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Abstract. The unilateral Laplace transform is extended to a space of generalized
functions BL which contains the space of transformable distributions supported on
the interval [0;1). The Mittag-Le�er functions are found to be useful in comparing
the asymptotic behavior of an element of BL at in�nity to the asymptotic behavior
of its transform at a singularity.

1. Introduction

A class of generalized functions B known as Boehmians is constructed algebraically. In

[3], a subspace BL of B is used to extend the classical Laplace transform. The object of

this note is to present a �nal value theorem for the unilateral Laplace transform. The �nal

value theorem relates the asymptotic behavior of a transformable Boehmian at in�nity

to the asymptotic behavior of its transform at a singularity.

The Mittag-Le�er functions are used to generate di�erential operators of in�nite order

on B which will be used in the �nal value theorem.

The construction of the space B utilizes convolution and delta sequences or approxi-

mate identities. The space is quite general. Indeed, the space of Schwartz distributions

supported on the interval [0;1) can be identi�ed with a proper subspace of B.

2. Preliminaries

The space of all f 2 C(R) such that f(t) = 0 for t < 0 will be denoted by C+(R). The

convolution product of two functions f; g 2 C+(R) is given by

(2.1) (f � g)(t) =
Z t

0

f(t� u)g(u)du:
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A sequence of continuous nonnegative functions f'ng will be called a delta sequence

provided:

(i)
R1
�1 'n(t)dt = 1 for n = 1; 2; : : :; and

(ii) supp 'n � [0; "n]; "n ! 0 as n!1 ("n > 0):

A pair of sequences (fn; 'n) is called a quotient of sequences, if fn 2 C+(R) for

n = 1; 2; : : : ; f'ng is a delta sequence, and fk � 'm = fm � 'k for all k and m. Two

quotients of sequences (fn; 'n) and (gn; �n) are said to be equivalent if fk ��m = gm �'k
for all k and m. A straightforward calculation shows that this is an equivalence relation.

The equivalence classes are called Boehmians. The space of all Boehmians will be denoted

by B and a typical element of B will be written as W =
h
fn
'n

i
.

Consider the map i : C+(R)! B given by

i(f) =

�
f � 'n
'n

�
; where f'ng is any �xed delta sequence.

We can identify C+(R) with a proper subspace of B. Likewise, D0+(R), the space of

Schwartz distributions [7] supported on [0;1), can be identi�ed with a proper subspace

of B. For example, i(�) =
h
��'n
'n

i
=
h
'n
'n

i
.

The di�erentiation operator D is de�ned on B as follows. D
h
fn
'n

i
=
h
fn� 0n
'n� n

i
, where

f ng is any in�nitely di�erentiable delta sequence.

De�nition 2.1. Let W =
h
fn
'n

i
2 B. Then W vanishes in a neighborhood of in�nity,

denoted W (t)
e� 0 as t!1, provided there exists b > 0 such that fn ! 0 uniformly

on compact subsets of (b;1).

Remark 2.1. Let W;V 2 B; W (t)
e� V (t) as t ! 1, provided (W � V )(t)

e� 0 as

t!1.

Example 2.1. Let � =
h
'n
'n

i
. Then, �

e� 0 as t!1. This follows by observing that

supp 'n � [0; "n], where "n ! 0. Thus, 'n ! 0 uniformly on compact subsets of

(0;1).

De�nition 2.2. A sequence fWng of Boehmians is said to converge to the Boehmian

W; denoted by � -limn!1Wn =W , if there exists a delta sequence f'ng such that for
each n and k, Wn �'k; W �'k 2 C+(R), and for all k; (Wn �W ) �'k ! 0 uniformly

on compact sets as n!1.

For more on Boehmians and convergence, see [2].

The Mittag-Le�er functions are de�ned as

(2.2) E�(z) =

1X
n=0

zn

�(�n+ 1)
; z 2 C;

where �(x) =
R1
0 e�ttx�1 dt.
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For each � > 1, the Mittag-Le�er function generates a di�erential operator of in�nite

order.

(2.3) E�(D) =

1X
n=0

Dn

�(�n+ 1)
:

E�(D) : B ! B, where E�(D)W = �-limn!1
Pn
k=0

DkW
�(�k+1) =

P1
n=0

DnW
�(�n+1) .

