AN EXTENSION OPERATOR AND LOEWNER CHAINS ON SOME REINHARDT DOMAINS IN \mathbb{C}^n

ADV MATH SCI JOURNAL

TEODORA CHIRILĂ

Presented at the 8th International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 27-31 August 2012, Ohrid, Republic of Macedonia.

ABSTRACT. In this paper we are concerned with an extension operator $\Phi_{n,p,\alpha}$, $\alpha \geq 0$, $p \geq 1$, that provides a way of extending a locally biholomorphic mapping $f \in H(B^n)$ to a locally biholomorphic mapping $F \in H(\Omega_{n,p})$, where $\Omega_{n,p} = \{z = (z', z_{n+1}) \in \mathbb{C}^{n+1} : ||z'||^2 + |z_{n+1}|^p < 1\}$. By using the method of Loewner chains, we prove that if $f \in S^0(B^n)$, then $\Phi_{n,p,\alpha}(f) \in S^0(\Omega_{n,p})$, for $p \geq \max\{2n\alpha, 1\}$ and $\alpha \in [0, 1/(n+1)]$. In particular, if $f \in S^*(B^n)$, then $\Phi_{n,p,\alpha}(f) \in S^*(\Omega_{n,p})$ and if f is spirallike of type $\beta \in (-\pi/2, \pi/2)$ on B^n , then $\Phi_{n,p,\alpha}(f)$ is also spirallike of type β on $\Omega_{n,p}$. Finally, we consider the preservation of ε -starlikeness under the operator $\Phi_{n,p,\alpha}$.

1. INTRODUCTION AND PRELIMINARIES

Let \mathbb{C}^n denote the space of *n* complex variables $z = (z_1, \ldots, z_n)$ with the Euclidean inner product $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w}_j$ and the Euclidean norm $||z|| = \langle z, z \rangle^{1/2}$. The open ball $\{z \in \mathbb{C}^n : ||z|| < r\}$ is denoted by B_r^n and the unit ball B_1^n is denoted by B^n . In the case of one complex variable, B^1 is denoted by U.

Let $L(\mathbb{C}^n, \mathbb{C}^m)$ denote the space of linear continuous operators from \mathbb{C}^n into \mathbb{C}^m with the standard operator norm, and let I_n be the identity of $L(\mathbb{C}^n, \mathbb{C}^n)$. If Ω is a domain in \mathbb{C}^n , we denote by $H(\Omega)$ the set of holomorphic mappings from Ω into \mathbb{C}^n . If $0 \in \Omega$, such a mapping f is said to be normalized if f(0) = 0 and $Df(0) = I_n$.

From now on, we assume that Ω is a domain in \mathbb{C}^n that contains the origin. We say that $f \in H(\Omega)$ is locally biholomorphic on Ω if the complex Jacobian matrix Df(z) is nonsingular at each $z \in \Omega$. Let $J_f(z) = \det Df(z)$. Let $\mathcal{LS}_n(\Omega)$ be the set of normalized locally biholomorphic mappings on Ω and let $S(\Omega)$ be the set of normalized biholomorphic mappings on Ω . A map $f \in S(\Omega)$ is said to be convex if its image is a convex domain in \mathbb{C}^n , and starlike if the image is a starlike domain with respect to the origin. We denote the classes of normalized convex and starlike mappings on Ω respectively by $K(\Omega)$ and $S^*(\Omega)$.

²⁰¹⁰ Mathematics Subject Classification. 32H02, 30C45.

Key words and phrases. Loewner chain, parametric representation, Pfaltzgraff-Suffridge extension operator, Roper-Suffridge extension operator, spirallike mapping of type β , starlike mapping, ε -starlike mapping.

In one variable we write $\mathcal{L}S_1(B^1) = \mathcal{L}S$, $S(B^1) = S$, $K(B^1) = K$ and $S^*(B^1) = S^*$. A mapping $f \in S(\Omega)$ is spirallike of type $\beta \in (-\pi/2, \pi/2)$ if the spiral $\exp(-e^{-i\beta}\tau)f(z)$ $(\tau \geq 0)$ is contained in $f(\Omega)$ for any $z \in \Omega$. We denote by $\hat{S}_{\beta}(\Omega)$ the class of normalized spirallike mappings of type β on Ω .

