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Abstract. We consider series, de�ned by means of the Mittag-Le�er functions, �nd
the domains of convergence and study the behaviour on the boundaries of these
domains. We give analogues of the classical theorems for the power series like Cauchy-
Hadamard, Abel as well as Fatou type theorems. The asymptotic formulae for the
Mittag-Le�er functions in the cases of "large" values of indices that are used in the
proofs of the convergence theorems for the considered series are also provided.

1. Introduction

We consider series in functions related to the Mittag-Le�er functions E� and E�; � :

E�(z) =

1X
k=0

zk

�(�k + 1)
; E�;�(z) =

1X
k=0

zk

�(�k + �)
; � > 0; � > 0: (1:1)

We study their geometry of convergence, more precisely, we determine where these series

converge and where do not, and moreover, where the convergence is uniform and where

is not. Their disks of convergence have been found and studied the behaviour on the

boundaries of these domains, proving theorems of Cauchy-Hadamard, Abel and Fatou

type. Such kind of results are provoked by the fact that the solutions of some fractional

order di�erential and integral equations can be written in terms of series (or series of inte-

grals) of Mittag-Le�er functions (as for example in Kiryakova [2] and Sandev, Tomovski

and Dubbeldam [8]).
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2. Inequalities and asymptotic formulae

First of all, denoting

�n(z) =
1X
k=1

zk

�(kn+ 1)
; �n;�(z) =

1X
k=1

�(�) zk

�(kn+ �)
; ��;n(z) =

1X
k=1

�(n) zk

�(�k + n)
;

we give some inequalities and asymptotic formulae for "large" values of indices as follows

(see for details [6]).

Lemma 2.1. Let n 2 N, z 2 C and K � C be a nonempty compact set. Then there

exists a constant eC, 0 < eC <1, such that

j�n(z)j � eC=n!; j�n;�(z)j � eC=(n� 1)!; j��;n(z)j � eC �(n)

�(�+ n)
; (2:1)

for all the natural numbers n and each z 2 K.

Theorem 2.1. For the Mittag-Le�er functions En, En;�, E�;n (n 2 N), the following

asymptotic formulae

En(z) = 1 + �n(z); z 2 C; �n(z)! 0 as n!1 (2:2)

En;�(z) =
1

�(�)
(1 + �n;�(z)); z 2 C; �n;�(z)! 0 as n!1 (2:3)

E�;n(z) =
1

�(n)
(1 + ��;n(z)); z 2 C; ��;n(z)! 0 as n!1 (2:4)

are valid. The functions �n(z), �n;�(z), ��;n(z) are holomorphic for z 2 C. The

convergence is uniform on the compact subsets of the complex plane C.

Note 2.1. According to the asymptotic formulae (2.2) - (2.4), it follows there exists a

natural number N0 such that the functions En, �(n)E�;n, �(�)En;� have not any zeros

at all for n > N0.

Note 2.2. Note that each of the functions En(z); En;�(z); E�;n(z); (n 2 N), being an

entire function, no identically zero, has no more than �nite number of zeros in the closed

and bounded set jzj � R ([3], vol.1, ch. 3, �6, 6.1, p.305). Moreover, because of Note

2.1., no more than �nite number of these functions have some zeros.

3. Series in Mittag-Leffler functions. Theorems of Cauchy-Hadamard and

Abel type

We introduce auxiliary functions, related to Mittag-Le�er's functions, adding eE0(z),eE0;�(z)) and eE�;0(z) just for completeness, namely:

eE0(z) = 1; eEn(z) = znEn(z); n 2 N;eE0;�(z) = 1; eEn;�(z) = �(�)znEn;�(z); n 2 N; � > 0;eE�;0(z) = 1; eE�;n(z) = �(n)znE�;n(z); n 2 N; � > 0; (3:1)

and consider the series in these functions, respectively:
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1X
n=0

an eEn(z);

1X
n=0

an eEn;�(z);

1X
n=0

an eE�;n(z); (3:2)

with complex coe�cients an (n = 0; 1; 2; :::).

