; : : :

Proof. If x < 0, then Sk+(x) � xr+ = 0:

If x > 0, then we have,
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Sk+ (x) � xr+ =
xR
0

(x� t)
r
Sk (t) dt =

=
xR
0

(x� t)
r

tR
0

sin
�
uk
�
dudt =

=
xR
0

sin
�
uk
� xR
u

(x� t)
r
dtdu =

= � 1

r+1

xR
0

sin
�
uk
�
(x� u)

r+1
(�1) =

= 1

r+1

r+iP
i=0

�
r+1

i

�
(�1)r+1�i

xR
0

ur+1�ixi sin
�
uk
�
xi =

= 1

r+1

r+iP
i=0

�
r+1

i

�
(�1)r+1�iLr�i+1;k (x)x

i
+

�

Corollary 2.2. The convolution product Sk� (x) � xr
�

exists and

(2.4) Sk� (x) � xr
�
=

1

r + 1

r+iX
i=0

�
r + 1

i

�
Lr�i+1;k (x)x

i
�

for r = 0; 1; 2; ::: and k = 1; 2; :::.

Proof. The equation (2.4) comes from equation (2.3), on replacing x by �x. �

3. Neutrix convolution product

In order to extend the convolution product to a larger class of distributions, the neutrix

convolution product was introduced by Fisher, see [5, 6, 7, 8]. For the further extension,

�rst of all, we let � in D0 be a function with the following properties:

� (x) = � (�x);
0 � � (x) � 1;

� (x) = 1 for jxj � 1

2
;

� (x) = 0 for jxj � 1:

The function �� for � > 0 is now de�ned by:

�� =

8<
:

1; jxj � �;

�
�
��x� ��+1

�
; x > �;

�
�
��x+ ��+1

�
; x < ��:

The following de�nition of the non-commutative neutrix convolution was given in [5].

De�nition 3.1. Let f and g be distributions in D0 and let f� = f�� for � > 0: Then

the non-commutative neutrix convolution f
� g is de�ned as the neutrix limit of the

sequence ff� � gg, provided the limit h exists in the sense that

N�lim
�!1

hf� � g; 'i = hh; 'i

for all ' in D, where N is the neutrix, see van der Corput [2], having domain N 0 the

positive reals and range N 00 the real numbers, with negligible functions �nite linear
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sums of the functions

�� lnr�1 �; lnr �; �r sin �k; �r cos �k : � > 0; r = 1; 2; : : : k = 1; 2; : : :

and all functions which converge to zero in the normal sense as n tends to in�nity.

It is easily seen that any results proved with the original de�nition of the convolution

hold with the new de�nition of the neutrix convolution. The following results proved in

[5] hold, �rst showing that the neutrix convolution is a generalization of the convolution.

Theorem 3.1. Let f and g be two distributions and suppose that the convolution

f 
� g exists, then the convolution f 
� g exists and

(f 
� g)0 = f 
� g :

Now let Lr;k = N � lim
�!1

Lr;k (�). Then we have the following theorem:

Theorem 3.2. The neutrix convolution
�
sin+x

k
�
� xr exists and

(3.1)
�
sin+x

k
�
� xr =

rX
i=0

�
r

i

�
(�1)r�iLr�i;kx

i

for r = 0; 1; 2; : : : and k = 1; 2; : : : .

Proof. Let �
sin+x

k
�
�
=
�
sin+x

k
�
�
�� (x) :

Then the convolution product
�
sin+x

k
�
�
� xr exists by de�nition 2.2 and we have

(3.2)
�
sin+x

k
�
�
� xr =

�Z
0

sin tk(x� t)
r
dt+

�+���Z
�

�� (t) sin t
k(x� t)

r
dt:

For the �rst integral, from (2.1) we have:

�Z
0

sin tk(x� t)
r
dt =

rX
i=0

�
r

i

�
(�1)r�iLr�i;k (�)x

i

and it follows that

(3.3) N�lim
�!1

�Z
0

sin tk(x� t)
r
dt =

rX
i=0

�
r

i

�
(�1)r�iLr�i;kx

i

Further, it can easily be seen that for �xed x we have:

(3.4) lim
�!1

�+���Z
�

�� (t) sin t
k(x� t)

r
dt = 0 ;

so (3.1) follows from (3.2), (3.3) and (3.4), proving the theorem. �
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Corollary 3.1. The neutrix convolution
�
sin�x

k
�
� xr exists and

(3.5)
�
sin�x

k
�
� xr =

rX
i=0

�
r

i

�
(�1)r�i+1Lr�i;kx

i

for r = 0; 1; 2; : : : and k = 1; 2; : : : .

Proof. The equation (3.5) follows from the equation (3.1) by replacing x by �x: �

Corollary 3.2. The neutrix convolution sin(xk)
� xr exists and

(3.6) sin(xk)
� xr = 0 ;

for r = 0; 1; 2; : : : and k = 1; 2; : : : .

Proof. Equation (3.6) follows from equations (3.5) and (3.1) . �

Theorem 3.3. The neutrix convolution Sk+ (x)
� xr exists and

(3.7) Sk+ (x)
� xr =
1

r + 1

r+1X
i=0

�
r + 1

i

�
(�1)r�i+1Lr�i+1;kx

i

for r = 0; 1; 2; : : : and k = 1; 2; : : : .

Proof. Let (Sk+ (x))� = Sk+ (x) �� (x) : Then the convolution product (Sk+ (x))� � xr
exists by de�nition 2.2 and we have:

(3.8) (Sk+ (x))� � xr =
�Z
0

Sk (t) (x� t)
r
dt+

�+���Z
�

�� (t)Sk (t) (x� t)
r
dt

Next
�R
0

Sk (t) (x� t)
r
dt =

�R
0

(x� t)
r

tR
0

sinukdudt =

=
�R
0

sinuk
�R
u

(x� t)
r
dtdu =

=
�R
0

sinukdu
�
� 1

r+1

��
(x� �)

r+1 � (x� u)
r+1
�
=

= � 1

r+1

�R
0

sinukdu

�
r+1P
i=0

�
r + 1

i

�
xi
�
(��)r+1�i � (�u)r+1�i

��
=

= � 1

r+1

�R
0

r+1P
i=0

xi
�
(��)r+1�i � (�u)r+1�i

�
sinukdu

and

(3.9) N�lim
�!1

Z �

0

Sk (t) (x� t)
r
dt = � 1

r + 1

r+1X
i=0

(�1)r+1�iLr+1�i;kx
i :

For each �xed x we have that

(3.10) lim
�!1

�+���Z
�

�� (t)Sk (t) (x� t)
r
dt = 0:

So the equation (3.7) comes from equations (3.8), (3.9) and (3.10). �
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Corollary 3.3. The neutrix convolution Sk� (x)
� xr exists and

(3.11) Sk� (x)
� xr =
1

r + 1

r+1X
i=0

�
r + 1

i

�
(�1)r�iLr�i+1;kx

i

for r = 0; 1; 2; : : : and k = 1; 2; : : : .

Proof. The equation (3.11) follows from the equation (3.7) by replacing x by �x. �

Corollary 3.4. The neutrix convolution Sk(x)
� xr exists and

(3.12) Sk(x)
� xr = 0

for r = 0; 1; 2; : : : : and k = 1; 2; : : : :

Proof. The equation (3.12) follows from the equation (3.7) and (3.11). �
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