ASYMPTOTIC BEHAVIOR OF THE LAPLACE TRANSFORM NEAR THE ORIGIN

ADV MATH SCI JOURNAL

DENNIS NEMZER

Presented at the 8th International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 27-31 August 2012, Ohrid, Republic of Macedonia.

ABSTRACT. The unilateral Laplace transform is extended to a space of generalized functions \mathcal{B}_L which contains the space of transformable distributions supported on the interval $[0,\infty)$. The Mittag-Leffler functions are found to be useful in comparing the asymptotic behavior of an element of \mathcal{B}_L at infinity to the asymptotic behavior of its transform at a singularity.

1. INTRODUCTION

A class of generalized functions \mathcal{B} known as Boehmians is constructed algebraically. In [3], a subspace \mathcal{B}_L of \mathcal{B} is used to extend the classical Laplace transform. The object of this note is to present a final value theorem for the unilateral Laplace transform. The final value theorem relates the asymptotic behavior of a transformable Boehmian at infinity to the asymptotic behavior of its transform at a singularity.

The Mittag-Leffler functions are used to generate differential operators of infinite order on \mathcal{B} which will be used in the final value theorem.

The construction of the space \mathcal{B} utilizes convolution and delta sequences or approximate identities. The space is quite general. Indeed, the space of Schwartz distributions supported on the interval $[0, \infty)$ can be identified with a proper subspace of \mathcal{B} .

2. Preliminaries

The space of all $f \in C(\mathbb{R})$ such that f(t) = 0 for t < 0 will be denoted by $C_+(\mathbb{R})$. The convolution product of two functions $f, g \in C_+(\mathbb{R})$ is given by

(2.1)
$$(f * g)(t) = \int_0^t f(t - u)g(u)du.$$

²⁰¹⁰ Mathematics Subject Classification. 44A10, 33E12, 46F12.

Key words and phrases. Boehmians, Convolution quotients, final value theorem, infinite order differential operator, Laplace transform, Mittag-Leffler functions.

A sequence of continuous nonnegative functions $\{\varphi_n\}$ will be called a *delta sequence* provided:

- (i) $\int_{-\infty}^{\infty} \varphi_n(t) dt = 1$ for $n = 1, 2, \ldots$; and
- (ii) supp $\varphi_n \subseteq [0, \varepsilon_n], \varepsilon_n \to 0$ as $n \to \infty$ $(\varepsilon_n > 0)$.

A pair of sequences (f_n, φ_n) is called a *quotient of sequences*, if $f_n \in C_+(\mathbb{R})$ for $n = 1, 2, \ldots, \{\varphi_n\}$ is a delta sequence, and $f_k * \varphi_m = f_m * \varphi_k$ for all k and m. Two quotients of sequences (f_n, φ_n) and (g_n, σ_n) are said to be equivalent if $f_k * \sigma_m = g_m * \varphi_k$ for all k and m. A straightforward calculation shows that this is an equivalence relation. The equivalence classes are called *Boehmians*. The space of all Boehmians will be denoted by \mathcal{B} and a typical element of \mathcal{B} will be written as $W = \begin{bmatrix} f_n \\ \varphi_n \end{bmatrix}$.

Consider the map $i:C_+(\mathbb{R})
ightarrow\mathcal{B}$ given by

 $i(f) = \left[rac{f st arphi_n}{arphi_n}
ight]$, where $\{arphi_n\}$ is any fixed delta sequence.

We can identify $C_+(\mathbb{R})$ with a proper subspace of \mathcal{B} . Likewise, $D'_+(\mathbb{R})$, the space of Schwartz distributions [7] supported on $[0, \infty)$, can be identified with a proper subspace of \mathcal{B} . For example, $i(\delta) = \left[\frac{\delta * \varphi_n}{\varphi_n}\right] = \left[\frac{\varphi_n}{\varphi_n}\right]$.

The differentiation operator D is defined on \mathcal{B} as follows. $D\left[\frac{f_n}{\varphi_n}\right] = \left[\frac{f_n * \psi'_n}{\varphi_n * \psi_n}\right]$, where $\{\psi_n\}$ is any infinitely differentiable delta sequence.

Definition 2.1. Let $W = \begin{bmatrix} \frac{f_n}{\varphi_n} \end{bmatrix} \in \mathcal{B}$. Then W vanishes in a neighborhood of infinity, denoted $W(t) \stackrel{e}{\sim} 0$ as $t \to \infty$, provided there exists b > 0 such that $f_n \to 0$ uniformly on compact subsets of (b, ∞) .