We next present the notion of ε -starlikeness due to Gong and Liu (see [3]). This notion interpolates between starlikeness and convexity as ε ranges from 0 to 1.

Definition 1.1. Let $f: \Omega \to \mathbb{C}^n$ be a biholomorphic mapping such that f(0) = 0. We say that f is ε -starlike, $0 \le \varepsilon \le 1$, if $f(\Omega)$ is starlike with respect to each point in $\varepsilon f(\Omega)$, i.e.

$$(1-\lambda)f(z)+\lambdaarepsilon f(\Omega),\,\,\lambda\in[0,1],\,\,z,w\in\Omega.$$

When $\varepsilon = 0$ we obtain the family of starlike mappings on Ω , and when $\varepsilon = 1$ we obtain the family of convex mappings on Ω . The analytical characterization of ε -starlikeness was given in [4].

For
$$n \ge 1$$
, set $z' = (z_1, \dots, z_n) \in \mathbb{C}^n$ and $z = (z', z_{n+1}) \in \mathbb{C}^{n+1}$. Let $p \ge 1$ and
 $\Omega_{n,p} = \{ z = (z', z_{n+1}) \in \mathbb{C}^{n+1} : ||z'||^2 + |z_{n+1}|^p < 1 \}.$

The complex ellipsoid $\Omega_{n,p}$ is a balanced convex domain in \mathbb{C}^{n+1} (see e.g. [10]) and $B^n \times \{0\} \subset \Omega_{n,p} \subset B^n \times U$.

We next refer to the notions of subordination and Loewner chains.

Let $f, g \in H(\Omega_{n,p})$. We say that f is subordinate to g (and write $f \prec g$) if there is a Schwarz mapping v (i.e. $v \in H(\Omega_{n,p})$ and $||v(z)|| \leq ||z||, z \in \Omega_{n,p}$) such that $f(z) = g(v(z)), z \in \Omega_{n,p}$.

Definition 1.2. A mapping $f: \Omega_{n,p} \times [0, \infty) \to \mathbb{C}^n$ is called a Loewner chain if $f(\cdot, t)$ is biholomorphic on $\Omega_{n,p}$, f(0,t) = 0, $Df(0,t) = e^t I_n$ for $t \ge 0$, and $f(z,s) \prec f(z,t)$ whenever $0 \le s \le t < \infty$ and $z \in \Omega_{n,p}$.

The requirement $f(z,s) \prec f(z,t)$ is equivalent to the condition that there is a unique biholomorphic Schwarz mapping v = v(z,s,t) called the transition mapping associated to f(z,t) such that

$$f(z,s)=f(v(z,s,t),t), \ z\in\Omega_{n,p}, \ t\geq s\geq 0.$$

Various results concerning Loewner chains can be found in [6].

Remark 1.1. Certain subclasses of $S(\Omega_{n,p})$ can be characterized in terms of Loewner chains. In particular, f is starlike if and only if $f(z,t) = e^t f(z)$ is a Loewner chain. Also, f is spirallike of type β if and only if $f(z,t) = e^{(1-ia)t} f(e^{iat}z)$ is a Loewner chain, where $a = \tan \beta$ (see e.g. [9]).

The notion of parametric representation is related to that of a Loewner chain (see e.g. [9]).

Definition 1.3. A normalized mapping $f \in H(\Omega_{n,p})$ has parametric representation if there exists a Loewner chain f(z,t) such that $\{e^{-t}f(\cdot,t)\}_{t\geq 0}$ is a normal family on $\Omega_{n,p}$ and $f(z) = f(z,0), z \in \Omega_{n,p}$.

Let $S^0(\Omega_{n,p})$ be the set of mappings which have parametric representation on $\Omega_{n,p}$.