By using Theorem 4 in [5], it follows that the above series converges in B.

3. Transformable Boehmians

W 2 B is called transformable (see [3]) provided there exist a delta sequence f'ng
and � > 0 such that W �'n 2 C+(R) and (W �'n)(t) = O(e�t) as t!1, for all n 2 N.
The space of transformable Boehmians will be denoted BL.

The Laplace transform of W =
h
fn
'n

i
2 BL is given by

(3.1) L(W )(z) =W(z) = lim
n!1

L(fn)(z);

where fn(t) = O(e�t) as t!1, for all n 2 N, and L(fn)(z) = Fn(z) =
R1
0 e�ztfn(t)dt.

Remark 3.1.1) W(z) is independent of the representation.

2) The convergence is uniform on compact subsets in the half-plane Re z > �:

3) W(z) is an analytic function in the half-plane Re z > �.

4) L('n)! 1 uniformly on compact sets as n!1:

Example 3.1. Let f 2 C+(R) having at most exponential growth � as t ! 1.

Then, for Wf =
h
f�'n
'n

i
, Wf (z) = limn!1 L(f � 'n)(z) = limn!1 L(f)(z)L('n)(z) =

L(f)(z); Re z > �:

Example 3.2. Consider W = �0 =
h
'0n
'n

i
.

W(z) = limn!1 L('0n)(z) = limn!1[zL('n)(z)� ('n)(0)] = z; z 2 C:
Not every function that is analytic in some half-plane is the Laplace transform of a

Boehmian. One example is g(z) = ez. However, we have the following theorem.

Theorem 3.1. (see [4]) Suppose that g(z) is an analytic function in some half-plane

Re z > �, and for some integer k and all " > 0, zkg(z) = O(e"z) as z !1, Re z > �:

Then, there exists a W 2 BL such that W(z) = g(z), Re z > �:

Remark 3.2. The Laplace transform of every transformable distribution supported

on [0;1) is bounded in some half-plane by a polynomial. Thus, the space of trans-

formable distributions supported on [0;1) can be identi�ed with a subspace of BL.

For each � > 1; E�(D) : BL ! BL.
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Theorem 3.2. Let W 2 BL where W(z) exists for Re z > �. Then,

(3.2) L(E�(D)W )(z) = E�(z)W(z);Re z > �:

Theorem 3.3. Final Value Theorem. Let W 2 BL; � > 1, and �; z0 2 C. If W (t)
e�

E�(D)f(t) as t ! 1, where f is a locally integrable function and limt!1
f(t)
t�ez0t

=

� (Re � > �1), then W(z) exists for Re z > Re z0: Moreover, W(z) has the following

asymptotic behavior.

(I) When E�(z0) 6= 0;
(z�z0)�+1W(z)

�(�+1) � �E�(z) as z ! z0 in jarg(z � z0)j �  < �
2 .

(That is, lim
z!z0

jarg(z�z0)j� < �
2

(z � z0)�+1W(z)

�(�+ 1)E�(z)
= �.)

(II) If E
(k)
� (z0) = 0, for 0 � k � n� 1 and E

(n)
� (z0) 6= 0, for some n 2 N, then:

(i) For n < Re �+ 1;
(z�z0)�+1W(z)

�(�+1) ) � �E�(z) as z ! z0 in jarg(z � z0)j �  < �
2 .

(ii) For n � Re �+ 1,

(z�z0)�+1(W(z)�
P

m

k=0

U
(k)(z0)
k! (z�z0)k)

�(�+1) � �E�(z) as z ! z0 in jarg (z � z0)j �
 < �

2 (where U = W � E�(D)f , m = n � [Re �] � 1, and [�] is the

greatest integer function).

Proof. Since W = U + E�(D)f (where U has compact support), W(z) exists for Re z >

Re z0. Now,

(z � z0)�+1W(z)

�(�+ 1)E�(z)
=

(z � z0)�+1(U(z) + E�(z)F (z))

�(�+ 1)E�(z)

(3.3) =
(z � z0)�+1U(z)
�(�+ 1)E�(z)

+
(z � z0)�+1F (z)

�(�+ 1)

By a classical �nal value theorem [1], the second term converges to � as z ! z0 in

jarg (z � z0)j �  < �
2 .

