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Abstract. In this paper we are concerned with an extension operator �n;p;�, � � 0,
p � 1, that provides a way of extending a locally biholomorphic mapping f 2 H(Bn)
to a locally biholomorphic mapping F 2 H(
n;p), where 
n;p = fz = (z0; zn+1) 2
Cn+1 : kz0k2+jzn+1jp < 1g. By using the method of Loewner chains, we prove that if
f 2 S0(Bn), then �n;p;�(f) 2 S0(
n;p), for p � maxf2n�; 1g and � 2 [0; 1=(n+ 1)].
In particular, if f 2 S�(Bn), then �n;p;�(f) 2 S�(
n;p) and if f is spirallike of type
� 2 (��=2; �=2) on Bn, then �n;p;�(f) is also spirallike of type � on 
n;p. Finally,
we consider the preservation of "-starlikeness under the operator �n;p;�.

1. Introduction and preliminaries

Let Cn denote the space of n complex variables z = (z1; : : : ; zn) with the Euclidean

inner product hz;wi =
Pn
j=1 zjwj and the Euclidean norm kzk = hz; zi1=2. The open

ball fz 2 Cn : kzk < rg is denoted by Bnr and the unit ball Bn1 is denoted by Bn. In the

case of one complex variable, B1 is denoted by U .

Let L(Cn;Cm) denote the space of linear continuous operators from Cn into Cm with

the standard operator norm, and let In be the identity of L(Cn;Cn). If 
 is a domain in

Cn, we denote by H(
) the set of holomorphic mappings from 
 into Cn. If 0 2 
, such

a mapping f is said to be normalized if f(0) = 0 and Df(0) = In.

From now on, we assume that 
 is a domain in Cn that contains the origin. We say

that f 2 H(
) is locally biholomorphic on 
 if the complex Jacobian matrix Df(z) is

nonsingular at each z 2 
. Let Jf (z) = detDf(z). Let LSn(
) be the set of normalized

locally biholomorphic mappings on 
 and let S(
) be the set of normalized biholomorphic

mappings on 
. A map f 2 S(
) is said to be convex if its image is a convex domain in

Cn, and starlike if the image is a starlike domain with respect to the origin. We denote the

classes of normalized convex and starlike mappings on 
 respectively by K(
) and S�(
).
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In one variable we write LS1(B
1) = LS, S(B1) = S, K(B1) = K and S�(B1) = S�. A

mapping f 2 S(
) is spirallike of type � 2 (��=2; �=2) if the spiral exp(�e�i�� )f(z)

(� � 0) is contained in f(
) for any z 2 
. We denote by Ŝ�(
) the class of normalized

spirallike mappings of type � on 
.

We next present the notion of "-starlikeness due to Gong and Liu (see [3]). This notion

interpolates between starlikeness and convexity as " ranges from 0 to 1.

De�nition 1.1. Let f : 
! Cn be a biholomorphic mapping such that f(0) = 0. We

say that f is "-starlike, 0 � " � 1, if f(
) is starlike with respect to each point in

"f(
), i.e.

(1� �)f(z) + �"f(w) 2 f(
); � 2 [0; 1]; z; w 2 
:

When " = 0 we obtain the family of starlike mappings on 
, and when " = 1 we obtain

the family of convex mappings on 
. The analytical characterization of "-starlikeness was

given in [4].

For n � 1, set z0 = (z1; : : : ; zn) 2 C
n and z = (z0; zn+1) 2 C

n+1. Let p � 1 and


n;p = fz = (z0; zn+1) 2 C
n+1 : kz0k2 + jzn+1j

p < 1g:

The complex ellipsoid 
n;p is a balanced convex domain in Cn+1 (see e.g. [10]) and

Bn � f0g � 
n;p � Bn � U .

We next refer to the notions of subordination and Loewner chains.

Let f; g 2 H(
n;p). We say that f is subordinate to g (and write f � g) if there

is a Schwarz mapping v (i.e. v 2 H(
n;p) and kv(z)k � kzk, z 2 
n;p) such that

f(z) = g(v(z)), z 2 
n;p.