A key role in our discussion is played by the following Schwarz-type lemma for the Jacobian determinant of a holomorphic mapping from B^n into B^n (see [13]):

Lemma 1.1. Let $\psi \in H(B^n)$ be such that $\psi(B^n) \subseteq B^n$. Then

(1.1)
$$|J_{\psi}(z)| \leq \left[\frac{1 - \|\psi(z)\|^2}{1 - \|z\|^2}\right]^{\frac{n+1}{2}}, \ z \in B^n.$$

Definition 1.4. Let $\alpha \geq 0$. The extension operator $\Phi_{n,p,\alpha} : \mathcal{LS}_n(B^n) \to \mathcal{LS}_{n+1}(\Omega_{n,p})$ is defined by

$$\Phi_{n,p,lpha}(f)(z) = (f(z'), z_{n+1}[J_f(z')]^{rac{2lpha}{p}}), \ z = (z', z_{n+1}) \in \Omega_{n,p}.$$

We choose the branch of the power function such that $[J_f(z')]^{\frac{2\alpha}{p}}\Big|_{z'=0} = 1.$

If $\alpha = 1/(n+1)$, the operator $\Phi_{n,p,1/(n+1)}$ was studied in [9]. In the case p = 2, $\Omega_{n,2} = B^{n+1}$ and the operator $\Phi_{n,2,\alpha}$ was recently studied in [1]. If p = 2 and $\alpha = 1/(n+1)$, the operator $\Phi_{n,2,1/(n+1)}$ reduces to the Pfaltzgraff-Suffridge extension operator (see [11]). If n = 1, p = 2 and $\alpha = 1/2$, then $\Phi_{1,2,1/2}$ reduces to the well-known Roper-Suffridge extension operator. For $n \geq 2$, the Roper-Suffridge extension operator $\Psi_n : \mathcal{L}S \to \mathcal{L}S_n(B^n)$ is defined by (see [12])

$$\Psi_n(f)(z) = (f(z_1), \tilde{z} \sqrt{f'(z_1)}), \ z = (z_1, \tilde{z}) \in B^n.$$

We choose the branch of the power function such that $\sqrt{f'(z_1)}\Big|_{z_1=0} = 1$.

Roper and Suffridge proved that if f is convex on U then $\Psi_n(f)$ is also convex on B^n . Graham and Kohr proved that if f is starlike on U then so is $\Psi_n(f)$ on B^n . Graham, Kohr and Kohr [7] proved that if f has parametric representation on the unit disc, then $\Psi_n(f)$ has the same property on B^n . A general class of extension operators was studied in [2], [5]. For other extension operators, see [6] and the references therein.

In this paper we prove that if $f \in S^0(B^n)$, then $\Phi_{n,p,\alpha}(f) \in S^0(\Omega_{n,p})$, for $p \ge \max\{2n\alpha, 1\}$ and $\alpha \in [0, 1/(n+1)]$. In particular, we obtain various consequences related to the preservation of starlikeness and spirallikeness of type β under $\Phi_{n,p,\alpha}$. Finally, we consider the preservation of ε -starlikeness under the operator $\Phi_{n,p,\alpha}$.

2. Parametric representation and the operator $\Phi_{n,p,\alpha}$

We begin this section with the following main result. If $\alpha = 1/(n+1)$, see [9] and if p = 2, see [1] (see also [8] for $\alpha = 1/(n+1)$ and p = 2).

Theorem 2.1. Assume $f \in S^0(B^n)$, $p \ge \max\{2n\alpha, 1\}$ and $\alpha \in [0, 1/(n+1)]$. Then $\Phi_{n,p,\alpha}(f) \in S^0(\Omega_{n,p})$.