Remark 2.1. Let $W, V \in \mathcal{B}$, $W(t) \stackrel{e}{\sim} V(t)$ as $t \to \infty$, provided $(W - V)(t) \stackrel{e}{\sim} 0$ as $t \to \infty$.

Example 2.1. Let $\delta = \begin{bmatrix} \frac{\varphi_n}{\varphi_n} \end{bmatrix}$. Then, $\delta \stackrel{e}{\sim} 0$ as $t \to \infty$. This follows by observing that supp $\varphi_n \subseteq [0, \varepsilon_n]$, where $\varepsilon_n \to 0$. Thus, $\varphi_n \to 0$ uniformly on compact subsets of $(0, \infty)$.

Definition 2.2. A sequence $\{W_n\}$ of Boehmians is said to converge to the Boehmian W, denoted by δ - $\lim_{n\to\infty} W_n = W$, if there exists a delta sequence $\{\varphi_n\}$ such that for each n and k, $W_n * \varphi_k$, $W * \varphi_k \in C_+(\mathbb{R})$, and for all k, $(W_n - W) * \varphi_k \to 0$ uniformly on compact sets as $n \to \infty$.

For more on Boehmians and convergence, see [2]. The *Mittag-Leffler functions* are defined as

(2.2)
$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n+1)}, \quad z \in \mathbb{C},$$

where $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$.

For each $\alpha > 1$, the Mittag-Leffler function generates a differential operator of infinite order.

(2.3)
$$E_{\alpha}(D) = \sum_{n=0}^{\infty} \frac{D^n}{\Gamma(\alpha n+1)}$$

$$E_{\alpha}(D): \mathcal{B} \to \mathcal{B}$$
, where $E_{\alpha}(D)W = \delta$ -lim $_{n \to \infty} \sum_{k=0}^{n} \frac{D^{k}W}{\Gamma(\alpha k+1)} = \sum_{n=0}^{\infty} \frac{D^{n}W}{\Gamma(\alpha n+1)}$.

By using Theorem 4 in [5], it follows that the above series converges in \mathcal{B} .

3. TRANSFORMABLE BOEHMIANS

 $W \in \mathcal{B}$ is called *transformable* (see [3]) provided there exist a delta sequence $\{\varphi_n\}$ and $\sigma > 0$ such that $W * \varphi_n \in C_+(\mathbb{R})$ and $(W * \varphi_n)(t) = O(e^{\sigma t})$ as $t \to \infty$, for all $n \in \mathbb{N}$. The space of transformable Boehmians will be denoted \mathcal{B}_L .

The Laplace transform of $W = \left[rac{f_n}{arphi_n}
ight] \in \mathcal{B}_L$ is given by

(3.1)
$$\mathcal{L}(W)(z) = \mathcal{W}(z) = \lim_{n \to \infty} \mathcal{L}(f_n)(z),$$

where $f_n(t) = O(e^{\sigma t})$ as $t \to \infty$, for all $n \in \mathbb{N}$, and $\mathcal{L}(f_n)(z) = F_n(z) = \int_0^\infty e^{-zt} f_n(t) dt$.

Remark 3.11 $\mathcal{W}(z)$ is independent of the representation.

- 2) The convergence is uniform on compact subsets in the half-plane $Re z > \sigma$.
- 3) W(z) is an analytic function in the half-plane $\operatorname{Re} z > \sigma$.
- 4) $\mathcal{L}(\varphi_n) \to 1$ uniformly on compact sets as $n \to \infty$.

Example 3.1. Let $f \in C_+(\mathbb{R})$ having at most exponential growth σ as $t \to \infty$. Then, for $W_f = \left[\frac{f*\varphi_n}{\varphi_n}\right]$, $W_f(z) = \lim_{n\to\infty} \mathcal{L}(f*\varphi_n)(z) = \lim_{n\to\infty} \mathcal{L}(f)(z) \mathcal{L}(\varphi_n)(z) = \mathcal{L}(f)(z)$, $\operatorname{Re} z > \sigma$.

Example 3.2. Consider $W = \delta' = \begin{bmatrix} \frac{\varphi'_n}{\varphi_n} \end{bmatrix}$. $\mathcal{W}(z) = \lim_{n \to \infty} \mathcal{L}(\varphi'_n)(z) = \lim_{n \to \infty} [z\mathcal{L}(\varphi_n)(z) - (\varphi_n)(0)] = z, z \in \mathbb{C}$.

