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Abstract. We make use of sections of Wilson bases to construct a frame on L2(R).
We prove the frame inequality for the multi-Wilson system and provide one dual
frame; however, this dual frame does not have a multi-Wilson structure.

1. Introduction

Atomic decompositions of functions, successfully done via Gabor frames [8, 2] and

Wilson bases [3], arise great research interest among mathematicians and engineers in

the past decades. Motivated by the construction of multi-window Gabor frames [4], we

compose a frame, using sections of Wilson bases, generated from tight Gabor frames with

di�erent canonical generator matrices (CGMs) [9]. As a result, we can adapt the local

structure of our frame (to the local needs of the signal) and obtain a multi-Wilson frame

with time-varying quality. Such frames can be bene�cial when used on functions with

variable bandwidth [1]. We restrict our work within this paper to functions in L2(R), but

expect similar results to hold in weighted modulation spaces [5, 6, 8], since since Wilson

bases construction is possible [7].

2. Preliminaries

In this paper F denotes the Fourier transform, a well-de�ned operator on L2(R).

Given a function f 2 L2(R), the chirp, dilation, translation and modulation operators

are given by Ncf(t) = e��ict
2

f(t), Dbf(t) = jbj1=2f(bt), Txf(t) = f(t� x) and M!f(t) =

e2�i!tf(t) for t; x; !; b; c 2 R.
Our construction of multi-Wilson systems/frames requires the use of a bounded ad-

missible partition of unity (BAPU), consisting of non-negative, compactly supported

functions �j 2 L2(R), j 2 I. We choose the family
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(2.1) f�jgj2I such that 0 � �j � 1 for all j 2 I
such that only direct neighbors have nonzero overlap. In addition, we assume

(2.2)
X
j2I

�j � 1; hence for all f 2 L2(R) it holds f =
X
j2I

�jf:

Under all the listed conditions, we call the family (2.1) a BAPU on R. Observe that

for each function f 2 L2(R) it holds

(2.3) kfk22 �
X
j2I

k�jfk22 and k�jfk2 � kfk2 for all j 2 I:

A lattice � � R
2 is a discrete subgroup such that � = AZ

2. The matrix A is called

the canonical generator matrix (CGM) and it shows it is unique [9]. We restrict our

work on matrices with volume vol(�) = jdet(A)j = 1=2.

For � = (x; !) 2 R2 and g 2 L2(R), let a time-frequency shift g� of a function g be

de�ned by g� = gx;! =M!Tx g. The time-frequency shift is used to de�ne the short-time

Fourier transform (STFT) of a function f 2 L2(R) with respect to a window function

g 2 L2(R) as

Vgf(x; !) = hf;M!Txgi :
Whenever f; g 2 L2(R), it holds

(2.4) kVgfk2 = kfk2kgk2:
We denote by G = G(g;�) the Gabor system of shifts fg� j � = (x; !) 2 �g. As usual,

the redundancy of G(g;�) is given by 1= vol(�). G is called a Gabor frame for L2(R), if

it satis�es the frame inequality i.e. there exist A > 0 (lower frame bound) and B > 0

(Bessel bound) such that for all f 2 L2(R) it holds

(2.5) Akfk2 �
 X
�2�

jhf; g�i g�j2
!1=2

� Bkfk2:

If A = B, then we have a tight frame. If in addition A = 1, then we have a basis at

our hands.

For our purposes, we work with tight Gabor frames with redundancy 2 (A = 2), since

these are suitable to compose Wilson bases [3] with elements composed out of Gabor

windows as in (3.3). The frame operator S, de�ned by Sf =
P

�2�hf; g�ig�, is positive
de�nite and bounded. A dual frame f ~g�g�2� for G(g;�), with Gabor structure on the

same lattice �, always exists and it holds f =
P

�hf; ~g�ig� =
P

� hf; g�i ~g� for every

f 2 L2(R). We refer to [2, 8] as a good source for frames and Gabor frames.

The construction of a multi-window Gabor frame [4], is possible on L2(R) out of tight

Gabor frames. We cite here a result from [4] regarding compactly supported windows.
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Theorem 2.1. [4] Let Gj = G(gj ;�j), j 2 I, be a family of tight Gabor frames for

L2(R), generated by compactly supported windows gj and let f'jgj2I be a BAPU

de�ned with (2.1), which satisfy (2.2) and (2.3). Set the index sets �j � �j, j 2 I,
be such that �j = �j \ (supp('j)� R). Then the union of subfamilies

(2.6) [j2IG(gj ; �j)

is a frame for L2(R).

3. Wilson basis with a non-standard lattice

We �rst recall the result from [9] about the construction of a Wilson basis on a lattice

�, related to a CGM A. If G(g;�) is a Gabor system of redundancy 2 and

(3.1) A =

�
a b

0 d

�

is the CGM for �, with a; b; d 2 R, then the associated Wilson system

(3.2) W =W�;g =
�
 �
m;n

	
m2Z;n�0

consists of the functions

(3.3)  �
k;n = ck;n

�
gka+nb;nd + (�1)n+kgka�nb;�nd

�
with ck;0 = 1

2 , ck;n = 1p
2
e�i�bdn

2

when n+k is even, and ck;n = ip
2
e�i�bdn

2

otherwise.