Proof. Since $f \in S^0(B^n)$ there exists a Loewner chain f(z',t) such that $\{e^{-t}f(z',t)\}_{t\geq 0}$ is a normal family on B^n and f(z') = f(z',0) for $z' \in B^n$. Let $F = \Phi_{n,p,\alpha}(f)$. Then it is easy to see that $F \in S(\Omega_{n,p})$. Let v = v(z',s,t) be the transition mapping associated to f(z',t). Then

(2.1)
$$f(z',s) = f(v(z',s,t),t), \ z' \in B^n, \ 0 \le s \le t < \infty.$$

Let $f_t(z') = f(z', t)$ for $z' \in B^n$ and $t \ge 0$, and let $v_{s,t}(z') = v(z', s, t), z' \in B^n, t \ge s \ge 0$. Also let $F : \Omega_{n,p} \times [0, \infty) \to \mathbb{C}^{n+1}$ be given by

(2.2)
$$F(z,t) = \left(f(z',t), z_{n+1}e^{t\left(1-\frac{2n\alpha}{p}\right)}\left[J_{f_t}(z')\right]^{\frac{2\alpha}{p}}\right)$$

for $z = (z', z_{n+1}) \in \Omega_{n,p}$ and $t \ge 0$. We choose the branch of the power function such that $[J_{f_t}(z')]^{\frac{2\alpha}{p}}\Big|_{z'=0} = e^{\frac{2n\alpha t}{p}}$.

Let us prove that F(z,t) is a Loewner chain. Indeed, since $f(\cdot,t)$ is biholomorphic on B^n , f(0,t) = 0 and $Df(0,t) = e^t I_n$, it is not difficult to see that $F(\cdot,t)$ is biholomorphic on $\Omega_{n,p}$, F(0,t) = 0 and $DF(0,t) = e^t I_{n+1}$.

Let $V_{s,t}:\Omega_{n,p}
ightarrow \mathbb{C}^{n+1}$ be given by $V_{s,t}(z)=V(z,s,t)$ where

$$V(z,s,t) = (v(z',s,t), z_{n+1}e^{(s-t)\left(1-\frac{2n\alpha}{p}\right)} [J_{v_{s,t}}(z')]^{\frac{2\alpha}{p}})$$

for $z = (z', z_{n+1}) \in \Omega_{n,p}$ and $t \ge s \ge 0$. We choose the branch of the power function such that $[J_{v_{s,t}}(z')]^{\frac{2\alpha}{p}}|_{z'=0} = e^{\frac{2\pi\alpha(s-t)}{p}}$. Then $V_{s,t}$ is biholomorphic on $\Omega_{n,p}$, $V_{s,t}(0) = 0$, $DV_{s,t}(0) = e^{s-t}I_{n+1}$ and $V_{s,t}(\Omega_{n,p}) \subset \Omega_{n,p}$. Indeed, fix $z \in \Omega_{n,p}$ and let $w = V_{s,t}(z)$. We have to prove that $||w'||^2 + |w_{n+1}|^p < 1$. By Lemma 1.1 and the fact that $p \ge \max\{2n\alpha, 1\}$, $\alpha \in [0, 1/(n+1)]$, we obtain

$$\begin{split} \|w'\|^2 + \|w_{n+1}\|^p &= \|v_{s,t}(z')\|^2 + e^{(s-t)(p-2n\alpha)} |z_{n+1}|^p |J_{v_{s,t}}(z')|^{2\alpha} \\ &\leq \|v_{s,t}(z')\|^2 + |z_{n+1}|^p \left[\frac{1 - \|v_{s,t}(z')\|^2}{1 - \|z'\|^2}\right]^{(n+1)\alpha} \\ &\leq \|v_{s,t}(z')\|^2 + \frac{|z_{n+1}|^p}{1 - \|z'\|^2} (1 - \|v_{s,t}(z')\|^2) \\ &< \|v_{s,t}(z')\|^2 + 1 - \|v_{s,t}(z')\|^2 = 1, \end{split}$$

for $z = (z', z_{n+1}) \in \Omega_{n,p}$ and $t \ge s \ge 0$. Hence $w = (w', w_{n+1}) \in \Omega_{n,p}$ and thus $V_{s,t}(\Omega_{n,p}) \subset \Omega_{n,p}$, as claimed.