De�nition 1.2. A mapping f : 
n;p� [0;1)! Cn is called a Loewner chain if f(�; t)

is biholomorphic on 
n;p, f(0; t) = 0, Df(0; t) = etIn for t � 0, and f(z; s) � f(z; t)

whenever 0 � s � t <1 and z 2 
n;p.

The requirement f(z; s) � f(z; t) is equivalent to the condition that there is a

unique biholomorphic Schwarz mapping v = v(z; s; t) called the transition mapping

associated to f(z; t) such that

f(z; s) = f(v(z; s; t); t); z 2 
n;p; t � s � 0:

Various results concerning Loewner chains can be found in [6].

Remark 1.1. Certain subclasses of S(
n;p) can be characterized in terms of Loewner

chains. In particular, f is starlike if and only if f(z; t) = etf(z) is a Loewner chain.

Also, f is spirallike of type � if and only if f(z; t) = e(1�ia)tf(eiatz) is a Loewner

chain, where a = tan� (see e.g. [9]).

The notion of parametric representation is related to that of a Loewner chain (see e.g.

[9]).

De�nition 1.3. A normalized mapping f 2 H(
n;p) has parametric representation

if there exists a Loewner chain f(z; t) such that fe�tf(�; t)gt�0 is a normal family on


n;p and f(z) = f(z; 0), z 2 
n;p.

Let S0(
n;p) be the set of mappings which have parametric representation on 
n;p.

A key role in our discussion is played by the following Schwarz-type lemma for the

Jacobian determinant of a holomorphic mapping from Bn into Bn (see [13]):
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Lemma 1.1. Let  2 H(Bn) be such that  (Bn) � Bn. Then

(1.1) jJ (z)j �

�
1� k (z)k2

1� kzk2

�n+1
2

; z 2 Bn:

De�nition 1.4. Let � � 0. The extension operator �n;p;� : LSn(B
n)! LSn+1(
n;p)

is de�ned by

�n;p;�(f)(z) = (f(z0); zn+1[Jf (z
0)]

2�
p ); z = (z0; zn+1) 2 
n;p:

We choose the branch of the power function such that [Jf (z
0)]

2�
p

��
z0=0

= 1:

If � = 1=(n + 1), the operator �n;p;1=(n+1) was studied in [9]. In the case p = 2,


n;2 = Bn+1 and the operator �n;2;� was recently studied in [1]. If p = 2 and � =

1=(n+1), the operator �n;2;1=(n+1) reduces to the Pfaltzgra�-Su�ridge extension operator

(see [11]). If n = 1, p = 2 and � = 1=2, then �1;2;1=2 reduces to the well-known

Roper-Su�ridge extension operator. For n � 2, the Roper-Su�ridge extension operator

	n : LS ! LSn(B
n) is de�ned by (see [12])

	n(f)(z) = (f(z1); ~z
p
f 0(z1)); z = (z1; ~z) 2 B

n:

We choose the branch of the power function such that
p
f 0(z1)

��
z1=0

= 1:

Roper and Su�ridge proved that if f is convex on U then 	n(f) is also convex on Bn.

Graham and Kohr proved that if f is starlike on U then so is 	n(f) on B
n. Graham,

Kohr and Kohr [7] proved that if f has parametric representation on the unit disc, then

	n(f) has the same property on Bn. A general class of extension operators was studied

in [2], [5]. For other extension operators, see [6] and the references therein.

In this paper we prove that if f 2 S0(Bn), then �n;p;�(f) 2 S0(
n;p), for p �

maxf2n�; 1g and � 2 [0; 1=(n+1)]. In particular, we obtain various consequences related

to the preservation of starlikeness and spirallikeness of type � under �n;p;�. Finally, we

consider the preservation of "-starlikeness under the operator �n;p;�.

2. Parametric representation and the operator �n;p;�

We begin this section with the following main result. If � = 1=(n + 1), see [9] and if

p = 2, see [1] (see also [8] for � = 1=(n+ 1) and p = 2).