Notice that the lattice for the Wilson system W is symmetric with respect to the x-axis

and we shall denote it by �W .

Theorem 3.1. [9] Let � be a lattice in R
2, with vol(�) = 1=2 and CGM is as in

(3.1). De�ne U by U = D1=d � F � N�b=d � F�1 and let g 2 L2(R) be such that F(Ug)

is real-valued and fgka+nb;ndgk;n2Z is a tight frame for L2(R) with frame bound 2.

Then the system (3.2) is an orthonormal basis for L2(R).

The de�nition of a Wilson basis we use here, reduces to the usual one ([8], Def. 8.5.1),

with taking a = 0:5, b = 0, d = 1 in (3.1).

The frame operator is a simple multiplication operator

(3.4) f =
X
k2Z

X
n2N

hf;  k;ni k;n

that converges unconditionally. In other words, �nite linear combinations of W�;g are

dense in L2(R).



110 R.ACESKA, S.KOSTADINOVA AND K.SANEVA

4. The frame inequality on L2(R)

We start with a collection of Wilson bases Wj on L
2(R) of form (3.2), each generated

with the technology from Theorem 3.1, by a tight Gabor frame Gj = G(gj ;�j), for j 2 I.
Notice that the set of indexes I may be �nite, or at most countable. Each Wj is also a

tight frame, that is

(4.1) kfk22 =
X
�j

j
D
f;  

j
k;n

E
j2;

where �j is the lattice related to Wj , Gj and Aj =

�
aj bj
0 dj

�
.

We use (2.1) to cut out �j , a lattice section of �j on which each �j from (2.1) is

non-zero and denote with W�j
the respective subset of Wj . We apply (2.1), (2.3) and

(4.1) in the following calculation of the lower bound:

kfk22 �
X
j2I

k�jfk22 =
X
j2I

k�j
X
�j

D
f;  

j
k;n

E
 
j
k;nk22

=
X
j2I

k�j
X
�j

D
f;  

j
k;n

E
 
j
k;nk22 �

X
j2I

k
X
�j

D
f;  

j
k;n

E
 
j
k;nk22

=
X
j2I

khjk22 =
X
j2I

X
�j

j
D
hj ;  

j
k;n

E
j2 =

X
j2I

X
�j

j
D
f;  

j
k;n

E
j2:(4.2)

Iquality (4.2) holds due to the orthogonality property of eachWj . An easy calculation

shows that each function

hj =
X
�j

D
f;  

j
k;n

E
 
j
k;n

has Wilson coe�cients
D
hj ;  

j
k;n

E
=
D
f;  

j
k;n

E
on the lattice section �j , and

D
hj ;  

j
k;n

E
=

0 out of �j within each �xed Wilson basis Wj .

In order to prove the Bessel bound for the general multi-Wilson system, we need to

observe that, for each j; k; n �xed in (3.3), we have 2c2k;n � 1 and it holds

(4.3) j
D
f;  

j
k;n

E
j2 �

���Df; gjka+nb;ndE���2 + ���Df; gjka�nb;�ndE���2 :
Applying the inequality (4.3) in (4.2), we obtain a frame inequality

kfk22 �
X
j2I

X
�j

j
D
f;  

j
k;n

E
j2 �

X
j2I

X
�j

���Df; gjka+nb;ndE���2

+
X
j2I

X
�j

���Df; gjka�nb;�ndE���2 � 2B2 kfk22 :(4.4)

In the last inequality, B denotes the Bessel bound for the respective multi-window

Gabor system, which exist due to Theorem 2.1. We have proved the following theorem:
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Theorem 4.1. Let Wj, j 2 I be Wilson bases for L2(R), each generated via a

tight Gabor frame Gj = G(gj ;�j) with redundancy 2. Let f�jgj2I form a BAPU of

compactly supported atoms �j. Let B denote the Bessel bound for the respective

multi-window Gabor system, related to f�jgj2I and the sub-lattices

�j = (supp(�j)� R) \ �j for each j 2 I:
Then the multi-Wilson system

(4.5)
[
j2I

W�j
=
[
j2I

�
 j
m;n

	
(m;n)2�j

is a frame for L2(R) and it holds

(4.6) kfk2 �
0
@X

j2I

X
�j

j
D
f;  

j
k;n

E
j2
1
A

1=2

� B
p
2 kfk2 :

Locally, at each �j this frame obviously acts as a basis. Also, note that from the

simple equality

f =
X
j2I

X
(k;n)2�j

'j

D
f;  

j
k;n

E
 
j
k;n =

X
[�j

D
f;  

j
k;n

E
'j 

j
k;n

we derive one dual frame

(4.7)
n
'j 

j
k;n : j 2 I;  j

k;n 2 W�j

o
;

which has a distorted multi-Wilson structure.

Remark 4.1. More generally, due to (4.3), if we have a collection of tight Gabor

frames, such that their multi-window Gabor system (composed in any other way) is

a frame, then the multi-Wilson system is also a frame.
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