Further, taking into account (2.1), we easily deduce that F(z,s) = F(V(z,s,t),t) for $z \in \Omega_{n,p}$ and $t \ge s \ge 0$. Indeed,

$$\begin{split} F(V(z,s,t),t) &= \left(f(v(z',s,t),t), z_{n+1}e^{(s-t)\left(1-\frac{2n\alpha}{p}\right)}e^{t\left(1-\frac{2n\alpha}{p}\right)}\left[J_{v_{s,t}}(z')\right]^{\frac{2\alpha}{p}}\left[J_{f_t}(v_{s,t}(z'))\right]^{\frac{2\alpha}{p}}\right) \\ &= \left(f(z',s), z_{n+1}e^{s\left(1-\frac{2n\alpha}{p}\right)}\left[J_{f_s}(z')\right]^{\frac{2\alpha}{p}}\right) = F(z,s), \end{split}$$

for all $z \in \Omega_{n,p}$ and $t \ge s \ge 0$. Here we have used (2.1) and the fact that

$$J_{f_s}(z') = J_{f_t}(v_{s,t}(z'))J_{v_{s,t}}(z'), \ z' \in B^n, \ t \ge s \ge 0.$$

Therefore we have proved that F(z,t) is a Loewner chain.

It remains to prove that $\{e^{-t}F(z,t)\}_{t\geq 0}$ is a normal family. Since $\{e^{-t}f(z',t)\}_{t\geq 0}$ is a normal family on B^n , there exists a sequence $\{t_k\}_{k\in\mathbb{N}}$ such that $0 < t_k \to \infty$ and $e^{-t_k}f(z',t_k) \to g(z')$ locally uniformly on B^n as $k \to \infty$, where g is a holomorphic mapping on B^n . Since g(0) = 0 and $Dg(0) = I_n$, we deduce in view of Hurwitz's theorem for holomorphic mappings that $g \in S(B^n)$. Further, applying Vitali's theorem in several complex variables, we deduce that $\Phi_{n,p,\alpha}(e^{-t_k}f(z,t_k)) = e^{-t_k}F(z,t_k) \to \Phi_{n,p,\alpha}(g)$ locally uniformly on $\Omega_{n,p}$ as $k \to \infty$. This completes the proof. \Box

Taking into account Theorem 2.1 and Remark 1.1, we may prove that the operator $\Phi_{n,p,\alpha}$ preserves the notions of starlikeness and spirallikeness of type β . We omit the proofs of the next corollaries (see [1] in the case p = 2). Corollary 2.1 was obtained in [9] in the case $\alpha = 1/(n+1)$ (see also [8] for $\alpha = 1/(n+1)$ and p = 2).

Corollary 2.1. Assume $f \in S^*(B^n)$, $p \ge \max\{2n\alpha, 1\}$, $\alpha \in [0, 1/(n+1)]$. Then $F = \Phi_{n,p,\alpha}(f) \in S^*(\Omega_{n,p})$.

Corollary 2.2. Assume $f \in \hat{S}_{\beta}(B^n)$, where $\beta \in (-\pi/2, \pi/2)$. Then $F = \Phi_{n,p,\alpha}(f) \in \hat{S}_{\beta}(\Omega_{n,p})$ for $p \ge \max\{2n\alpha, 1\}$ and $\alpha \in [0, 1/(n+1)]$.

3. ε -starlikeness and the operator $\Phi_{n,p,\alpha}$

We next discuss the case of ε -starlike mappings associated with the operator $\Phi_{n,p,\alpha}$, for $\alpha \in \left[\frac{1}{n+1}, \frac{p}{2n}\right]$. To this end, for $a \in (0, 1]$, let

$$\Omega_{a,n,p,\alpha} = \{ z = (z', z_{n+1}) \in \mathbb{C}^{n+1} : |z_{n+1}|^p < a^{2n\alpha} (1 - ||z'||^2)^{(n+1)\alpha} \}.$$

Then $B^n \times \{0\} \subset \Omega_{a,n,p,\alpha} \subseteq \Omega_{n,p}$. For a = 1 and $\alpha = \frac{1}{n+1}$, we obtain $\Omega_{1,n,p,\frac{1}{n+1}} = \Omega_{n,p}$.

