HARMONIC FUNCTIONS FOR WHICH SECOND DILATATION HAS POSITIVE REAL PART

H. ESRA ÖZKAN, ARZU YEMISCI, MELIKE AYDOĞAN AND YAŞAR POLATOĞLU

Presented at the 8th International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 27-31 August 2012, Ohrid, Republic of Macedonia.

ABSTRACT. In this paper we will extend a fundamental property, first defined by M. S. Robinson [4] and then applied by R. J. Libera [3] to functions with positive real part, to harmonic functions and study the class of such functions.

1. INTRODUCTION

Let Ω be the class of functions $\phi(z)$ which are regular in the open unit disc $D = \{z \mid |z| < 1\}$ and satisfying the conditions $\phi(0) = 0$, $|\phi(z)| < 1$ for all $z \in \mathbb{D}$. Denote by \mathcal{P} the family of functions $p(z) = 1 + p_1 z + p_2 z^2 + ...$ which are regular in \mathbb{D} such that p(z) is in \mathcal{P} if and only if

$$p(z)=rac{1+\phi(z)}{1-\phi(z)}$$

for some function $\phi(z) \in \Omega$ for all $z \in \mathbb{D}$. Next let S^* denote the family of functions $s(z) = z + \alpha_2 z^2 + \alpha_3 z^3 + ...$ which are regular in \mathbb{D} such that s(z) is in S^* if and only if

$$zrac{s'(z)}{s(z)}=p(z)$$

for some $p(z) \in \mathcal{P}$ for all $z \in \mathbb{D}$, and let $s_1(z) = z + \beta_2 z^2 + \beta_3 z^3 + ...$ and $s_2(z) = z + \gamma_2 z^2 + \gamma_3 z^3 + ...$ be analytic functions in \mathbb{D} . If there exists $\phi(z) \in \Omega$ such that $s_1(z) = s_2(\phi(z))$, then we say that $s_1(z)$ is subordinate to $s_2(z)$ and we write $s_1(z) \prec s_2(z)$, then $s_1(\mathbb{D}) \subset s_2(\mathbb{D})$. Moreover, univalent harmonic functions are generalization of univalent analytic functions. The point of the departure is the canonical representation

$$f = h(z) + g(z), g(0) = 0$$

ADV MATH SCI JOURNAL

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Harmonic function, growth theorem, distortion theorem, coefficient inequality.

of a harmonic function f in the open unit disc \mathbb{D} as the sum of an analytic function h(z) and conjugate of an analytic function g(z). With the convention that g(0) = 0 the representation is unique. The power series expansions of h(z) and g(z) are denoted by

$$h(z) = \sum_{n=0}^{\infty} a_n z^n, g(z) = \sum_{n=1}^{\infty} b_n z^n.$$

If f is sense-preserving harmonic mapping of \mathbb{D} onto some other region, then by Lewy's Theorem its Jacobian is strictly positive, i. e.

$$J_{f(z)} = \left| h'(z)
ight|^2 - \left| g'(z)
ight|^2 > 0$$

Equivalently, the inequality |g'(z)| < |h'(z)| hold for all $z \in \mathbb{D}$. This shows in particular that $h'(0) \neq 0$ and h(0) = 1. The class of all sense-preserving harmonic mapping of the disc with $a_0 = b_0 = 0$, $a_1 = 1$ will be denoted by S_H . Thus S_H contains the standard class S of analytic univalent functions. Although the analytic part h(z) of a function $f \in S_H$ is locally univalent, it will become apparent that it need not be univalent. The class of functions $f \in S_H$ with g'(0) = 0 will be denoted by S_H^0 . At the same time we note that S_H is a normal family and S_H^0 is a compact normal family (for details see [1]).

Finally, we consider the following class of harmonic mappings

$$S^*_{HPST}=\left\{f=h(z)+\overline{g(z)}~|~f\in S_H, h(z)\in S^*, w(z)=rac{g'(z)}{h'(z)}\in \mathcal{P}
ight\}$$

In the present paper we will investigate the subclass S^*_{HPST} . We will need the following lemma and theorem in the sequel.

Lemma 1.1. ([3]) N and \mathbb{D} are regular in $D = \{z | |z| < 1\}$; $N(0) = \mathbb{D}(0) = 0$, \mathbb{D} maps \mathbb{D} onto a many-sheeted region which is starlike with respect to the origin and $(\frac{N'}{\mathbb{D}'}) \in \mathcal{P}$, then $(\frac{N}{\mathbb{D}}) \in \mathcal{P}$.