Not every function that is analytic in some half-plane is the Laplace transform of a Boehmian. One example is $g(z) = e^z$. However, we have the following theorem.

Theorem 3.1. (see [4]) Suppose that g(z) is an analytic function in some half-plane $\operatorname{Re} z > \sigma$, and for some integer k and all $\varepsilon > 0$, $z^k g(z) = O(e^{\varepsilon z})$ as $z \to \infty$, $\operatorname{Re} z > \sigma$. Then, there exists a $W \in \mathcal{B}_L$ such that $\mathcal{W}(z) = g(z)$, $\operatorname{Re} z > \sigma$.

Remark 3.2. The Laplace transform of every transformable distribution supported on $[0, \infty)$ is bounded in some half-plane by a polynomial. Thus, the space of transformable distributions supported on $[0, \infty)$ can be identified with a subspace of \mathcal{B}_L .

For each $\alpha > 1$, $E_{\alpha}(D) : \mathcal{B}_L \to \mathcal{B}_L$.

Theorem 3.2. Let $W \in \mathcal{B}_L$ where $\mathcal{W}(z)$ exists for $\operatorname{Re} z > \sigma$. Then,

(3.2)
$$\mathcal{L}(E_{\alpha}(D)W)(z) = E_{\alpha}(z)W(z), \operatorname{Re} z > \sigma$$

Theorem 3.3. Final Value Theorem. Let $W \in \mathcal{B}_L$, $\alpha > 1$, and $\xi, z_0 \in \mathbb{C}$. If $W(t) \stackrel{\sim}{\sim} E_{\alpha}(D)f(t)$ as $t \to \infty$, where f is a locally integrable function and $\lim_{t\to\infty} \frac{f(t)}{t^{\lambda_e z_0 t}} = \xi$ (Re $\lambda > -1$), then W(z) exists for Re $z > \text{Re } z_0$. Moreover, W(z) has the following asymptotic behavior.

 $\begin{array}{ll} \text{(I)} & When \ E_{\alpha}(z_{0}) \neq 0, \\ & \frac{(z-z_{0})^{\lambda+1}\mathcal{W}(z)}{\Gamma(\lambda+1)} \sim \xi E_{\alpha}(z) \ \text{ as } z \rightarrow z_{0} \ \text{ in } |\arg(z-z_{0})| \leq \psi < \frac{\pi}{2} \ . \\ & (That \ is, \ \lim_{|\arg(z-z_{0})| \leq \psi < \frac{\pi}{2}} \ \frac{(z-z_{0})^{\lambda+1}\mathcal{W}(z)}{\Gamma(\lambda+1)E_{\alpha}(z)} = \xi \ . \\ \text{(II)} & If \ E_{\alpha}^{(k)}(z_{0}) = 0, \ \text{for } 0 \leq k \leq n-1 \ \text{ and } \ E_{\alpha}^{(n)}(z_{0}) \neq 0, \ \text{for some } n \in \mathbb{N}, \ \text{then:} \\ & (i) \ \ For \ n < Re \ \lambda + 1, \\ & \frac{(z-z_{0})^{\lambda+1}\mathcal{W}(z)}{\Gamma(\lambda+1)} > \langle \xi E_{\alpha}(z) \ \text{ as } z \rightarrow z_{0} \ \text{ in } |\arg(z-z_{0})| \leq \psi < \frac{\pi}{2} \ . \\ & (ii) \ \ For \ n \geq Re \ \lambda + 1, \\ & \frac{(z-z_{0})^{\lambda+1}\mathcal{W}(z)}{\Gamma(\lambda+1)} > \langle \xi E_{\alpha}(z) \ \text{ as } z \rightarrow z_{0} \ \text{ in } |\arg(z-z_{0})| \leq \psi < \frac{\pi}{2} \ . \\ & (ii) \ \ For \ n \geq Re \ \lambda + 1, \\ & \frac{(z-z_{0})^{\lambda+1}\mathcal{W}(z)-\sum_{k=0}^{m} \frac{\mathcal{U}^{(k)}(z_{0})}{k!}(z-z_{0})^{k})}{\Gamma(\lambda+1)} \sim \xi E_{\alpha}(z) \ \text{ as } z \rightarrow z_{0} \ \text{ in } |\arg(z-z_{0})| \leq \psi < \frac{\pi}{2} \ . \\ & (\psihere \ U = W - E_{\alpha}(D)f, \ m = n - [Re \ \lambda] - 1, \ \text{ and } [\cdot] \ \text{ is the greatest integer function}. \end{array}$