We have obtained the following result regarding ε -starlikeness, which when $\varepsilon = 1$ gives a partial answer to the question of whether $\Phi_{n,p,\alpha}$ preserves convexity. If p = 2, see [1].

Theorem 3.1. Let $\varepsilon \in [0, 1]$ and $f : B^n \to \mathbb{C}^n$ be a normalized ε -starlike mapping. Also let $F = \Phi_{n,p,\alpha}(f)$, where $\alpha \in \left[\frac{1}{n+1}, \frac{p}{2n}\right]$ and let $a_1, a_2 > 0$ be such that $a_1 + a_2 \leq 1$. Then

$$(1-\lambda)F(z)+\lambdaarepsilon F(w)\in F(\Omega_{a_1+a_2,n,p,lpha}), \ z\in\Omega_{a_1,n,p,lpha}, \ w\in\Omega_{a_2,n,p,lpha}, \ \lambda\in[0,1].$$

Proof. Since f is biholomorphic on B^n , it follows that $F = \Phi_{n,p,\alpha}(f)$ is also biholomorphic on $\Omega_{n,p}$. Fix $\lambda \in [0, 1]$ and let $z \in \Omega_{a_1,n,p,\alpha}$, $w \in \Omega_{a_2,n,p,\alpha}$. We want to find a point $u = (u', u_{n+1}) \in \Omega_{a_1+a_2,n,p,\alpha}$ such that

$$(1-\lambda)F(z)+\lambdaarepsilon F(w)=F(u),$$

i.e. $f(u') = (1-\lambda)f(z') + \lambda arepsilon f(w')$ and

$$u_{n+1}[J_f(u')]^{\frac{2\alpha}{p}} = (1-\lambda)z_{n+1}[J_f(z')]^{\frac{2\alpha}{p}} + \lambda \varepsilon w_{n+1}[J_f(w')]^{\frac{2\alpha}{p}}$$

If $\lambda = 0$, let u = z. If $\lambda = 1$, then using the fact that f is ε -starlike and the equality $\varepsilon F(w) = F(u)$, we easily deduce that $u = (u', u_{n+1}) \in \Omega_{a_2,n,p,\alpha} \subseteq \Omega_{a_1+a_2,n,p,\alpha}$. Hence, it suffices to assume that $\lambda \in (0, 1)$. Since f is ε -starlike, we obtain that

$$u' = f^{-1}((1-\lambda)f(z') + \lambda \varepsilon f(w')).$$

Then u' = u'(z', w') can be viewed as a mapping from $B^n \times B^n$ into B^n . Let

$$u_{n+1} = (1-\lambda)z_{n+1} \left[\frac{J_f(z')}{J_f(u')}\right]^{\frac{2\alpha}{p}} + \lambda \varepsilon w_{n+1} \left[\frac{J_f(w')}{J_f(u')}\right]^{\frac{2\alpha}{p}}$$

We prove that $u = (u', u_{n+1}) \in \Omega_{a_1+a_2,n,p,\alpha}$. It is obvious that

$$rac{\partial u'}{\partial z'} = (1-\lambda) [Df(u')]^{-1} Df(z') ext{ and } rac{\partial u'}{\partial w'} = \lambda arepsilon [Df(u')]^{-1} Df(w').$$

Hence

$$u_{n+1} = (1-\lambda)^{\frac{p-2n\alpha}{p}} z_{n+1} [J_{u'_{z'}}]^{\frac{2\alpha}{p}} + (\lambda \varepsilon)^{\frac{p-2n\alpha}{p}} w_{n+1} [J_{u'_{w'}}]^{\frac{2\alpha}{p}}.$$

