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Abstract. In this paper some results on singular products of distributions are de-
rived. The results are obtained in Colombeau algebra of generalized functions, which
is most relevant algebraic construction for tackling nonlinear problems of Schwartz
distributions.

1. Introduction

Because of the large employment of distributions in the natural sciences and other

mathematical �elds where products of distributions with coinciding singularities often

appear, the problem of multiplication of Schwartz distributions has been for a long time

interest of many researchers.

One of the most useful aspects of Schwartz's theory of distributions in applications

is that discontinuous functions can be handled as easily as continuous or di�erentiable

functions which provides a powerful tool in formulating and solving many problems of

various �elds of science and engineering [12]. In applications the results sometimes show

that multiplications of two generalized functions are not always allowed, so there have

been made many attempts to de�ne products of distributions, or rather to enlarge the

range of existing products [15]. Several attempts have been made to include the dis-

tributions into di�erential algebras (as an example one can see [21]). Colombeau in [2]

describes the problem of multiplication of distributions and shows how to overcome it.

His theory was primarly been used for dealing with nonlinear partial di�erential equations

with singularities and was developed during the years and it has now a big appliance in

a di�erent �elds (physics, geometry, etc. see [19, 13, 14, 20, 23, 18, 17, 22]).

The origin of the construction of Colombeau algebra (introduced in [3, 1]) lies in

Schwartz's impossibility result [24], i.e in searching for an associative and commutative

algebra (A (
) ;+; �), where 
 is an open set in Rn, satisfying following properties:
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1) The space D0 (
) of distributions over 
 is linearly embedded into A (
) and f (x) �

1 is the unit in A (
);

2) There exist derivation operators @i : A (
) ! A (
), i = 1; 2; :::; n, that are linear

and satisfy the Leibnitz rule;

3) @ijD0(
), i = 1; 2; :::; n, is the usual partial derivative;

4) �jC(
)�C(
) is the usual product of functions.

The second condition means that A (
) is di�erential algebra. It is shown in [26]

that there isn't any algebra satisfying these conditions. The optimal solution of this

problem was constructing di�erential algebra A (
) satisfying 1) - 3) and 4') where C (
)

is replaced with C1 (
), i.e.

4') �jC1(
)�C1(
) is the usual product of functions

and it was done by J.F. Colombeau ([3, 1]).

The di�erential Colombeau algebra G (R) as a powerful tool for treating linear and

nonlinear problems including singularities has almost the optimal properties while the

problem of multiplication of Schwartz distributions is concerned: it is an associative

di�erential algebra of generalized functions, contains the algebra of smooth functions as

a subalgebra (elements of this algebra are some equivalence classes of nets of smooth

functions), the distribution space D0 is linearly embedded in it as a subspace and the

multiplication is compatible with the operations of di�erentiation and products with C1

- di�erentiable functions. The notion 'association' in G is a faithful generalization of the

equality of distributions and enables obtaining results in terms of distributions again.

About embedding of the space of distributions into the space of Colombeau generalized

functions one can read papers [16, 21, 11]. We can see some products of distributions in

a Colombeau algebra in [10, 5, 6, 8, 9, 4, 7] and other papers written by this author.

Following this approach, we evaluate in this paper some products of distributions with

coinciding singularities, as embedded in Colombeau algebra, in terms of associated dis-

tributions. The results obtained in this way can be reformulated as regularized products

in the classical distribution theory.

2. Colombeau algebra

In this section we will introduce basic notations and de�nitions from Colombeau theory.

Let N0 denoted the set of non-negative integers, i.e. N0 = N [ f0g. Let �ij = 1 for

i = j and �ij = 0 for i 6= j; i; j 2 N0. Then, for q 2 N0 we denote

Aq (R) =

8<:' (x) 2 D (R)

������
Z
R

xj' (x) dx = �0j ; j = 0; 1; :::; q

9=;
where D (R) is the space of all C1 functions ' : R ! C with compact support. The

elements of the set Aq (R) are called test functions.

It is obvious that A1 � A2 � A3::: . Also, Ak 6= ; for all k 2 N (this is proved in [3]).
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For ' 2 Aq (R) and " > 0 it is denoted '" =
1

"
'
�x
"

�
and

_
'(x) = ' (�x).

De�nition 2.1. Let E (R) be the algebra of functions f ('; x) : A0 (R)�R! C that

are in�nitely di�erentiable for �xed 'parameter' '. The generalized functions of

Colombeau are elements of the quotient algebra

G � G (R) =
EM [R]

I [R]

.

Here EM [R] is the subalgebra of 'moderate' functions such that for each compact

subset K of R and any p 2 N0 there is a q 2 N such that, for each ' 2 Aq (R) there are

c > 0; � > 0 and it holds:

sup
x2K

j@pf ('"; x)j � c"�q

for 0 < " < �.

I [R] is an ideal of EM [R] consisting of all functions f ('; x) such that for each compact

subset K of R and any p 2 N0 there is a q 2 N such that for every r � q and each

' 2 Ar (R) there are c > 0; � > 0 and it holds:

sup
x2K

j@pf ('"; x)j � c"r�q

for 0 < " < �.