(I) Assume E�(z0) 6= 0.

Then, (z�z0)�+1U(z)
�(�+1)E�(z)

! 0 as z ! z0. This proves (I).

(II) Assume E
(k)
� (z0) = 0; 0 � k � n� 1 and E

(n)
� (z0) 6= 0.

(i) Suppose n < Re�+ 1. Then,

(z � z0)�+1U(z)
�(�+ 1)E�(z)

=
(z � z0)�+1U(z)

�(�+ 1)(z � z0)nQ(z)

(3.4) =
(z � z0)�+1�nU(z)

�(�+ 1)Q(z)
;

where Q(z0) 6= 0. This term converges to zero as z ! z0. Thus, the proof

of part (i) is complete.
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(ii) Suppose n � Re�+ 1. Then,

(z�z0)�+1(W(z)�
P

m

k=0

U
(k)(z0)
k! (z�z0)k)

�(�+1)E�(z)

(3.5) =
(z � z0)�+1(U(z)�Pm

k=0
U(k)(z0)

k! (z � z0)k)
�(�+ 1)E�(z)

+
(z � z0)�+1F (z)

�(�+ 1)
:

As before, the second term converges to � as z ! z0 in jarg (z�z0)j �  < �
2 .

And,
(z�z0)�+1(U(z)�

P
m

k=0

U
(k)(z0)
k! (z�z0)k)

�(�+1)E�(z)
=

(z�z0)�+1(U(z)�
P

m

k=0

U
(k)(z0)
k! (z�z0)k)

�(�+1)(z�z0)nQ(z)

(Q is entire and Q(z0) 6= 0)

(3.6) =

 
(z � z0)��[Re �]
�(�+ 1)Q(z)

!
(U(z)�Pm

k=0
U(k)(z0)

k! (z � z0)k)
(z � z0)m

! 0 as z ! z0 in jarg (z � z0)j �  < �
2 . This completes the proof of part

(ii) and the theorem.

�

Corollary 3.1. Let W 2 BL; � > 1, and � 2 C. If W (t)
e� E�(D)f(t) as t!1, where

f is a locally integrable function and limt!1
f(t)
t�

= � (Re � > �1), then W(z) exists

for Re z > 0 and z�+1W(z)
�(�+1) � �E�(z) as z ! 0 in jarg zj �  < �

2 .

Since for � � 2, the zeros of E�(z) are on the negative real axis [6], the following

corollary is immediate from the Final Value Theorem.

Corollary 3.2. Let W 2 BL; � � 2, and �; z0 2 C such that z0 does not lie on the

negative real axis. If W (t)
e� E�(D)f(t) as t ! 1, where f is a locally integrable

function and limt!1
f(t)
t�ez0t

= � (Re � > �1), then W(z) exists for Re z > Re z0 and
(z�z0)�+1W(z)

�(�+1) � �E�(z) as z ! z0 in jarg (z � z0)j �  < �
2 .

Example 3.3. Let f(t) =
p
t, and let ' be an in�nitely di�erentiable function with

compact support. Notice that f(t)p
t
! 1 as t!1.

Let

(3.7) W = '

�
pf

1+(t)

t

�
+ E2(D)f;

where pf 1+(t)
t denotes the distributional derivative of 1+(t) log t (see [7]).

Since the support of '
�
pf

1+(t)
t

�
is bounded,

(3.8) W (t)
e� E2(D)f(t) as t!1:

By Corollary 1,

(3.9) z3=2W(z) �
p
�

2
cosh

p
z as z ! 0 in jarg zj �  <

�

2
:



32 D. NEMZER

That is, lim
z!0

jarg zj� < �
2

z3=2W(z)

cosh
p
z

=

p
�

2
.

Remark 3.3. It is sometimes possible to use a special function for comparison in

the Final Value Theorem other than the Mittag-Le�er functions. One such example

is J�(
p
z)

z�=2
, where J� is the Bessel function of the �rst kind of order �.
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