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ABSTRACT. The unilateral Laplace transform is extended to a space of generalized
functions B, which contains the space of transformable distributions supported on
the interval [0, 00). The Mittag-Leffler functions are found to be useful in comparing
the asymptotic behavior of an element of By, at infinity to the asymptotic behavior
of its transform at a singularity.

1. INTRODUCTION

A class of generalized functions B known as Boehmians is constructed algebraically. In
[3], a subspace By, of B is used to extend the classical Laplace transform. The object of
this note is to present a final value theorem for the unilateral Laplace transform. The final
value theorem relates the asymptotic behavior of a transformable Boehmian at infinity
to the asymptotic behavior of its transform at a singularity.

The Mittag-LefHer functions are used to generate differential operators of infinite order
on B which will be used in the final value theorem.

The construction of the space B utilizes convolution and delta sequences or approxi-
mate identities. The space is quite general. Indeed, the space of Schwartz distributions
supported on the interval [0, co) can be identified with a proper subspace of B.

2. PRELIMINARIES

The space of all f € C(R) such that f(t) = 0 for ¢ < 0 will be denoted by C(R). The
convolution product of two functions f, g € C1(R) is given by

(2.1) (Fra)(t) = / £(t - w)g(u)du.
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A sequence of continuous nonnegative functions {¢,} will be called a delta sequence

provided:
(i) [, en(t)dt=1forn=1,2,..; and
(i1) supp ¢n C[0,en],6n 2 0asn — oo (g, > 0).

A pair of sequences (fn,®n) is called a guotient of sequences, if f, € C.(R) for
n=12,...,{en} is a delta sequence, and fx * @m = fm * @i for all k& and m. Two
quotients of sequences (f,, ) and (gn,0,) are said to be equivalent if fi * 0 = gm * V&
for all k and m. A straightforward calculation shows that this is an equivalence relation.
The equivalence classes are called Boehmians. The space of all Boehmians will be denoted

by B and a typical element of B will be written as W = [i—’;}

Consider the map ¢ : C(R) — B given by

i(f) = [f:;@n] , where {©, } is any fixed delta sequence.

We can identify C (R) with a proper subspace of B. Likewise, D’ (R), the space of

Schwartz distributions [7] supported on [0, c0), can be identified with a proper subspace

of B. For example, ¢(6) = [%] = {i—: .

The differentiation operator D is defined on B as follows. D [g—"] = [%], where

{} is any infinitely differentiable delta sequence.

Definition 2.1. Let W = [i*"] € B. Then W wvanishes in a neighborhood of infinity,
denoted W (t) <0 ast — oo, provided there exists b > 0 such that f, — 0 uniformly
on compact subsets of (b, ).

Remark 2.1. Let W,V € B, W(t) ~ V(t) as t — oo, provided (W — V)(t) ~ 0 as
t — oo.

Example 2.1. Let § = [z—:}. Then, § ~0 as t — oo. This follows by observing that

supp ¢n C [0,e,], where e, — 0. Thus, ¢, — 0 uniformly on compact subsets of
(0,00).

Definition 2.2. A sequence {W,,} of Boehmians is said to converge to the Boehmian
W, denoted by 6 -lim,, , Wy, =W, if there exists a delta sequence {p,} such that for
each n and k, Wy, x o, W x @i, € CL(R), and for all k, (W, — W) * px, — 0 uniformly
on compact sets as n — 00.

For more on Boehmians and convergence, see [2].
The Mittag-Leffler functions are defined as

[ee]

(2.2) Fal2) = 3_ ¢ i

— an+1)’

n

z € C,

where ['(z) = [ e 't® 1 dt.
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For each a > 1, the Mittag-Leffler function generates a differential operator of infinite
order.

(2.3) Ba(D) =Y o

= T(an+ 1)

. n k [o%) n
Eo(D) : B — B, where Eo(D)W = 6-limp 00 ) g % =2 o %.

By using Theorem 4 in [5], it follows that the above series converges in B.

3. TRANSFORMABLE BOEHMIANS

W € B is called transformable (see [3]) provided there exist a delta sequence {¢,}
and o > 0 such that W x ¢, € C;.(R) and (W * ¢,,)(t) = O(e’t) as t — o0, for all n € N.
The space of transformable Boehmians will be denoted By,.

The Laplace transform of W = [%] € By is given by
(3.1) LW)(z) = W(z) = lim L(f)(2),

where f,(t) = O(e”") as t — oo, for all n € N, and L(f»)(2) = Fn(2) = [, e ** fa(t)dt.

Remark 3.11) W(z) is independent of the representation.
2) The convergence is uniform on compact subsets in the half-plane Rez > o.
3) W(z) s an analytic function in the half-plane Rez > 0.
4) L{n) = 1 uniformly on compact sets as n — .

Example 3.1. Let f € C{(R) having at most exponential growth o as t — oo.
Then, for Wy = [%] ’ Wf(z) = limp 00 L(f * n)(2) = limn00 L(f)(2) L(pn)(2) =
L(f)(z), Rez > 0.

Example 3.2. Consider W =§' = [%].

W(2) = limyp 00 L(p7)(2) = limn 00 [2L(0n ) (2) — (1)(0)] = 2, 2 € C.

Not every function that is analytic in some half-plane is the Laplace transform of a
Boehmian. One example is g(z) = e*. However, we have the following theorem.