Next, let $1/\tilde{p} = 2n\alpha/p$. Since $p \ge 2n\alpha$, it follows that $\tilde{p} \ge 1$. Also let $1/\tilde{q} = 1 - 1/\tilde{p}$. Using Lemma 1.1 in the previous equation, we obtain

1

$$\begin{aligned} |u_{n+1}| \\ &\leq (1-\lambda)^{1/\tilde{q}} |z_{n+1}| \left[\frac{1 - \|u'(z', w')\|^2}{1 - \|z'\|^2} \right]^{\frac{(n+1)\alpha}{p}} + (\lambda\varepsilon)^{1/\tilde{q}} |w_{n+1}| \left[\frac{1 - \|u'(z', w')\|^2}{1 - \|w'\|^2} \right]^{\frac{(n+1)\alpha}{p}} \\ &= (1 - \|u'\|^2)^{\frac{(n+1)\alpha}{p}} \left\{ (1-\lambda)^{1/\tilde{q}} \left[\frac{|z_{n+1}|^{\frac{p}{(n+1)\alpha}}}{1 - \|z'\|^2} \right]^{\frac{(n+1)\alpha}{p}} + (\lambda\varepsilon)^{1/\tilde{q}} \left[\frac{|w_{n+1}|^{\frac{p}{(n+1)\alpha}}}{1 - \|w'\|^2} \right]^{\frac{(n+1)\alpha}{p}} \right\}. \end{aligned}$$

We have two cases:

First case (compare with Corollary 2.1). If $\varepsilon = 0$ (i.e. f is starlike), then we obtain that

$$|u_{n+1}| \leq (1 - \|u'\|^2)^{\frac{(n+1)\alpha}{p}} (1 - \lambda)^{1/\tilde{q}} \frac{|z_{n+1}|}{(1 - \|z'\|^2)^{\frac{(n+1)\alpha}{p}}} < a_1^{\frac{2n\alpha}{p}} (1 - \|u'\|^2)^{\frac{(n+1)\alpha}{p}}$$

Here we have used the fact that $z = (z', z_{n+1}) \in \Omega_{a_1, n, p, \alpha}$. Hence $|u_{n+1}|^p < a_1^{2n\alpha}(1 - a_1)^{2n\alpha}$ $\|u'\|^2)^{(n+1)lpha}$, i.e. $u~=~(u',u_{n+1})~\in~\Omega_{a_1,n,p,lpha}$. On the other hand, since $\Omega_{a_1,n,p,lpha}~\subseteq$ $\Omega_{a_1+a_2,n,p,\alpha}$, we deduce that $u = (u', u_{n+1}) \in \Omega_{a_1+a_2,n,p,\alpha}$, as desired.

Second case. For $\varepsilon \in (0, 1]$, using Hölder's inequality we obtain

$$\begin{split} &|u_{n+1}| \\ \leq (1 - \|u'\|^2)^{\frac{(n+1)\alpha}{p}} (1 - \lambda + \lambda\varepsilon)^{1/\tilde{q}} \bigg\{ \left[\frac{|z_{n+1}|^{\frac{p}{(n+1)\alpha}}}{1 - \|z'\|^2} \right]^{\frac{n+1}{2n}} + \left[\frac{|w_{n+1}|^{\frac{p}{(n+1)\alpha}}}{1 - \|w'\|^2} \right]^{\frac{n+1}{2n}} \bigg\}^{1/\tilde{p}} \\ &< (1 - \|u'\|^2)^{\frac{(n+1)\alpha}{p}} (a_1 + a_2)^{1/\tilde{p}}. \end{split}$$

Therefore, we have proved that $|u_{n+1}|^p < (a_1 + a_2)^{2n\alpha} (1 - ||u'||^2)^{(n+1)\alpha}$, i.e. $(u', u_{n+1}) \in \Omega_{a_1+a_2, n, p, \alpha}$. This completes the proof.

Taking $\varepsilon = 1$ in Theorem 3.1, we obtain the following convexity result for the operator $\Phi_{n,p,\alpha}$. If p = 2, see [1].

