
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scienti�c Journal 1 (2012), no.2, 133�137

ISSN 1857-8365, UDC: 517.982.4

ON THE ANALYTIC REPRESENTATION OF DISTRIBUTIONS

OF SEVERAL VARIABLES

VASKO RE�KOVSKI AND NIKOLA RE�KOSKI

Presented at the 8th International Symposium GEOMETRIC FUNCTION THEORY AND

APPLICATIONS, 27-31 August 2012, Ohrid, Republic of Macedonia.

Abstract. In this article we present one proof for the analytic representation of
distributions of several variables. For simplicity we give detailed proof for the distri-
butions of two variables.

1. Introduction

The basic functions in the analytic representation of distributions are the Cauchy and

the Poisson kernel:

(1.1) K(z � t) =
1

(2�i)n

nY
j=1

1

(tj � zj)
;

where z = (z1; ; zn), zj = xj + iyj ; and

P (z; t) = sgny
(y1 : : : yn)

�n

nY
j=1

1

jtj � zj j2
;

where y = (y1; : : : ; yn) and sgny = sgny1sgnyn respectively. If the analytic represen-

tation is de�ned by the Cauchy kernel, then the representation is also called Cauchy

representation. For the Cauchy representation is specially adapted the spaces O�1;:::;�n ,

where �1; : : : ; �n are real numbers. The dual space for O�1;:::;�n is denoted by O0�1;:::;�n :

This spaces are given in [1].

It is clear, for example, that the Poisson kernel belongs to the space O(0; : : : ; 0): Also

if the distribution T 2 O0
�1;:::;�1 then the function

T̂ (z) =
1

(2�i)n
hT;

nY
j=1

1

tj � zj
i

where z = (z1; : : : ; zn); Imzj 6= 0 and t = (t1; : : : ; tn) is well de�ned in this domain of the

n-dimensional complex space Cn. The function T̂ (z) have the main role in the analytic
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representation of distributions of one or several variables. It is easy to prove that T̂ (z)

is analytic function of each complex variable zj respectively, and Hartog's theorem says

that this function is analytic as a function of n-complex variables in the domain Imzj 6= 0

for j = 1; ; n:

In the one-dimensional case T̂ (x + iy) � T̂ (x � iy) converges in distribution sense to

the distribution T , and this fact may suggest to consider the sum

(1.2) T̂ (z1; : : : ; zn)�T̂ (�z1; : : : ; zn)+� � �+(�1)kT̂ (z1; �z2; : : : ; zn)+� � �+(�1)nT̂ (�z1; : : : ; �zn)

where k is equal to the number of conjugates in T̂ (z). See also the lemma in [1], p. 207.

We will give a direct proof that the sum (1.2) converges to the distribution T . Another

proof is given in [1]. For simplicity we consider the two-dimensional distributions.

2. Main result

Theorem 2.1. If T 2 O0
�1;�1 and if

T̂ (z) =
1

(2�i)2
hT;

1

(t1 � z1)(t2 � z2)
i

where z = (z1; z2), t = (t1; t2), then

T̂ (x+ i"1; y + i"2)� T̂ (x� i"1; y + i"2)� T̂ (x+ i"1; y � i"2) + T̂ (x� i"1; y � i"2)

converges in distribution sense to the distribution T as "1; "2 ! 0+ :

Proof. Let ' 2 D(R2) and �rst we consider

hT̂ (x+ i"1; y + i"2); '(x; y)i =

Z Z
R2

T̂ (x+ i"1; y + i"2)'(x; y)dxdy :

The integral on the right side is equal to the limits of the Riemann sums , i.e.

lim
n;m!1

hTt;
1

(2�i)2

n;mX
j;k=1

'(xj ; yk)4xj4yk
(t1 � xj � i"1)(t2 � yk � i"2)

i :

Now we consider the sequence of functions ( n;m(t)) ; where

(2.1)  n;m(t) =
1

(2�i)2

n;mX
j;k=1

'(xj ; yk)4xj4yk
(t1 � xj � i"1)(t2 � yk � i"2)

:

Since the function ' has compact support there exists square [�L;L]� [�L;L]; L > 0 in

which the support of ' is contained. Let M = maxj'(x; y)j: This implies that the terms

of the sum in (2.1) are non zero only if they belong in the square. From above it follows

that

j n;m(t)j �
1

4�2

n;mX
j;k=1

M4xj4yk
"1"2

=
4ML2

4�2"1"2
;

for any partition of R2 with elementary squares.

Thus we conclude that the sequence ( n;m(t)) is uniformly bounded. Now we will

prove that the sequence is uniform continuous on every compact set. Let (t01; t
0

2) and

(t001; t
00

2) are in R2 and consider

j n;m(t01; t
0

2)�  n;m(t001; t
00

2)j ;
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It is easy to see that ( n;m(t)) is uniformly is continuous, since for �xed (t1; t2) the

sequence  n;m(t1; t2) converge to the integral

(2.2)
1

(2�i)2

Z Z
R2

'(x; y)dxdy

(t1 � x� i"1)(t2 � y � i"2)

and the Arzela-Ascoli theorem says that the convergence is in the space O�1;�1. We have

(2.3) hT̂ (x+ i"1; y + i"2); '(x; y)i = hT;
1

(2�i)2

Z Z
R2

'(x; y)dxdy

(t1 � x� i"1)(t2 � y � i"2)
i

Similarly we have:

(2.4) h�T̂ (x+ i"1; y � i"2); '(x; y)i = hT;
�1

(2�i)2

Z Z
R2

'(x; y)dxdy

(t1 � x� i"1)(t2 � y + i"2)
i ;