Theorem 2.1. Assume f 2 S0(Bn), p � maxf2n�; 1g and � 2 [0; 1=(n + 1)]. Then

�n;p;�(f) 2 S
0(
n;p).

Proof. Since f 2 S0(Bn) there exists a Loewner chain f(z0; t) such that fe�tf(z0; t)gt�0
is a normal family on Bn and f(z0) = f(z0; 0) for z0 2 Bn. Let F = �n;p;�(f). Then it is

easy to see that F 2 S(
n;p). Let v = v(z0; s; t) be the transition mapping associated to

f(z0; t). Then

(2.1) f(z0; s) = f(v(z0; s; t); t); z0 2 Bn; 0 � s � t <1:

Let ft(z
0) = f(z0; t) for z0 2 Bn and t � 0, and let vs;t(z

0) = v(z0; s; t), z0 2 Bn, t � s � 0.

Also let F : 
n;p � [0;1)! Cn+1 be given by

(2.2) F (z; t) = (f(z0; t); zn+1e
t(1� 2n�

p )[Jft(z
0)]

2�
p )
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for z = (z0; zn+1) 2 
n;p and t � 0. We choose the branch of the power function such

that [Jft(z
0)]

2�
p

��
z0=0

= e
2n�t
p :

Let us prove that F (z; t) is a Loewner chain. Indeed, since f(�; t) is biholomorphic on

Bn, f(0; t) = 0 and Df(0; t) = etIn, it is not di�cult to see that F (�; t) is biholomorphic

on 
n;p, F (0; t) = 0 and DF (0; t) = etIn+1.

Let Vs;t : 
n;p ! Cn+1 be given by Vs;t(z) = V (z; s; t) where

V (z; s; t) = (v(z0; s; t); zn+1e
(s�t)(1� 2n�

p )[Jvs;t(z
0)]

2�
p )

for z = (z0; zn+1) 2 
n;p and t � s � 0. We choose the branch of the power function

such that [Jvs;t(z
0)]

2�
p

��
z0=0

= e
2n�(s�t)

p . Then Vs;t is biholomorphic on 
n;p, Vs;t(0) = 0,

DVs;t(0) = es�tIn+1 and Vs;t(
n;p) � 
n;p. Indeed, �x z 2 
n;p and let w = Vs;t(z). We

have to prove that kw0k2+jwn+1j
p < 1. By Lemma 1.1 and the fact that p � maxf2n�; 1g,

� 2 [0; 1=(n+ 1)], we obtain

kw0k2 + jwn+1j
p = kvs;t(z

0)k2 + e(s�t)(p�2n�)jzn+1j
pjJvs;t(z

0)j2�

� kvs;t(z
0)k2 + jzn+1j

p

�
1� kvs;t(z

0)k2

1� kz0k2

�(n+1)�

� kvs;t(z
0)k2 +

jzn+1j
p

1� kz0k2
(1� kvs;t(z

0)k2)

< kvs;t(z
0)k2 + 1� kvs;t(z

0)k2 = 1;

for z = (z0; zn+1) 2 
n;p and t � s � 0. Hence w = (w0; wn+1) 2 
n;p and thus

Vs;t(
n;p) � 
n;p, as claimed.

Further, taking into account (2.1), we easily deduce that F (z; s) = F (V (z; s; t); t) for

z 2 
n;p and t � s � 0. Indeed,

F (V (z; s; t); t) = (f(v(z0; s; t); t); zn+1e
(s�t)(1� 2n�

p )et(1�
2n�
p )[Jvs;t(z

0)]
2�
p [Jft(vs;t(z

0))]
2�
p )

= (f(z0; s); zn+1e
s(1� 2n�

p )[Jfs(z
0)]

2�
p ) = F (z; s);

for all z 2 
n;p and t � s � 0. Here we have used (2.1) and the fact that

Jfs(z
0) = Jft(vs;t(z

0))Jvs;t(z
0); z0 2 Bn; t � s � 0:

Therefore we have proved that F (z; t) is a Loewner chain.