Corollary 3.1. If $f \in K(B^n)$ and $F = \Phi_{n,p,\alpha}(f)$, where $\alpha \in \left[\frac{1}{n+1}, \frac{p}{2n}\right]$, then $(1 - 1)^{n+1}$ $\lambda)F(z) + \lambda F(w) \in F(\Omega_{a_1+a_2,n,p,\alpha}), z \in \Omega_{a_1,n,p,\alpha}, w \in \Omega_{a_2,n,p,\alpha}, \lambda \in [0,1], where$ $a_1, a_2 > 0, a_1 + a_2 \leq 1.$

Taking $\alpha = \frac{1}{n+1}$ and $a_1 = 1 - a_2$ in Corollary 3.1 and using the fact that $\Omega_{1,n,p,\frac{1}{n+1}} =$ $\Omega_{n,p}$, we obtain the following corollary. In the case $\varepsilon = 1$, see [9] and when p = 2, see [1].

Corollary 3.2. If f is a normalized ε -starlike mapping on B^n , $\varepsilon \in [0, 1]$, $a \in (0, 1)$ and $F = \Phi_{n,p,\frac{1}{n+1}}(f)$, $p \ge 2n/(n+1)$, then

$$(1-\lambda)F(z)+\lambda\varepsilon F(w)\in F(\Omega_{n,p}), \ z\in\Omega_{a,n,p,\frac{1}{n+1}}, \ w\in\Omega_{1-a,n,p,\frac{1}{n+1}}, \ \lambda\in[0,1].$$

ACKNOWLEDGMENT

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0899. The author is indebted to Gabriela Kohr for valuable suggestions during the preparation of this paper.

References

- T. CHIRILĂ: An extension operator and Loewner chains on the Euclidean unit ball in Cⁿ, Mathematica (Cluj), to appear.
- [2] M. ELIN: Extension operators via semigroups, J. Math. Anal. Appl., 377 (2011), 239-250.
- [3] S. GONG, T. LIU: On the Roper-Suffridge extension operator, J. Anal. Math., 88 (2002), 397-404.
- [4] S. GONG, T. LIU: Criterion for the family of ε starlike mappings, J. Math. Anal. Appl., 274(2) (2002), 696-704.
- [5] I. GRAHAM, H. HAMADA, G. KOHR: Extension operators and subordination chains, J. Math. Anal. Appl., 386 (2012), 278-289.
- [6] I. GRAHAM, G. KOHR: Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., New York, 2003.
- [7] I. GRAHAM, G. KOHR, M. KOHR: Loewner chains and the Roper-Suffridge Extension Operator, J. Math. Anal. Appl. 247 (2000), 448-465.
- [8] I. GRAHAM, G. KOHR, J. PFALTZGRAFF: Parametric representation and linear functionals associated with extension operators for biholomorphic mappings, Rev. Roumaine Math. Pures Appl., 52 (2007), 47-68.
- [9] H. HAMADA, G. KOHR, M. KOHR: Parametric representation and extension operators for biholomorphic mappings on some Reinhardt domains, Complex Variables, 50 (2005), 507-519.
- [10] M. JARNICKI, P. PFLUG: Invariant Distances and Metrics in Complex Analysis, Berlin-New York: Walter de Gruyter & Co., 1993.
- [11] J.A. PFALTZGRAFF, T.J. SUFFRIDGE: An extension theorem and linear invariant families generated by starlike maps, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 53 (1999), 193-207.
- [12] K. ROPER, T.J. SUFFRIDGE: Convex mappings on the unit ball of \mathbb{C}^n , J. Anal. Math., 65 (1995), 333-347.
- [13] W. RUDIN: Function Theory in the Unit Ball of \mathbb{C}^n , Springer-Verlag, New York, 1980.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE BABEŞ-BOLYAI UNIVERSITY STR. M. KOGĂLNICEANU NO. 1, 400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: teodora.andrica@ubbcluj.ro