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ABSTRACT. New sufficient conditions, concerned with the coefficients of harmonic
functions f(z) = h(z)+g(z) in the open unit disk normalized by f(0) = ~(0) = h'(0)—
1 =0, for f(z) to be harmonic close-to-convex functions are discussed. Furthermore,
several illustrative examples of the obtained theorems are enumerated.

1. INTRODUCTION

Let D be a simply connected domain in the complex plane C. A continuous complex-
valued function f(z) = u(z,y) + tw(z,y) in D (z = z + 1y € D), we say that f(2) is
harmonic in I if both u(z,y) and v(z,y) are real harmonic in I, that is, u(z,y) and
v(z,y) satisfy the Laplace’s equations

AU = Ugg + Uyy =0 and AV = Vg + Uyy =0 (z=z+wy D).

A harmonic function f(z) in D is given by f(z) = h(z) + g(z) where h(z) and g(z)
are analytic in . We call h(z) and g(z) the analytic part and the co-analytic part
of f(z), respectively. The Jacobian of f(z) denoted by J; can be computed by J; =
|h'(2)|> —|g'(2)|?. A necessary and sufficient condition for f(z) to be locally univalent and
sense-preserving in ID is that J; > 0, that is, that [g'(2)| < |A'(2)| in D (see, [2] or [9]). Let
‘H denote the class of harmonic functions f(z) in the open unit disk U={z € C: |z| < 1}
with f(0) = 2(0) = 0 and h'(0) = 1. Thus, all functions f(z) € H can be written by

fR)=h(z)+9(z) =2+ Z anz™ + Z bpz™
n=2 n=1
where a; = 1 and by = 0, for convenience.
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We next denote by Sy the class of functions f(z) € H which are univalent and sense-
preserving in U. Since the sense-preserving property of f(z), we see that |b1| = |g'(0)| <
|A’'(0)| = 1. If g(z) = 0, then Sy reduces to the class S consisting of normalized analytic
univalent functions. Furthermore, for every function f(z) € Sy, the function

f(Z) _blf(z) an — b1b, b, — biay,
Flz)=—————"=2+ E - = "+ E — 27
) L= oo f? wss 1= 1bal? i 1= Ibaf?

is also a member of Sy;. Therefore, we consider the subclass S% of Sy defined as
SY ={f(z) € Sy : by = ¢'(0) = 0}.
Conversely, if F(z) € S, then f(z) = F(z) + b1 F(2) € Sy for any by (|by] < 1).

We say that D is a close-to-convex domain if the complement of D can be written as a
union of non-intersecting half-lines (except that the origin of one half-line may lie on one
of the other half-lines). Let C, Cy and C% be the respective subclasses of S, S and S%
consisting of all functions f(z) which map U onto a certain close-to-convex domain.

A simple and interesting example is below.

Example 1.1. The function

1—(1-2)? 22 n+l, An-1_,
1z = =50 o +2(1—z)2_z+7;2 2 © +nZ::2 2~

belongs to the class C5,.

The aim of this paper is to find new sufficient conditions for functions f(z) € H to be
in the class Cx. To obtain our results, we have to recall here the following lemmas due
to Clunie and Sheil-small [2].

Lemma 1.1. If h(z) and g(z) are analytic in U with |A'(0 )| > 14'(0)| and h(2) +eg(z)

is close-to-convezx for each ¢ (|e| = 1), then f(z) = h(z) + g(2) is harmonic close-to-
convez.

Lemma 1.2. If f(2) = h(z)+g(z) is locally univalent in U and h(z)+eg(z) is convez
for some e (|e| < 1), then f(z) s univalent close-to-convez.
We also need the following result due to Hayami, Owa and Srivastava [5].
[ee)
Lemma 1.3. If a function F(z) = z+ ). Apz™ is analytic in U and satisfies
n=2
[} n k
a g
s (42 )ag (L)
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for some real numbers a and B, then F(z) is convez in U.

2. MAIN RESULTS

Using Lemma 1.1 we receive

Theorem 2.1. If f(z) € H satisfies the following condition

oo oo
Z |nan — ei“’(n — 1)an_1| + Z |nbn — e“"(n — 1)bn_1| <1
n=2 n=1

for some real number ¢ (0 < ¢ < 2m), then f(z) € Cy.

Example 2.1. The function

flz)=- log(l—z)+<—mz —log(1 — z)) = Z+Z %z”—f—(l—m)?—kz %En (0<m<1)

satisfies the condition of Theorem 2.1 with ¢ = 0 and belongs to the class Cy.

By making use of Lemma 1.2 with ¢ = 0 and applying Lemma 1.3, we readily obtain
the following theorem.

Theorem 2.2. If f(z) € H s locally uniwvalent in U and satisfies

1(—1)k_jj(j+1)(kij>aj <n[—3k>
n k

+ >0 Z(—l)kjj(j—l)(ka->aj (n€k>}52

k=1 | j=1 -J

> (12

k
n=2 | |k=1 | 5=

for some real numbers o and B, then f(z) € Cy.
Putting @ = 8 = 0 in the above theorem, we arrive at the following result due to

Jahangiri and Silverman [8].

Corollary 2.1. If f(z) € H is locally univalent in U with

(o]
Z n?la,| < 1,
n=2

then f(z) € Cy.

Furthermore, taking & = 1 and § = 0 in the theorem, we have
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Corollary 2.2. If f(z) € H is locally univalent in U and satisfies

oo

Z {n|(n+1la, — (n—1)ap_1|+ (n—1)|na, — (n —2)an_1|} <2,

n=2

then f(z) € Cy.

Example 2.2. The function

f(z):_/ozl‘)g(lt_t)dt+(z+(1—z)1og(1_z)) :z+zznl2zn+zn(17n

n=2 n- 1)

satisfies the conditions of Corollary 2.2 and belongs to the class Cyy.

3. APPENDIX

A sequence {c,}, o of non-negative real numbers is called a convex null sequence if
¢n — 0asn — oo and
Cn— Cntl 2 Cng1 — Cngz > 0
forallmn (n=0,1,2,--).

The next lemma was obtained by Fejér [4].

Lemma 3.1. Let {c,}32, be a convex null sequence. Then, the function

(e o)
c
p(z) = 50 + Zl Cn2"
n—

Applying the above lemma, we deduce

Theorem 3.1. For some b (|b] < 1) and some convex null sequence {c,}5r, with
co = 2, the function

n=2 n=2

belongs to the class Cy.

In the same manner, we also have

Theorem 3.2. For some b (|b| < 1) and some convex null sequence {cp,}5>, with
co = 2, the function

R .1 n—-1 ®© 4 n—1
f(z):h(z)+g(z):z+zg 1+ZCJ' 2" +b Z+ZE 1+ZCj PA
n=2 7=1 n=2 7=1

belongs to the class Cy.
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Remark 3.1. The sequence

1
{entmrg = {2’ 1, 3 ’21777,’ o }
18 a convez null sequence because

lim ¢, = lim 2" =0, Ch—Cpy1=2""2>0
n—00 n—oo

and
(cn = Cn+1) = (Cng1 — Crya) =27 ("D >0 (n=0,1,2,---).

According to Remark 3.1, letting b = 1/4 in Theorem 3.2 with the sequence {¢,}2>, =

{217"}% ,, we have

Example 3.1. The function

3
f(z) = =3log(l—2z)+4log (1 - %) + (—410g(1 —2z)+log (1 - ;))
[e%S) n—1 1 oo n—1
_ 1— n — n
- S (e ) (51 (105 -
n=2 7j=1 n=2 7j=1

1s wn the class Cyy.

The details of this article can be found in the paper [7].
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