It remains to prove that fe�tF (z; t)gt�0 is a normal family. Since fe�tf(z0; t)gt�0 is

a normal family on Bn, there exists a sequence ftkgk2N such that 0 < tk ! 1 and

e�tkf(z0; tk) ! g(z0) locally uniformly on Bn as k ! 1, where g is a holomorphic

mapping on Bn. Since g(0) = 0 and Dg(0) = In, we deduce in view of Hurwitz's theorem

for holomorphic mappings that g 2 S(Bn). Further, applying Vitali's theorem in several

complex variables, we deduce that �n;p;�(e
�tkf(z; tk)) = e�tkF (z; tk)! �n;p;�(g) locally

uniformly on 
n;p as k!1. This completes the proof. �

Taking into account Theorem 2.1 and Remark 1.1, we may prove that the operator

�n;p;� preserves the notions of starlikeness and spirallikeness of type �. We omit the

proofs of the next corollaries (see [1] in the case p = 2). Corollary 2.1 was obtained in [9]

in the case � = 1=(n+ 1) (see also [8] for � = 1=(n+ 1) and p = 2).
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Corollary 2.1. Assume f 2 S�(Bn), p � maxf2n�; 1g, � 2 [0; 1=(n + 1)]. Then

F = �n;p;�(f) 2 S
�(
n;p).

Corollary 2.2. Assume f 2 Ŝ�(B
n), where � 2 (��=2; �=2). Then F = �n;p;�(f) 2

Ŝ�(
n;p) for p � maxf2n�; 1g and � 2 [0; 1=(n+ 1)].

3. "-starlikeness and the operator �n;p;�

We next discuss the case of "-starlike mappings associated with the operator �n;p;�,

for � 2
h

1
n+1 ;

p
2n

i
. To this end, for a 2 (0; 1], let


a;n;p;� = fz = (z0; zn+1) 2 C
n+1 : jzn+1j

p < a2n�(1� kz0k2)(n+1)�g:

Then Bn � f0g � 
a;n;p;� � 
n;p. For a = 1 and � = 1
n+1 , we obtain 
1;n;p; 1

n+1
= 
n;p.

We have obtained the following result regarding "-starlikeness, which when " = 1 gives

a partial answer to the question of whether �n;p;� preserves convexity. If p = 2, see [1].

Theorem 3.1. Let " 2 [0; 1] and f : Bn ! Cn be a normalized "-starlike mapping.

Also let F = �n;p;�(f), where � 2
h

1
n+1 ;

p
2n

i
and let a1; a2 > 0 be such that a1+a2 � 1.

Then

(1� �)F (z) + �"F (w) 2 F (
a1+a2;n;p;�); z 2 
a1;n;p;�; w 2 
a2;n;p;�; � 2 [0; 1]:

Proof. Since f is biholomorphic on Bn, it follows that F = �n;p;�(f) is also biholomor-

phic on 
n;p. Fix � 2 [0; 1] and let z 2 
a1;n;p;�, w 2 
a2;n;p;�. We want to �nd a point

u = (u0; un+1) 2 
a1+a2;n;p;� such that

(1� �)F (z) + �"F (w) = F (u);

i.e. f(u0) = (1� �)f(z0) + �"f(w0) and

un+1[Jf (u
0)]

2�
p = (1� �)zn+1[Jf (z

0)]
2�
p + �"wn+1[Jf (w

0)]
2�
p :

If � = 0, let u = z. If � = 1, then using the fact that f is "-starlike and the equality

"F (w) = F (u), we easily deduce that u = (u0; un+1) 2 
a2;n;p;� � 
a1+a2;n;p;�. Hence,

it su�ces to assume that � 2 (0; 1). Since f is "-starlike, we obtain that

u0 = f�1((1� �)f(z0) + �"f(w0)):

Then u0 = u0(z0; w0) can be viewed as a mapping from Bn �Bn into Bn. Let

un+1 = (1� �)zn+1

�
Jf (z

0)