Theorem 1.1. ([2]) Let h(z) be an element of S^* , then

$$rac{r}{(1+r)^2} \leq |h(z)| \leq rac{r}{(1-r)^2}\,, \ rac{1-r}{(1+r)^3} \leq |h'(z)| \leq rac{1+r}{(1-r)^3}\,.$$

2. MAIN RESULTS

Lemma 2.1. Let α be a real number with $\alpha > 0$ and let $p(z) = b_1 + p_1 z + p_2 z^2 + ...$ be analytic in \mathbb{D} and satisfies the condition $\operatorname{Re} p(z) > 0$, then

(2.1)
$$\frac{F(\alpha,\beta,-r)}{1+r^2} \le |p(z)| \frac{F(\alpha,\beta,r)}{1-r^2},$$

$$F(lpha,eta,r)=2lpha r+\sqrt{lpha^2(1+lpha^2)+eta^2(1-r^2)^2}\,.$$

Proof. Since $p(z) = (\alpha + i\beta) + p_1 z + p_2 z^2 + ...$ is analytic in \mathbb{D} and satisfies the condition Re p(z) > 0, then the function

(2.2)
$$p_1(z) = \frac{1}{(\alpha + i\beta)} [p(z) - i\beta]$$

is an element of $P([\alpha,\beta])$. On the other hand, since $p_1(z) \in \mathcal{P}$, then we have

(2.3)
$$\left| p_1(z) - \frac{1+r^2}{1-r^2} \right| \le \frac{2r}{1-r^2}.$$

Considering (2.2) and (2.3) together, we can write

(2.4)
$$\left| \frac{1}{\alpha} (p(z) - i\beta) - \frac{1 + r^2}{1 - r^2} \right| \le \frac{2r}{1 - r^2}$$

After simple calculations from (2.4) we get (2.1).

Theorem 2.1. Let $f = h(z) + \overline{g(z)}$ be an element of S^*_{HPST} , then

(2.5)
$$\frac{rF(\alpha,\beta,-r)}{(1+r)^2(1+r^2)} \le |g(z)| \frac{rF(\alpha,\beta,r)}{(1-r)^3(1+r)},$$

and

(2.6)
$$\frac{(1-r)F(\alpha,\beta,-r)}{(1+r^2)(1+r)^3} \le |g'(z)| \frac{F(\alpha,\beta,r)}{(1-r)^4},$$

where $b_1 = lpha + ieta$, lpha > 0 .

Proof. Since

$$h(z) = z + a_2 z^2 + a_3 z^3 + ... \Rightarrow h'(z) = 1 + 2a_2 z + 3a_3 z^3 + ...$$

 $g(z) = b_1 z + b_2 z^2 + b_3 z^3 + ... \Rightarrow g'(z) = b_1 + 2b_2 z + 3b_3 z^2 + ...$
 $h(0) = g(0) = 0$, and $h(z) \in S^*$, if

$$w(z)=rac{g'(z)}{h'(z)}\in \mathcal{P}$$

then the conditions of Lemma 1.1 are satisfied, therefore we have $rac{g(z)}{h(z)} \in \mathcal{P}.$

$$w(0)=rac{g'(0)}{h'(0)}=rac{b_1+2b_2.0+...}{1+2a_2.0+...}=b_1\,.$$

If $b_1 = \alpha + i\beta$, $\alpha > 0$, then we can apply Lemma 2.1 to obtain

$$egin{aligned} rac{F(lpha,eta,-r)}{1+r^2} &\leq \left|rac{g'(z)}{h'(z)}
ight| \leq rac{F(lpha,eta,r)}{1-r^2}\,, \ rac{F(lpha,eta,-r)}{1+r^2} &\leq \left|rac{g(z)}{h(z)}
ight| \leq rac{F(lpha,eta,r)}{1-r^2}\,, \end{aligned}$$

or

(2.7)
$$|h'(z)| \frac{F(\alpha, \beta, -r)}{1+r^2} \le |g'(z)| \le |h'(z)| \frac{F(\alpha, \beta, -r)}{1-r^2},$$

$$(2.8) |h(z)| \, \frac{F(\alpha,\beta,-r)}{1+r^2} \le |g(z)| \le |h(z)| \, \frac{F(\alpha,\beta,-r)}{1-r^2} \, .$$

Using Theorem 1.1, (2.7) and (2.8) we get (2.5) and (2.6).

