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ABSTRACT. In this article we present one proof for the analytic representation of
distributions of several variables. For simplicity we give detailed proof for the distri-
butions of two variables.

1. INTRODUCTION

The basic functions in the analytic representation of distributions are the Cauchy and
the Poisson kernel:

(1.1) K(z—t)= ! H(t,l ,

where z = (21,, 2n), 2; = z; +1y;, and
n

(y1---Yn)
P(z,t) =
(2,8) = sgny=—2 |||t

i~z

where y = (y1,...,Yn) and sgny = sgnyisgny, respectively. If the analytic represen-
tation is defined by the Cauchy kernel, then the representation is also called Cauchy
representation. For the Cauchy representation is specially adapted the spaces Oq, . ., ,
where ay, ..., oy are real numbers. The dual space for O, . «, is denoted by Oéxl,...
This spaces are given in [1].

It is clear, for example, that the Poisson kernel belongs to the space O(0,...,0). Also
if the distribution T € O’ ; _; then the function

n 0,

n

T(z) = ﬁ(T, H tizj)

j=1 "

where 2z = (21,...,2,),Imz; #0and t = (t1,...,t,) is well defined in this domain of the

n
n-dimensional complex space C™. The function 7'(z) have the main role in the analytic
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representation of distributions of one or several variables. It is easy to prove that T(z)
is analytic function of each complex variable z; respectively, and Hartog’s theorem says
that this function is analytic as a function of n-complex variables in the domain Imz; # 0
fory =1,,n.

In the one-dimensional case T'(z + iy) — T'(z — 1y) converges in distribution sense to
the distribution 7', and this fact may suggest to consider the sum

(1.2) P21, 20) =T (21, ., 20)+ A (=1 (21, 23, . ., 20) b -+ (=1)"F (21, - . ., Z0)

where k is equal to the number of conjugates in T'(z). See also the lemma in [1], p- 207.
We will give a direct proof that the sum (1.2) converges to the distribution T. Another
proof is given in [1]. For simplicity we consider the two-dimensional distributions.

2. MAIN RESULT

Theorem 2.1. IfT € O’ ; ,; and if
A 1 1
6= G T G o)t = )

where z = (21, 22), t = (t1,%2), then

T(z +ie1,y +iey) — T(z — g1,y +ie2) — T(z + de1,y — ig2) + Tz — 61,y — i€2)
converges in distribution sense to the distribution T as €1,65 — 07 .

Proof. Let ¢ € D(R?) and first we consider

(P2 + e,y + ie2), (e, ) = / / (o + ie1,y + ies)o(e, y)dady
RZ

The integral on the right side is equal to the limits of the Riemann sums , i.e.

n,m

1 Yk ) AT A
lim (T3, . Z o(z; ».yk) T8k .
n,m-rco (273)? Pyl (t1 —zj —2e1)(t2 — Yp — 1€2)

Now we consider the sequence of functions (¢, m(t)) , where

1 ’ o(zj,yr) Az Ayy
(t1 —z; —de1)(t2 — Y —i€2)

(2.1) wn,m(t) =
jk=1
Since the function ¢ has compact support there exists square [—L, L] x [-L,L],L > 0 in
which the support of ¢ is contained. Let M = maz|p(z,y)|. This implies that the terms
of the sum in (2.1) are non zero only if they belong in the square. From above it follows
that .

1 Z MAzi Ay,  AML?

|¢n,m(t)| S W , €165 - 47!'26162 )
7,k=1
for any partition of R? with elementary squares.
Thus we conclude that the sequence (¢, (¢)) is uniformly bounded. Now we will
prove that the sequence is uniform continuous on every compact set. Let (¢],%,) and

(¢/,t5) are in R? and consider

|¢n,m(t€l1t12) - ¢n,m(tlll7t12,)| ’
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It is easy to see that (¢, m(t)) is uniformly is continuous, since for fixed (t:,t;) the
sequence ¥, m(t1,%2) converge to the integral

(2.2) // (2,y)dzdy
27m p (t1—z— zsl)(tz — Yy —1€2)

and the Arzela-Ascoli theorem says that the convergence is in the space O_;,_;. We have

L , p(z,y)dzdy
2. T
23) (Pletieny+ien)ple) = (T [ [ FRtEA

Similarly we have:

(24) (—T(ac-l—isl,y—isg),(p(x,y)) 27!'2 //R2 tl—m—i,l)zixiyy-i-iez))’

25) (~Pa = isvy +isa)ple)) = (T o [ [ Pmtie s,
26) (o ieny—iehple) = (s [ [ o ot

By adding (2.3), (2.4), (2.5) and (2.6) we obtain:
(T'(z + 151, y+1iey) — T'(z —iey,y +163) — Tz + ieq,y — iex) + T'(x — teq,y — i63)) =