We give some previous results for series of the kind (3.2) and consider their behaviour

on an arc of the unit circle jzj = 1, all the points of which (including the ends) are regular

to the sum of the series. Such type of results are also obtained for series in other special

functions, for example, for series in Laguerre and Hermite polynomials [7], and resp. by

the author for systems of some other representatives of the SF of FC, which are fractional

indices analogues of the Bessel functions and also multi-index Mittag-Le�er functions (in

the sense of [1]) in the previous papers [4] - [5].

In the beginning we give a theorem of Cauchy-Hadamard type and a corollary for every

one of the above series.

Theorem 3.1. (of Cauchy-Hadamard type)The domain of convergence of each

of the series (3.2) with complex coe�cients an is the disk jzj < R with a radius of

convergence R = 1=�, where
� = lim sup

n!1
( janj )

1=n: (3:3)

More precisely, the series (3.2) are absolutely convergent on the disk jzj < R and

divergent on the domain jzj > R. The cases � = 0 and � = 1 can be included in

the general case, provided 1=� means 1, respectively 0.

Corollary 3.1. Let anyone of the series (3.2) converges at the point z0 6= 0. Then

it is absolutely convergent on the disk D = fz : jzj < jz0j; z 2 Cg. Inside of the

disk jzj < 1=� = R, i.e. on each closed disk jzj � r < R (� de�ned by (3.3)), the

convergence is uniform.

Proof. Indeed, since the considered series converges at the point z0 6= 0, its radius of

convergence is the positive number R, and moreover the point z0 lies either in the disk

jzj < R or on its boundary - the circle jzj = R. That is why, the disk D is either a part of

the domain of convergence or coincide with it, whence the absolute convergence follows.

To prove uniformity of the convergence inside of the disk jzj < R, it is su�ciently to show

that the series is uniformly convergent on each closed disk jzj � r < R. To this purpose,

choosing a point �, j�j = �, r < � < R and considering e.g. the �rst of the series (3.2),

we estimate jan eEn(z)j. First, mention that some of the values of eEn(�), but only �nite

numbers of them, can be zero. Then there exists a number p such that

jan eEn(z)j = jan eEn(�)j
j eEn(z)j

j eEn(�)j
= jan eEn(�)j

jznjj1 + �n(z)j

j�njj1 + �n(�)j
� jan eEn(�)j

j1 + �n(z)j

j1 + �n(�)j

for all n > p and jzj � r.

Because of (2.1) and the relations lim
n!1

1

n! = 0, lim
n!1

(1 + �n(�))
�1 = 1, there exist

numbers A and B such that j1 + �n(z)jj1 + �n(�)j
�1 � AB and hence jan eEn(z)j �

ABjan eEn(�)j; for all the values of n > p and jzj � r. Since the series
1P
n=0

an eEn(�) is

absolutely convergent and by the criterium of comparing, the uniform convergence is

proved. The proofs for the other two series go in the similar way. �
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The very disk of convergence is not obligatory a domain of uniform convergence and

on its boundary the series may even be divergent.

Let z0 2 C, 0 < R <1, jz0j = R, g' be an arbitrary angular domain with size 2' < �

and with vertex at the point z = z0, which is symmetric with respect to the straight

line de�ned by the points 0 and z0, and d' be the part of the angular domain g', closed

between the angle's arms and the arc of the circle with center at the point 0 and touching

the arms of the angle. The following inequality can be veri�ed inside d'

jz � z0j cos' < 2(jz0j � jzj): (3:4)

Next theorem refers to the uniform convergence on the set d' and the convergence at

the point z0, provided jzj < R and z 2 g'.

Theorem 3.2. (of Abel type) Let fang
1
n=0 be a sequence of complex numbers, � be

the real number de�ned by (3.3), 0 < � <1. Let K = fz : z 2 C; jzj < R;R = 1=�g.