Corollary 2.1. Let $f = h(z) + \overline{g(z)}$ be an element of S^*_{HPST} , then

(2.9)
$$\frac{(1-r^2)^2 - [F(\alpha,\beta,r)]^2}{(1+r)^8} \le J_{f(z)} \le \frac{(1+r^2)^2 - [(1+r^2)^2 - F(\alpha,\beta,-r)]^2}{(1-r)^6(1+r^2)^2}.$$

Proof. This corollary is a simple consequence of Theorem 2.1

Corollary 2.2. If $f = (h(z) + \overline{g(z)}) \in S^*_{HPST}$, then

(2.10)
$$\int \frac{1-r^2}{(1+r)^4} dr - \int \frac{F(\alpha,\beta,r)}{(1+r)^4} dr \le |f| \le \int \frac{1-r^2}{(1-r)^4} dr + \int \frac{F(\alpha,\beta,r)}{(1-r)^4} dr$$

Proof. Using Theorem 1.1 and Theorem 2.1 and straightforward calculations we get,

$$(2.11) \quad \frac{(1-r^2)-F(\alpha,\beta,r)}{(1+r)^4} \le |h'(z)| \left(1-|w(z)|\right) \le \frac{(1+r)[(1+r^2)-F(\alpha,\beta,-r)]}{(1-r)^3(1+r^2)}$$

$$(2.12) \qquad \frac{(1-r)[(1+r^2)-F(\alpha,\beta,-r)]}{(1+r)^3(1+r^2)} \le |h'(z)| (1+|w(z)|) \le \frac{(1-r^2)+F(\alpha,\beta,r)}{(1-r)^4}$$

On the other hand we have

$$(2.13) |h'(z)| (1 - |w(z)|) |dz| \le |df| \le |h'(z)| (1 + |w(z)|) |dz|$$

Using (2.11), (2.12), (2.13) and integrating from 0 to r we get (2.10).

Theorem 2.2. Let $f = h(z) + \overline{g(z)}$ be an element of S^*_{HPST} , then

$$|b_n| \leq rac{n(2n+1)}{3} + (n+1)$$
 .

Proof. Using the definition of S^*_{HPST} , we can write

$$p(z) = 1 + p_1 z + p_2 z^2 + \ldots + p_n z^n + \ldots = \frac{g'(z)}{h'(z)} = \frac{b_1 + 2b_2 z + 3b_3 z^2 + \ldots + nb_n z^{n-1} + \ldots}{1 + 2a_2 z + 3a_3 z^2 + \ldots + na_n z^{n-1} + \ldots} \Rightarrow$$

 $p_n + 2a_2p_{n-1} + 3a_3p_{n-2} + 4a_4p_{n-3} + \ldots + na_np_1 + (n+1)a_{n+1} = (n+1)b_n$ using the coefficient inequalities for the class S^* and \mathcal{P} , we obtain

$$\begin{aligned} |(n+1)b_n| &= |p_n + 2a_2p_{n-1} + 3a_3p_{n-2} + 4a_4p_{n-3} + \dots + na_np_1 + (n+1)a_{n+1}| \\ &\leq |p_n| + 2|a_2| |p_{n-1}| + 3|a_3| |p_{n-2}| + 4|a_4| |p_{n-3}| + \dots + n|a_n| |p_1| + (n+1)|a_{n+1}| \\ &\quad 2 + 2.2.2 + 3.3.2 + 4.4.2 + \dots + n.n.2 + (n+1)(n+1) \\ &\quad = 2(1+2^2+3^2+4^2+\dots+n^2) + (n+1)^2 \\ &\quad = 2\frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{n(n+1)(2n+1)}{3} + (n+1)^2 \Rightarrow \\ &\quad |b_n| \leq \frac{n(2n+1)}{3} + (n+1). \end{aligned}$$

Remark 2.1. We also note that the inequalities in this paper are sharp because for these inequalities the extremal function is obtained in the following manner, using Lemma 1.1 we have

$$rac{g(z)}{h(z)}=p(z)\Rightarrow g(z)=h(z).p(z)\Rightarrow g(z)=rac{z}{(1-z)^2}rac{1+z}{1-z}\Rightarrow$$
 $g(z)=rac{z(1+z)}{(1-z)^3}.$

References

- [1] P. DUREN: Harmonic Mappings in the plane, Cambridge University press, Gambridge, 2004.
- [2] P. DUREN: Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, 1983.
- [3] R. J. LIBERA: Some Classes of regular univalent functions, Proc. Amer. Math. Soc. 16(4), 1965.
- [4] R. M. ROBINSON: Univalent Majorants, Trans. Amer. Math. Soc., 61 (1947) 1-35.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES ISTANBUL KÜLTÜR UNIVERSITY ISTANBUL, TURKEY *E-mail address*: e.ozkan@iku.edu.tr

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES ISTANBUL KÜLTÜR UNIVERSITY ISTANBUL, TURKEY *E-mail address*: a.sen@iku.edu.tr

DEPARTMENT OF MATHEMATICS ISIK UNIVERSITY, MESRUTIYET KOYU, SILE ISTANBUL, TURKEY *E-mail address*: melike.aydogan@isikun.edu.tr

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES ISTANBUL KÜLTÜR UNIVERSITY ISTANBUL, TURKEY *E-mail address*: y.polatoglu@iku.edu.tr