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ABSTRACT. Let f be an analytic function in the open unit disk and normalized such
that f(z) =z+anz™+...,n € N, n > 2. In this work we use differential subordina-
tions to study the expression

!
—1
1)
f(z) — =
and give estimates of |f/(z) — 1|. Also, sufficient conditions for a function to be with
bounded turning are obtained and some open problems are posed. This work is a

continuation of the results published in [7].

1. INTRODUCTION AND PRELIMINARIES

Let H(DD) be the class of functions that are just analytic in the unit disk D = {z €
C:|z| < 1} and let A,, n € N, n > 2, be its subclass consisting of functions f that
are analytic in D and normalized such that f(z) = z + a,2™ + ..., a, # 0. Further,
f € A=A, is such that f(0) = f'(0)—1=0.

Now, f € Ais a starlike function if and only if Re[zf'(z)/f(z)] > 0, z € D. All such
functions are univalent and the corresponding class is denoted by S*. Another subclasses
of univalent functions are Ry (0 < o < 1) and R(f) (0 < a < 1) comnsisting of functions
f € A such that Re f'(z) > o (z € D) and |arg f'(2)| < an/2 (z € D), respectively. The
special case R = Ry = R(1) is the well known class of functions with bounded turning.
The interest for this class comes from the result of Krzyz [6] that S* does not contain R
and R does not contain S*. In this paper, using a method from the theory of differential
subordinations (valuable references on this topic are [1] and [2]), we will receive criteria
over the expression
fl(z) -1
flz) -z

z

2010 Mathematics Subject Classification. 30C45, 30C50.
Key words and phrases. Analytic function, bounded turning function, univalent function, differential
subordination.

7



8 N. TUNESKI, T. BULBOACA, M. PETRUSEVSKI AND E. ALIAGA

that will embed a function f € A,, n € N, n > 2, in the class R. This work is a
continuation of the results published in [7]. From the theory of first-order differential
subordinations we will use the following lemma:

Lemma 1.1. [4] Let g be univalent in the unit disk I, and let 8(w) and ¢(w) be
analytic in a domain D containing q(D), with ¢(w) # 0 when w € g(ID). Set Q(2) =
20'(2)8(a(2)), h(z) = 6(a(2)) + Q(2), and suppose that:

(1) Q 1s starlike in the unit disk D,

o) [0eE) | @],
W) Re oy =R gy T o ) 0 P

If p s analytic in D, with p(0) = ¢(0), p(D) C D and

(1.1) 0(p(2)) + 2p'(2)$(p(2)) < 6(q(2)) + 24 (2)$(q(2)) = h(2)
then p(z) < q(2), and g s the best dominant of (1.1)).

2. MAIN RESULTS AND CONSEQUENCES

Using Lemma 1.1 we will receive conclusions that will later lead to criteria for a function
f to be in the class R.

Theorem 2.1. Let f € A,, n € N, n > 2, such that f(z) # z for all z € D\ {0}, and
let a, = %. If 0 < A < |ap| and

fl(z) =1 Az

(2.1) z flo)—2 -n < PR =: hy(2),
then
(2.2) % < an + Az,

and the function a, + Az s the best dominant of (2.1). Even more,

(2.3) ‘f(zz)n—z_an <A zeD,

and this conclusion is sharp, t.e. in the inequality (2.3) the parameter |A| can not
be replaced by a smaller number so that the implication holds.

Proof. Let choose f(w) = 0, ¢(w) = L, p(z) = f&)=z ang g(z) = an + Az. Then

zZn

6, ¢ € H(D), where D = C* := C\ {0}, and D D ¢(D) since 0 < |A| < |ap|. Further,

Q) = 1) = g @)ilae)) = 221 = 2

and

zh!(2) z2Q'(2) 1

Re o) Re ok) Re T¥ M anz
So, g is univalent in D, p € H(D), p(0) = ¢(0) = a, and p(z) # 0 for all z € D,
ie. p(D) C D, and all the conditions of Lemma 1.1 are satisfied. Concerning that
the subordinations (1.1) and (2.1) are equivalent, we receive subordination (2.2) and its

equivalent inequality (2.3).

>0, z€D.
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For the sharpness of our result, let assume that subordination (2.1) and inequality
f(i# — an‘ < |A1], z € D, hold, i.e. f(§$ < ayn + M\1z. But, the function a,, + Az is
the best dominant of (2.1), meaning that a, + Az < an + A1z, ie. [A] < |Aq]. O

It is easy to verify that if 0 < |A| < |an,|, then hi(D) (where h; was defined in (2.1)) is
an open disk with the center

_1 i arg(an/) _iargann)] = PP
24 e=g[m(e )+ h (e =57
and radius
: Al - Jan|
25 — ‘h iarg(an/A) ) _ ‘ — | )
29 r=lm e ) == P - P

Therefore, Theorem 2.1 brings the following corollary.

Corollary 2.1. Let f € A,, n € N, n > 2, such that f(z) # z for all z € D\ {0}, and
let a, = %, If 0 < |A| < |an| and

fl(z) -1 A2 AL - an|
z -n— , z€D,
‘ f(z) -z AP —lanl? |~ [an]® —[A]?
then
‘f(z)n_z—an <|A, zeD.
z

This implication is sharp (the radius of the open disk from the conclusion is the
smallest possible so that the corresponding implication holds) due to the function
f(z) =z +anz™ + Az" L, a, #0.