1 1
= x — n T —
27m // Y) [ (t1 —z—te1)(ta —y —t62) (1 —z —261)(t2 — y + 1€2)

- L + L dzdy)
(t]_ —$+’i€1)(tg—y—i52) (tl —$+i51)(t2—’y+i52) yr-

Now the right side we write in the form :

818290(93 y)dzdy
(2mi)2 //Rz tl )2 + 2][(ts — y)? +€§]>'

Since ¢ has compact support the integral is

(2.7) /_a /_a 515290(3: y)dzdy ),

[(t2 — 2)* + €dll(t2 — y) + &3]

for some a > 0.
The integral in (2.7) is equal to:

/ / e1&2(p(z,y) — <p(t1,t2)]d$dy ot £2) / / g1€odzdy
—aJ—a tl_m +51][(t2_y) +e ’ —aJ—a tl_x +E%][(t2_y)2+53]

Now we consider the integrals I; and .72 where
/ / e1€2[p(z,y) — p(t1,t2)]dzdy
oo [(t1 — ) + edlltz —y)? + 3]’

I — /a /a ElEzdmdy
T et — 2 et — ) + €3]

By the mean value theorem we have

and
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er1e2(z — tl a—“’[tl +8(z —t1),t2 + 0(y — t2)|dzdy
/—a /_a tl —z)? +ef][(t2 — y)? + €3]

e1€2(y — t2 o[ty 4+ 0(z — t1),t2 + 0(y — t2)]dzdy
/—a. /_a t1 —:13) +e3][(t2 — y)? + €3]

k)

where 0 < § < 1.
Further we consider two parts of I; namely:

/ / 8182 x —tl &p[tl +9($ —tl) tz +9( —tg)]ddidy
L= 2
—aJ—a t1 — CC) + El][(tQ - y) + 82]

?

and

I / / 6152 —tz [tl +9(x—t1),t2 +9(y—t2)]d$dy
R S tl —z)? +€f][(t2 — y)? + €3] ’
We use the Taylor formula with respect to z in ¢; and we have

21t + 6(a — 1), 3 + 6(y — t2)] =

8 62
_ a—:[tl,tz +0(y — ta)] + (2 — 1) 5 °¥

The first term of I; ; is

¢ - @ 901 by + 0y —t
A]_:/ (El(xtl)dx/ oz 11,2 +6(y 2)]82dy.

[t1+6(c—t1),t2 +6(y —t2)]6.

th—z)2+el Jo (2-y)P+es
Put - -
@ @
2 EE <M
8z2 || oy | —
then we have
— t
|A1|<M‘/ _ale—t) H/ e
—a t —:c +81 —a tg—y —|—82
1 —t
= 561| In[(¢; — z)* + £7] M arctan y—tz
€2

From that it is easy to see that A; — 0 as €1,e2 — 0. The second part

Ay = / / exe3(z — t1)° SElt + 8(z — t1), ta + O(y — t2)]6dady
S A [(t1 — )2 + €2][(t2 — y)? + 3] '

M
|A2|</ / G182 dedy,
—aJ—a t _y +52

and A, > 0 as €;,e5 — 0.
Similarly we can conclude that I; » — 0. Now we consider the integral I.

a a
Elﬁzdﬂ}dy z—1 Yy —1
= p(?1,t = p(t1,%2)arctan arctan .
QO( 1, 2) /;a/_a (t]_ _$)2+8%][(t2_y)2+€g] SD( 1 2) 51 52

If t = (¢1,t2) belongs to a compact set, then we can choose a such that a — ¢; >
0,a —ty >0 and —a—t; < 0,—a —ty < 0. In this case if 1,69 — 0 then the last
expression tends to e(¢1,¢2)m?. In this way we have proved that the integrals in (2.7)

It is obvious that
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converge to the function &(¢1,t;) in the space O_;,_;. With this we proved that the
assertion in (1.2) is true. Of course this method may apply in general case when we have
distributions of n variables.

O

Example 2.1. If § is the Dirac distribution in the space D(R?), then

s 1 1
$e02) = Ot il — m)l =2 @Rz
Here we have four functions
1 -1
(27m1)2(zy + 2y1) (T2 + 1y2) " (278)2 (21 — 1y1) (22 + 3y2)
1 -1

(27m1)2 (21 + 1y1) (T2 — 192) " (278)2(z1 — 1y1) (T2 — 1y2)
where y1,y2 > 0. Evidently that 3(21,22) 18 not analytic if z1 = 0 or zo = 0, but
the support of 6 s the point (0,0). This fact is different from the corresponding of
one-dimensional §. The different 1s due to the properties of the analytic functions
of several complex variables see ([1] p. 208).
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