If f(z), g(z;�), h(z;�) are the sums respectively of the �rst, second and third of

the series (3.2) on the domain K, and these series converge at the point z0 of the

boundary of K, then the series (3.2) are uniformly convergent on the domain d'.

and

lim
z!z0

f(z) =
1X
n=0

an eEn(z0); lim
z!z0

g(z; �) =
1X
n=0

an eEn; �(z0);

lim
z!z0

h(z; �) =

1X
n=0

an eE�; n(z0):

provided jzj < R and z 2 g'.

The proofs of Theorems 3.1 and 3.2, excepting the uniformity, are given in [6].

Note 3.1. If some of the series (3.2) has a �nite and non-zero radius of convergence R,

it converges at the point z0 2 C(0; R) and F is the holomorphic function de�ned by this

series in its domain of convergence, then by the Theorem 3.2. it follows that

lim
z!z0; z2d'

F (z) = F (z0);

i.e. the restriction of the function F to each set of the kind d' is continuous at the point

z0.

Proof. Here we consider the �rst of the series (3.2) whose convergence have been proved

in [6]. To prove its uniform convergence we use the inequality (3.4) that is the crucial

point of the proof.

So, let z 2 d'. Setting

Sk(z) =

kX
n=0

an eEn(z); Sk(z0) =

kX
n=0

an eEn(z0); lim
k!1

Sk(z0) = s; (3:5)

�n = Sn(z0)� s; �n � �n�1 = an eEn(z0);

we obtain
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Sk+p(z)� Sk(z) =

k+pX
n=0

an eEn(z)�
kX

n=0

an eEn(z) =

k+pX
n=k+1

an eEn(z):

According to Note 2.1, there exists a natural number N0 such that eEn(z0) 6= 0 when

n > N0. Let k > N0 and p > 0. Then, using the denotation 
n(z; z0) = eEn(z)= eEn(z0);

we can write the di�erence Sk+p(z)� Sk(z) as follows:

Sk+p(z)� Sk(z) =

k+pX
n=k+1

an eEn(z0)
eEn(z)eEn(z0)

=

k+pX
n=k+1

an eEn(z0)
n(z; z0):

Now, by the Abel transformation (see in [3], vol.1, ch.1, p.32, 3.4:7), we obtain con-

secutively:

Sk+p(z)� Sk(z) =

k+pX
n=k+1

(�n � �n�1)
n(z; z0)

= �k+p
k+p(z)� �k
k+1(z)�

k+p�1X
n=k+1

�n(
n+1(z; z0)� 
n(z; z0));

Sk+p(z)� Sk(z) = (Sk+p(z0)� s)
k+p(z)� (Sk(z0)� s)
k+1(z)

+

k+p�1X
n=k+1

(Sn(z0)� s)�

 eEn(z)eEn(z0)
�
eEn+1(z)eEn+1(z0)

!
:

So, using last relation, we are going to estimate the module of the di�erence Sk+p(z) �

Sk(z) as follows:

jSk+p(z)� Sk(z)j � jSk+p(z0)� sjj
k+p(z)j+ jSk(z0)� sjj
k+1(z)j

+

k+p�1X
n=k+1

jSn(z0)� sj �

����� eEn(z)eEn(z0)
�
eEn+1(z)eEn+1(z0)

����� : (3:6)

Because of (2.1) and the relations lim
n!1

1

n! = 0, lim
n!1

(1 + �n(z0))
�1 = 1, there exist

numbers A and N1 > N0 such that j1 + �n(z)j � A=2 for all the natural values of n and

j1 + �n(�)j
�1 < 2 for n > N1, whence

j
n(z; z0)j � A for n > N1: (3:7)

Further, setting

en(z; z0) =
eEn(z)eEn(z0)

�
eEn+1(z)eEn+1(z0)

=
zn

zn0
�

�
1 + �n(z)

1 + �n(z0)
�

z

z0
�

1 + �n+1(z)

1 + �n+1(z0)