Proof. Since $W = U + E_{\alpha}(D)f$ (where U has compact support), $\mathcal{W}(z)$ exists for Re z > Re z_0 . Now,

$$-rac{(z-z_0)^{\lambda+1}\mathcal{W}(z)}{\Gamma(\lambda+1)E_lpha(z)} = rac{(z-z_0)^{\lambda+1}(\mathcal{U}(z)+E_lpha(z)F(z))}{\Gamma(\lambda+1)E_lpha(z)}$$

(3.3)
$$= \frac{(z-z_0)^{\lambda+1}\mathcal{U}(z)}{\Gamma(\lambda+1)E_{\alpha}(z)} + \frac{(z-z_0)^{\lambda+1}F(z)}{\Gamma(\lambda+1)}$$

By a classical final value theorem [1], the second term converges to ξ as $z \to z_0$ in $|\arg(z-z_0)| \le \psi < \frac{\pi}{2}$.

- (I) Assume $E_{\alpha}(z_0) \neq 0$. Then, $\frac{(z-z_0)^{\lambda+1}\mathcal{U}(z)}{\Gamma(\lambda+1)E_{\alpha}(z)} \to 0$ as $z \to z_0$. This proves (I).
- (II) Assume $E_{\alpha}^{(k)}(z_0) = 0, 0 \le k \le n-1$ and $E_{\alpha}^{(n)}(z_0) \ne 0$. (i) Suppose $n < \operatorname{Re} \lambda + 1$. Then,

$$\frac{(z-z_0)^{\lambda+1}\mathcal{U}(z)}{\Gamma(\lambda+1)E_{\alpha}(z)} = \frac{(z-z_0)^{\lambda+1}\mathcal{U}(z)}{\Gamma(\lambda+1)(z-z_0)^nQ(z)}$$

(3.4)
$$= \frac{(z-z_0)^{\lambda+1-n}\mathcal{U}(z)}{\Gamma(\lambda+1)Q(z)}$$

where $Q(z_0) \neq 0$. This term converges to zero as $z \rightarrow z_0$. Thus, the proof of part (i) is complete.

(ii) Suppose
$$n \ge \operatorname{Re} \lambda + 1$$
. Then,

$$\frac{(z-z_0)^{\lambda+1} (\mathcal{W}(z) - \sum_{k=0}^{m} \frac{\mathcal{U}^{(k)}(z_0)}{k!} (z-z_0)^k)}{\Gamma(\lambda+1) E_{\alpha}(z)}$$
(3.5) $= \frac{(z-z_0)^{\lambda+1} (\mathcal{U}(z) - \sum_{k=0}^{m} \frac{\mathcal{U}^{(k)}(z_0)}{k!} (z-z_0)^k)}{\Gamma(\lambda+1) E_{\alpha}(z)} + \frac{(z-z_0)^{\lambda+1} F(z)}{\Gamma(\lambda+1)}.$

As before, the second term converges to ξ as $z \to z_0$ in $|\arg(z-z_0)| \le \psi < \frac{\pi}{2}$. And,

$$\frac{(z-z_0)^{\lambda+1}(\mathcal{U}(z) - \sum_{k=0}^{m} \frac{\mathcal{U}^{(k)}(z_0)}{k!} (z-z_0)^k)}{\Gamma(\lambda+1)E_{\alpha}(z)} = \frac{(z-z_0)^{\lambda+1}(\mathcal{U}(z) - \sum_{k=0}^{m} \frac{\mathcal{U}^{(k)}(z_0)}{k!} (z-z_0)^k)}{\Gamma(\lambda+1)(z-z_0)^n Q(z)}$$

$$(Q \text{ is entire and } Q(z_0) \neq 0)$$

(3.6)
$$= \left(\frac{(z-z_0)^{\lambda-[\operatorname{Re}\lambda]}}{\Gamma(\lambda+1)Q(z)}\right) \frac{(\mathcal{U}(z)-\sum_{k=0}^m \frac{\mathcal{U}^{(k)}(z_0)}{k!}(z-z_0)^k)}{(z-z_0)^m}$$

 $\rightarrow 0$ as $z \rightarrow z_0$ in $|\arg(z - z_0)| \le \psi < \frac{\pi}{2}$. This completes the proof of part (ii) and the theorem.