The Colombeau algebra G (R) contains the distributions on R canonically embedded

as a C - vector subspace by the map:

i : D0 (R) ! G (R) : u! eu =

�eu ('; x) =

�
u �

_
'

�
(x) : ' 2 Aq (R)

�
where � denotes the convolution product of two distributions and is given by: (f � g) (x) =R
R

f (y) g (x� y)dy.

According to the above, we can also write: eu ('; x) = hu (y) ; ' (y � x)i where hu; 'i

denotes the integral
R
R

u (x)' (x) dx.

De�nition 2.2. (a) Generalized functions f; g 2 G (R) are said to be associated,

denoted f � g, if for some representatives f ('"; x) and g ('"; x) and arbitrary  (x) 2

D (R) there is a q 2 N0 such that for any ' (x) 2 Aq (R)

lim
"!0+

Z
R

jf ('"; x)� g ('"; x)j (x) dx = 0

(b) A generalized function f 2 G is said to admit some u 2 D0 (R) as 'associated

distribution', denoted f � u, if for some representative f ('"; x) of f and any  (x) 2

D (R) there is a q 2 N0 such that for any ' (x) 2 Aq (R)

lim
"!0+

Z
R

f ('"; x) (x) dx = hu; i



124 M.MITEVA AND B.JOLEVSKA-TUNESKA

These de�nitions are independent of the representatives chosen and the distribution

associated, if it exists, is unique. The association is a faithful generalization of the equality

of distributions.

By Colombeau product of distributions is meant the product of their embedding in

G whenever the result admits an associated distribution.

If the regularized model product of two distributions exists, then their Colombeau

product also exists and it is same with the �rst one.

The relation f � u is asymmetric, the distribution u stands on the r.h.s.; the relation

f � eu is an equivalent relation in G so it is symmetric in G and it can also be written as

f � eu � 0.

We denote with]ln jxj the embedding into G (R) of the distribution ln jxj and with
^�(s�1) (x) the embedding of the �(s�1) (x), i.e the embedding of the (s� 1) - st derivative

of the Dirac delta function.

3. Results on some products of distributions

Theorem 3.1. The product of the generalized functions ln jxj and �(s�1)(x) for s =

0; 1; 2; : : : in G(R) admits associated distributions and it holds:

(3.1) gln jxj � ^�(s�1)(x) � (�1)s

s
�(s�1)(x)

Proof. For given ' 2 A0(R) we suppose that supp'(x) � [�l; l] ; without lost of gener-

ality. Then using the embedding rule and the substitution v = (y � x)=" we have the

representatives of the distribution ln jxj in Colombeau algebra:

]ln jxj ('"; x) = "�1
Z x+l"

x�l"

ln jyj'

�
y � x

"

�
dy =

Z l

�l

ln jx+ "vj'(v)dv ;

Similar,

^�(s�1) ('"; x) =
(�1)s�1

"s
'(s�1)

�
�
x

"

�
:

Then, for any  (x) 2 D(R) we have:

h]ln jxj ('"; x) �^�(s�1) ('"; x) ;  (x)i =

Z 1

�1

]ln jxj ('"; x)^�(s�1) ('"; x) (x)dx

=
(�1)s�1

"s

Z l"

�l"

 Z l

�l

ln jx+ "vj'(v)dv

!
'(s�1)(�x=") (x)dx

=
(�1)s

"s�1

Z l

�l

'(s�1)(u) (�"u)

Z l

�l

ln j"v � "uj'(v)dvdu :(3.2)

using the substitution u = �x=" : By the Taylor theorem we have that

(3.3)  (�"!) =
s�1X
k=0

 (k)(0)

k!
(�"!)k +

 (s)(�!)

(s)!
(�"�)s
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for � 2 (0; 1) : Using this for (3.2) we have:

h]ln jxj ('"; x) �^�(s�1) ('"; x) ;  (x)i =
s�1X
i=0

(�1)s+i (i)(0)

i!"s�i�1
Ji +O(") :

where Ji =

Z l

�l

'(v)dv

Z l

�l

ln j"v � "ujui'(s�1)(u)du and i = 0; 1; : : : ; s � 1 : Next using

integration by part we have:

Ji =

Z l

�l

'(v)dv

Z l

�l

ln j"v � "ujui'(s�1)(u)du

=
1

i+ 1

Z l

�l

'(v)dv

Z l

�l

ln j"v � "uj'(s�1)(u)d
�
ui+1 � vi+1

�
= �

1

i+ 1

Z l

�l

'(v)dv

Z l

�l

h�
ui+1 � vi+1

�
ln j"v � "uj'(s)(u)du

�
1

i+ 1

Z l

�l

'(v)dv

Z l

�l

ui+1 � vi+1

u� v
'(s�1)(u)du

#
:

The �rst term above is zero, and we have

(i+ 1)Ji =

iX
k=0

Z l

�l

vi�k'(v)dv

Z l

�l

uk'(s�1)(u)du =

Z l

�l

ui'(s�1)(u)du :

So, the only non-zero term we have it for i = s� 1 and that is Js�1 =
(�1)s�1(s� 1)!

s
:

h]ln jxj ('"; x) �^�(s�1) ('"; x) ;  (x)i =
(�1)s (s�1)(0)

s
+O(")

=
(�1)s

s
h�(s�1)(x);  (x)i+O(") :

Therefor passing to the limit, as "! 0 ; we obtain equation (3.1) proving the theorem. �
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