In the case when n = 2 we receive

Corollary 2.2. Let f € Ay, and A € C with |az| < [A] < |as|, where ap = f”2(0).
Also, let denote

by .
Lo et 0 tal <SRl

2+ Pl (/2 laal << al
If
yA
(2.6) |f’(z)—1|<u‘f(z)—1, z €D\ {0},
then
2.7) ‘f(z)z—z_az <A, z€D,
yA

and
(2:8) f'(z) 1| <m, z€D,
where

o R, el << B,

o =

2laz| + 3|2, if y/2leal < <laal.
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Moreover, the implication (2.6) = (2.7) is sharp for \/§|a2| <Al < a2, and the

implication (2.6) = (2.8) is sharp for \/g|a2| < A < |az|, t.e. for these ranges of
|A|, the values m1 and 1y are the smallest ones so that the corresponding tmplications
hold.

Also, if 2 < 1, then f is unwalent with bounded turning, i.e. f € R,, and
f € R(az), where a; =1 — 15 and as = arcsin7n,.

Proof. First we will prove inequality (2.7). The assumption (2.6) leads to

f(z)_l‘:u_ flz) —2

1f'(z) =1 <p- , z€D\{0},

meaning that f(zzﬁ # 0 for all z € D\ {0}, hence f(z) # z for all z € D\ {0}. Also, the
inequality (2.6) implies

fl(z) -1
ZW <p, zeD\{0},
and letting z — 0 in the above inequality we obtain that u > 2 is a necessary condition
for the above inequality to hold in the case z = 0.

It is easy to check that

Al - faz| = [3A = 2as?
|az|? — A2

where ¢ and r are defined as in (2.4) and (2.5), respectively, and that x4 > 2 whenever

|A| > £|az|. Further, we can write

=r—|24¢|,

‘z]}((zz))__zl—(2+c)+(2+c) <u, zeD\{0},
and it follows that

AL o ol curzrd=r, zeD\{0}

f(z)—= ’ '

The above inequality holds for z = 0, since |¢| < u+ |2+ ¢| = 7 for 0 < |A| < |az|, and

thus, from the first part of the Theorem 2.1°(i) for the special case n = 2 we get (2.7)).
From the assumption (2.6) we get

f(z)
z

(2.9) If'(z) -1 <u- , 2€D\ {0},

and the inequality (2.8) follows from (2.7) and (2.9)
The implication (2.6) = (2.7) is sharp for /2

—1‘<,u-‘f(zz)2_z

), having in mind that 7, = u (Jas|+A).
laa] < |A| < |az]|, and the implication
(2.6) = (2.8) is sharp for \/§|a2| < |A] < |az], since for the function f(z) = z +a2% +Az3
we have:
If'(z) = 1| = |z| - |2a2 + 3Az| < 2|as| + 3|A|, z €D,
z
‘f(z)_l‘ = |2 - a2 + Az

and

—az| =|Al-|z| < |A|, z €D.

‘ flz) -2

22
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The assertion (2.6) is equivalent to

3z + 2a,
Az +a

and a simple computation shows that
{ 3z + 2a,
sup§ |[——| :

Az + as
whenever |A| < |az|, hence

, 2z €D\{0},

N
zeD\ {0} =24 A
\{}} @] +

psar AL
= el + AP
which holds for \/g|a2| <Al < agl.

Since
|A]

Al f
24+ = <2+ —, if |A< |aa],
|as] = [Al |as] + (Al
the function f(z) = z + a2z? + A2z3 shows that the implication (2.6) = (2.7) is not sharp
for £las| <|A| < \/§|a2|.
Finally, from (2.7) and the definitions of the classes R, and R(a) we receive f € Ry,
and f € R(az). O

For n, = 1, Corollary 2.2 reduces to the next example:

Example 2.1. Let f € A, with L £ <laz| < where a; = f"(o). Also, let

i

3 g 02_7<|a2|< — 0.22474.
peo=y D <lasl < & €27

W@ ¥ arvs Sleal S5 =

where
] = —(1+laal) + v/25az] + 14faz| +1

If

(2.10) If’(Z)—1|<“*"f(zZ)_1» 2 €D\ {0},

then

(2.11) If'(z) -1 <1, zeD.

This tmplication s sharp for‘ < laz] < 2+f =0.22474.... Also, the function f 1s
untvalent with bounded turnmg, t.e. f€R.

Proof. We need to prove that conditions of Corollary 2.2, in the case 7y = 1, are equiva-

lent to the assumptions of this example.
For the case when £ |az| < |A] < \/7|a2| then 72 = us (Jaz| +|A|) = 1 if and only if
He = D[ e
A(laz| + [A)
“2(A +lal) + =7 =1
|az| — |A|

or in other words

— (1 +]as|) + /25az]? + 14jas| + 1

X = ] = -
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Here, we considered only the positive sign of the square root since the negative one leads
to negative values of |A|. Further, the inequalities

4 2
Haal <= Pl < ) 2

1 5
0.22474.. . = — < |as| < — =0.27....
26 =S 1

In a similar way, for the case \/g|a2| < |A] < |az| we have n, = 1 if and only if

are equivalent to

Al +2laz| =1, ie. [N = %‘azl A simple calculus shows that

2
2 lesl < 3] <o

1 1
02==-<ay| < ——
5 |ﬂ—2+¢6
which completes the proof. O

is equivalent to

=0.22474 ...,

Remark 2.1. Weather implications (2.6) = (2.8) for £ az| < |A| < \/g|a2| (Corollary

2.2 and (2.10) = (2.11) for < |az| < ﬁ = 0.22474... (Ezample 2.1 are sharp
are still open problems.
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