Corollary 3.1. Let $W \in \mathcal{B}_L$, $\alpha > 1$, and $\xi \in \mathbb{C}$. If $W(t) \stackrel{e}{\sim} E_{\alpha}(D)f(t)$ as $t \to \infty$, where f is a locally integrable function and $\lim_{t\to\infty} \frac{f(t)}{t^{\lambda}} = \xi$ (Re $\lambda > -1$), then $\mathcal{W}(z)$ exists for Re z > 0 and $\frac{z^{\lambda+1}\mathcal{W}(z)}{\Gamma(\lambda+1)} \sim \xi E_{\alpha}(z)$ as $z \to 0$ in $|\arg z| \le \psi < \frac{\pi}{2}$.

Since for $\alpha \geq 2$, the zeros of $E_{\alpha}(z)$ are on the negative real axis [6], the following corollary is immediate from the Final Value Theorem.

Corollary 3.2. Let $W \in \mathcal{B}_L$, $\alpha \geq 2$, and $\xi, z_0 \in \mathbb{C}$ such that z_0 does not lie on the negative real axis. If $W(t) \stackrel{e}{\sim} E_{\alpha}(D)f(t)$ as $t \to \infty$, where f is a locally integrable function and $\lim_{t\to\infty} \frac{f(t)}{t^{\lambda_e z_0 t}} = \xi$ (Re $\lambda > -1$), then $\mathcal{W}(z)$ exists for Re $z > \text{Re } z_0$ and $\frac{(z-z_0)^{\lambda+1}\mathcal{W}(z)}{\Gamma(\lambda+1)} \sim \xi E_{\alpha}(z)$ as $z \to z_0$ in $|\arg(z-z_0)| \leq \psi < \frac{\pi}{2}$.

Example 3.3. Let $f(t) = \sqrt{t}$, and let φ be an infinitely differentiable function with compact support. Notice that $\frac{f(t)}{\sqrt{t}} \to 1$ as $t \to \infty$.

Let

(3.7)
$$W = \varphi\left(pf\frac{1_+(t)}{t}\right) + E_2(D)f_2$$

where $pf\frac{1_+(t)}{t}$ denotes the distributional derivative of $1_+(t)\log t$ (see [7]).

Since the support of $arphi\left(pfrac{1_+(t)}{t}
ight)$ is bounded,

(3.8)
$$W(t) \stackrel{e}{\sim} E_2(D)f(t) \text{ as } t \to \infty.$$

By Corollary 1,

(3.9)
$$z^{3/2}\mathcal{W}(z) \sim \frac{\sqrt{\pi}}{2} \cosh \sqrt{z} \text{ as } z \to 0 \text{ in } |\arg z| \leq \psi < \frac{\pi}{2}.$$

That is,
$$\lim_{\substack{z \to 0 \\ |\arg z| \le \psi < \frac{\pi}{2}}} \frac{z^{3/2} \mathcal{W}(z)}{\cosh \sqrt{z}} = \frac{\sqrt{\pi}}{2}$$

Remark 3.3. It is sometimes possible to use a special function for comparison in the Final Value Theorem other than the Mittag-Leffler functions. One such example is $\frac{J_{\alpha}(\sqrt{z})}{z^{\alpha/2}}$, where J_{α} is the Bessel function of the first kind of order α .

References

- [1] G. DOETSCH: Theorie der Laplace Transformation, Band I, Verlag Birkhauser, Basel, 1950.
- [2] P. MIKUSIŃSKI: Convergence of Boehmians, Japan. J. Math. (N.S.) 9 (1983), 159-179.
- [3] D. NEMZER: The Laplace Transform on a Class of Boehmians, Bull. Austral. Math. Soc., 46 (1992), 347-352.
- [4] D. NEMZER: Abelian Theorems for Transformable Boehmians, Internat. J. Math. Math. Sci., 17 (1994), 489-496.
- [5] D. NEMZER: A Note on the Convergence of a Series in the Space of Boehmians, Bull. Pure Appl. Math., 2 (2008), 63-69.
- [6] A. YU POPOV: On Zeros of Mittag-Leffler Functions with Parameter $\rho < \frac{1}{2}$, Anal. Math., 32 (2006), 207-246.
- [7] A.H. ZEMANIAN: Distribution Theory and Transform Analysis, Dover Publications, New York, 1987.

DEPARTMENT OF MATHEMATICS CALIFORNIA STATE UNIVERSITY STANISLAUS TURLOCK, CA 95382, USA *E-mail address*: jclarke@csustan.edu