Jf (u0)

� 2�
p

+ �"wn+1

�
Jf (w

0)

Jf (u0)

� 2�
p

:

We prove that u = (u0; un+1) 2 
a1+a2;n;p;�. It is obvious that

@u0

@z0
= (1� �)[Df(u0)]�1Df(z0) and

@u0

@w0
= �"[Df(u0)]�1Df(w0):

Hence

un+1 = (1� �)
p�2n�

p zn+1[Ju0
z0
]
2�
p + (�")

p�2n�
p wn+1[Ju0

w0
]
2�
p :



144 T. CHIRIL�

Next, let 1=~p = 2n�=p. Since p � 2n�, it follows that ~p � 1. Also let 1=~q = 1 � 1=~p.

Using Lemma 1.1 in the previous equation, we obtain

jun+1j

� (1� �)1=~qjzn+1j

�
1� ku0(z0; w0)k2

1� kz0k2

� (n+1)�
p

+ (�")1=~qjwn+1j

�
1� ku0(z0; w0)k2

1� kw0k2

� (n+1)�
p

= (1� ku0k2)
(n+1)�

p

�
(1� �)1=~q

�
jzn+1j

p

(n+1)�

1� kz0k2

� (n+1)�
p

+ (�")1=~q
�
jwn+1j

p

(n+1)�

1� kw0k2

� (n+1)�
p

�
:

We have two cases:

First case (compare with Corollary 2.1). If " = 0 (i.e. f is starlike), then we obtain

that

jun+1j � (1� ku0k2)
(n+1)�

p (1� �)1=~q
jzn+1j

(1� kz0k2)
(n+1)�

p

< a
2n�
p

1 (1� ku0k2)
(n+1)�

p :

Here we have used the fact that z = (z0; zn+1) 2 
a1;n;p;�. Hence jun+1j
p < a2n�1 (1 �

ku0k2)(n+1)�, i.e. u = (u0; un+1) 2 
a1;n;p;�. On the other hand, since 
a1;n;p;� �


a1+a2;n;p;�, we deduce that u = (u0; un+1) 2 
a1+a2;n;p;�, as desired.

Second case. For " 2 (0; 1], using Hölder's inequality we obtain

jun+1j

� (1� ku0k2)
(n+1)�

p (1� �+ �")1=~q
��

jzn+1j
p

(n+1)�

1� kz0k2

�n+1
2n

+

�
jwn+1j

p

(n+1)�

1� kw0k2

�n+1
2n
�1=~p

< (1� ku0k2)
(n+1)�

p (a1 + a2)
1=~p:

Therefore, we have proved that jun+1j
p < (a1 + a2)

2n�(1 � ku0k2)(n+1)�, i.e. u =

(u0; un+1) 2 
a1+a2;n;p;�. This completes the proof. �

Taking " = 1 in Theorem 3.1, we obtain the following convexity result for the operator

�n;p;�. If p = 2, see [1].

Corollary 3.1. If f 2 K(Bn) and F = �n;p;�(f), where � 2
h

1
n+1 ;

p
2n

i
, then (1 �

�)F (z) + �F (w) 2 F (
a1+a2;n;p;�), z 2 
a1;n;p;�, w 2 
a2;n;p;�, � 2 [0; 1], where

a1; a2 > 0, a1 + a2 � 1.

Taking � = 1
n+1 and a1 = 1� a2 in Corollary 3.1 and using the fact that 
1;n;p; 1

n+1
=


n;p, we obtain the following corollary. In the case " = 1, see [9] and when p = 2, see [1].

Corollary 3.2. If f is a normalized "-starlike mapping on Bn, " 2 [0; 1], a 2 (0; 1)

and F = �n;p; 1
n+1

(f), p � 2n=(n+ 1), then

(1� �)F (z) + �"F (w) 2 F (
n;p); z 2 
a;n;p; 1
n+1

; w 2 
1�a;n;p; 1
n+1

; � 2 [0; 1]:
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