Theorem 3.1. (see [4]) Suppose that g(z) is an analytic function in some half-plane
Rez > o, and for some integer k and all e > 0, z*g(z) = O(e??) as z — o0, Rez > 0.
Then, there exists a W € By, such that W(z) = g(z), Rez > o.

Remark 3.2. The Laplace transform of every transformable distribution supported
on [0,00) s bounded in some half-plane by a polynomial. Thus, the space of trans-
formable distributions supported on [0,00) can be identified with a subspace of By,.

For each a > 1, E,(D) : By — Br.
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Theorem 3.2. Let W € B;, where W(z) exists for Rez > o. Then,
(3.2) L(E(D)W)(2) = Eq(2)W(2), Rez > 0.

Theorem 3.3. Final Value Theorem. Let W € By, a > 1, and £,20 € C. If W(t) ~

EL(D)f(t) as t — oo, where f is a locally integrable function and lim;_, o t{e(—f,gt =

£ (ReX > —1), then W(z) exists for Rez > Rezg. Moreover, W(z) has the following
asymptotic behavior.

(I) When Eq(z0) # 0,

% ~ ¢By(z) as z = zg in |arg(z — z0)| S Y < T .

. : (z — 20)M1W(z)
(That 1s, lim =¢.)
jargis woficueg [T DHEa(?)
(I If Eg{k)(zo) =0, for0<k<n-1and E’c(x")(zo) # 0, for some n € N, then:
(i) Forn < ReX+1,
%) ~ EEq(z) as z — zg in |arg(z — 20)| <P < .
(ii) Forn > ReA+1,
a1 v UGy ok
SR F%izlo) Cani e JRAN §B4(2) as z — zg 1n |arg(z — z0)| <
Y < 5 (where U = W — Eo(D)f, m = n —[Re)] — 1, and [] is the
greatest integer function).

Proof. Since W =U + E,(D)f (where U has compact support), W(z) exists for Rez >
Rezy. Now,

(z = 20)*W(z) _ (2 — 20)* (U(2) + Ba(2)F(2))

+
T(A+1)Es(2) T(A + 1)Eq(2)

(2 —2) M U(z) | (2 = 20) " F(2)
T(A + 1) Ba(2) T(A+1)

(3.3) =

By a classical final value theorem [1], the second term converges to £ as z — 2o in
larg (z — z0)| <9 < 7.
(I) Assume F,(zq) # 0.

Then, (;(—)\ﬂ% — 0 as z — 2. This proves (I).

(IT) Assume Ec(xk)(zo) =0,0<k<n-1and E&n)(zo) # 0.
(i) Suppose n < Re A + 1. Then,
(z — 20) U (2) (z — 20)U(2)

T+ DEa(z)  T(A+ D(z — 20)"Q(2)

(3.4) _ (o) UG)
A+ 1)Q(2)
where Q(zp) # 0. This term converges to zero as z — zp. Thus, the proof
of part (i) is complete.
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(ii) Suppose n > Re A + 1. Then,

(2=20) P W(z)= 37 L) (o))
T(A+1) Eo(z)

*)
5 = EmRUE) S T (e m2)) | (2 2 ()
' A+ 1)Eqa(z) F'A+1)
As before, the second term converges to £ as z — zp in |arg (2 —20)| < % < 5.
And,
(=2 M UE) -7 UG =20 (m2) U -3 EE (o= 20)*)
(’\+1)E () T(A+1)(z— zo) Q(Z)

(@ is entire and Q(zo) # 0)

(A +1)Q(2) (z = zo)™

— 0 as z — 2o in |arg(z — 20)| < ¥ < . This completes the proof of part
(ii) and the theorem.

(3.6) _ <(z — zO)A—[Re A]) U(z) - ;Cn:O U(k;EZO) (z — Zo)k)

O

Corollary 3.1. Let W € By, a > 1, and £ € C. If W(t) & Eo(D)f(t) ast — oo, where
f 1s a locally integrable function and lim;_, o % =¢ (ReX > —1), then W(z) exists

for Rez >0 and

WNEE()GSZ%Oin|argz|S¢<g.

Since for o > 2, the zeros of E4(z) are on the negative real axis [6], the following
corollary is immediate from the Final Value Theorem.

Corollary 3.2. Let W € By, a > 2, and &,2¢9 € C such that zo does not lie on the
negative real azis. If W(t) ~ Eo(D)f(t) as t — oo, where f is a locally integrable

function and lim;_, tkfe(—ﬁgt =¢ (ReX > —1), then W(z) eazists for Rez > Rezy and
(z—20)* ' W(2)

eesy) ~EEy(2) as z = 2o in |arg(z — 20)| < ¢ < §.

Example 3.3. Let f(t) = v/t, and let ¢ be an infinitely differentiable function with
compact support. Notice that L\/? —1ast— .
Let
(5.7 w = (s + B
where pf 1+(t denotes the distributional derivative of 1, (t)logt (see [7]).

Since the support of ¢ (pflJrT(t)) is bounded,

(3.8) W(t) ~ Ey(D)f(t) as t — oo.
By Corollary 1,

(3.9) 222W(z) ~ gcoshﬁ as z — 0in |argz| <9 < g
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3/2
That 1is, lim () ﬁ

2550 cosh /z -2
larg z|<¢ <3 vz

Remark 3.3. It is sometimes possible to use a special function for comparison in

the Final Value Theorem other than the Mittag-Leffler functions. One such example
Ja(v/2)

sy, where J, 1s the Bessel function of the first kind of order a.
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