(2.5) h�T̂ (x� i"1; y + i"2); '(x; y)i = hT;
�1

(2�i)2

Z Z
R2

'(x; y)dxdy

(t1 � x+ i"1)(t2 � y � i"2)
i ;

(2.6) hT̂ (x� i"1; y � i"2); '(x; y)i = hT;
1

(2�i)2

Z Z
R2

'(x; y)dxdy

(t1 � x+ i"1)(t2 � y + i"2)
i :

By adding (2.3), (2.4), (2.5) and (2.6) we obtain:

hT̂ (x+ i"1; y + i"2)� T̂ (x� i"1; y + i"2)� T̂ (x+ i"1; y � i"2) + T̂ (x� i"1; y � i"2)i =

= hT;
1

(2�i)2

Z Z
R2

'(x; y)

�
1

(t1 � x� i"1)(t2 � y � i"2)
�

1

(t1 � x� i"1)(t2 � y + i"2)
�

�
1

(t1 � x+ i"1)(t2 � y � i"2)
+

1

(t1 � x+ i"1)(t2 � y + i"2)

�
dxdyi :

Now the right side we write in the form :

hT;
1

(2�i)2

Z Z
R2

(2i)2"1"2'(x; y)dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
i :

Since ' has compact support the integral is

(2.7) I = hT;
1

�2

Z a

�a

Z a

�a

"1"2'(x; y)dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
i ;

for some a > 0:

The integral in (2.7) is equal to:Z a

�a

Z a

�a

"1"2['(x; y)� '(t1; t2)]dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
+'(t1; t2)

Z a

�a

Z a

�a

"1"2dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
:

Now we consider the integrals I1 and I2 where

I1 =

Z a

�a

Z a

�a

"1"2['(x; y)� '(t1; t2)]dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
;

and

I2 =

Z a

�a

Z a

�a

"1"2dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
:

By the mean value theorem we have
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I1 =

Z a

�a

Z a

�a

"1"2(x� t1)
@'
@x

[t1 + �(x� t1); t2 + �(y � t2)]dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
+

+

Z a

�a

Z a

�a

"1"2(y � t2)
@'
@x

[t1 + �(x� t1); t2 + �(y � t2)]dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
;

where 0 < � < 1:

Further we consider two parts of I1 namely:

I1;1 =

Z a

�a

Z a

�a

"1"2(x� t1)
@'
@x

[t1 + �(x� t1); t2 + �(y � t2)]dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
;

and

I1;2 =

Z a

�a

Z a

�a

"1"2(y � t2)
@'
@x

[t1 + �(x� t1); t2 + �(y � t2)]dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
:

We use the Taylor formula with respect to x in t1 and we have

@'

@x
[t1 + �(x� t1); t2 + �(y � t2)] =

=
@'

@x
[t1; t2 + �(y � t2)] + (x� t1)

@2'

@x2
[t1 + �(c� t1); t2 + �(y � t2)]� :

The �rst term of I1;1 is

A1 =

Z a

�a

"1(x� t1)

(t1 � x)2 + "21
dx

Z a

�a

@'
@x

[t1; t2 + �(y � t2)]"2

(t2 � y)2 + "22
dy :

Put ����@
2'

@x2

���� ;
����@

2'

@y2

���� �M ;

then we have

jA1j �M

����
Z a

�a

"1(x� t1)

(t1 � x)2 + "21
dx

����
����
Z a

�a

"2

(t2 � y)2 + "22
dy

���� =
=

1

2
"1j ln[(t1 � x)2 + "21]M arctan

y � t2

"2
:

From that it is easy to see that A1 ! 0 as "1; "2 ! 0: The second part

A2 =

Z a

�a

Z a

�a

"1"2(x� t1)
2 @

2'
@x2

[t1 + �(x� t1); t2 + �(y � t2)]�dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
:

It is obvious that

jA2j �

Z a

�a

Z a

�a

"1"2M

(t2 � y)2 + "2y
dxdy ;

and A2 ! 0 as "1; "2 ! 0:

Similarly we can conclude that I1;2 ! 0: Now we consider the integral I2:

I2 = '(t1; t2)

Z a

�a

Z a

�a

"1"2dxdy

[(t1 � x)2 + "21][(t2 � y)2 + "22]
= '(t1; t2) arctan

x� t1

"1
arctan

y � t2

"2
:

If t = (t1; t2) belongs to a compact set, then we can choose a such that a � t1 >

0; a � t2 > 0 and �a � t1 < 0;�a � t2 < 0: In this case if "1; "2 ! 0 then the last

expression tends to "(t1; t2)�
2: In this way we have proved that the integrals in (2.7)
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converge to the function "(t1; t2) in the space O�1;�1: With this we proved that the

assertion in (1.2) is true. Of course this method may apply in general case when we have

distributions of n variables.

�

Example 2.1. If � is the Dirac distribution in the space D(R2); then

�̂(z1; z2) = h�(t1;t2);
1

(2�i)2(t1 � z1)(t2 � z2)
i =

1

(2�i)2z1z2
:

Here we have four functions

1

(2�i)2(x1 + iy1)(x2 + iy2)
;

�1

(2�i)2(x1 � iy1)(x2 + iy2)
;

1

(2�i)2(x1 + iy1)(x2 � iy2)
;

�1

(2�i)2(x1 � iy1)(x2 � iy2)
;

where y1; y2 > 0: Evidently that �̂(z1; z2) is not analytic if z1 = 0 or z2 = 0; but

the support of � is the point (0,0). This fact is di�erent from the corresponding of

one-dimensional �. The di�erent is due to the properties of the analytic functions

of several complex variables see ([1] p. 208).
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