�
and observing that en(z0; z0) = 0, we apply the Schwartz lemma for en(z; z0). So, we get

that there exists a constant C:

jen(z; z0)j = j eEn(z)= eEn(z0)� eEn+1(z)= eEn+1(z0)j � Cjz � z0jjz=z0j
n;

whence, and in accordance to (3.4):

k+p+1X
n=k+1

jen(z; z0)j �

1X
n=0

Cjz � z0jjz=z0j
n = Cjz0j �

jz � z0j

jzj � jz0j
<

2Cjz0j

cos'
: (3:8)
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Let " be an arbitrary positive number. Taking in view the third of the relations (3.5), we

can con�rm that there exists a positive number N2 > N0 so large that

jSn(z0)� sj < min

�
"

3A
;
" cos'

6Cjz0j

�
for n > N2: (3:9)

Now, let N = N(") = max(N1; N2) and k > N . Therefore (3.6) - (3.9) give

jSk+p(z)� Sk(z)j <
2"

3
+
" cos'

6Cjz0j

k+p+1X
n=k+1

jen(z; z0)j <
2"

3
+
" cos'

6Cjz0j

2Cjz0j

cos'
= "

that completes the proof of the theorem for the considered series. The proofs for the

other two series go by analogy. �

4. Fatou type theorems

Let fang
1
n=0 be a sequence of complex numbers with lim sup

n!1
( janj )

1=n = R; and ef(z)
be the sum of the power series

1P
n=0

anz
n on the open disk U(0;R) = fz : z 2 C; jzj < Rg,

i.e.

ef(z) = 1X
n=0

anz
n; z 2 U(0;R):

De�nition 4.1. A point z0 2 @U(0;R) is called regular for the function ef if there

exist a neighbourhood U(z0; �) and a function ef�z0 2 H(U(z0; �)) (the space of complex-

valued functions, holomorphic in the set U(z0; �)), such that ef�z0(z) = ef(z) for z 2

U(z0; �) \ U(0;R).

By this de�nition it follows that the set of regular points of the power series is an open

subset of the circle C(0;R) = @U(0;R) with respect to the relative topology on @U(0;R),

i.e. the topology induced by that of C.

In general, there is no relation between the convergence (divergence) of a power series

at points on the boundary of its disk of convergence and the regularity (singularity) of

its sum of such points. For example, the power series
1P
n=0

zn is divergent at each point of

the circle C(0; 1) regardless of the fact that all the points of this circle, except z = 1, are

regular for its sum. The series
1P
n=1

n�2zn is (absolutely) convergent at each point of the

circle C(0; 1), but nevertheless one of them, namely z = 1, is a singular (i.e. not regular)

for its sum. But under additional conditions on the sequence fang
1
n=0, such a relation do

exists (see for details [3], vol.1, ch. 3, �7, 7.3, p.357).

Proposition refereing to the above discussed properties holds also for series in the

Laguerre and Hermite systems (see e.g.[7]). Here we give such a type of theorem for the

Mittag-Le�er systems as follows.
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Theorem 4.1. (of Fatou type) Let fang
1
n=0 be a sequence of complex numbers

satisfying the condition lim sup
n!1

( janj )
1=n = 1 and f(z), g(z;�), h(z;�) be the sums

respectively of the �rst, second and third of the series (3.2) on the disk D = fz : z 2

C; jzj < 1g, i.e.

f(z) =

1X
n=0

an eEn(z); g(z; �) =

1X
n=0

an eEn; �(z); h(z; �) =

1X
n=0

an eE�; n(z); z 2 D:

Let � be an arbitrary arc of the unit circle jzj = 1 with all its points (including

the ends) regular to the function f (resp. g or h). Let lim
n!1

an = 0 and eEn(z) 6= 0

(respectively eEn; �(z) 6= 0, eE�; n(z) 6= 0) for z 2 �. Then the �rst (resp. second or

third) of the series (3.2) converges, even uniformly, on the arc �.

The proof will be given elsewhere.
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