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ABSTRACT. In this paper some results on singular products of distributions are de-
rived. The results are obtained in Colombeau algebra of generalized functions, which
is most relevant algebraic construction for tackling nonlinear problems of Schwartz
distributions.

1. INTRODUCTION

Because of the large employment of distributions in the natural sciences and other
mathematical fields where products of distributions with coinciding singularities often
appear, the problem of multiplication of Schwartz distributions has been for a long time
interest of many researchers.

One of the most useful aspects of Schwartz’s theory of distributions in applications
is that discontinuous functions can be handled as easily as continuous or differentiable
functions which provides a powerful tool in formulating and solving many problems of
various fields of science and engineering [12]. In applications the results sometimes show
that multiplications of two generalized functions are not always allowed, so there have
been made many attempts to define products of distributions, or rather to enlarge the
range of existing products [15]. Several attempts have been made to include the dis-
tributions into differential algebras (as an example one can see [21]). Colombeau in [2]
describes the problem of multiplication of distributions and shows how to overcome it.
His theory was primarly been used for dealing with nonlinear partial differential equations
with singularities and was developed during the years and it has now a big appliance in
a different fields (physics, geometry, etc. see [19, 13, 14, 20, 23, 18, 17, 22]).

The origin of the construction of Colombeau algebra (introduced in [3, 1]) lies in
Schwartz’s impossibility result [24], i.e in searching for an associative and commutative
algebra (A (), +,0), where Q is an open set in R", satisfying following properties:
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1) The space D' (Q) of distributions over (2 is linearly embedded into A (2) and f (z) =
1 is the unit in A (Q);

2) There exist derivation operators &; : A(Q) —» A(Q), 1 =1,2,...,n, that are linear
and satisfy the Leibnitz rule;

3) Gilp(q), * = 1,2,...,n, is the usual partial derivative,

4) o|c()xc(q) is the usual product of functions.

The second condition means that A(Q) is differential algebra. It is shown in [26]
that there isn't any algebra satisfying these conditions. The optimal solution of this
problem was constructing differential algebra A (Q2) satisfying 1) - 3) and 4’) where C ()
is replaced with C* (Q), i.e.

4') o|ce(@)xc=(q) is the usual product of functions

and it was done by J.F. Colombeau ([3, 1]).

The differential Colombeau algebra G (R) as a powerful tool for treating linear and
nonlinear problems including singularities has almost the optimal properties while the
problem of multiplication of Schwartz distributions is concerned: it is an associative
differential algebra of generalized functions, contains the algebra of smooth functions as
a subalgebra (elements of this algebra are some equivalence classes of nets of smooth
functions), the distribution space D’ is linearly embedded in it as a subspace and the
multiplication is compatible with the operations of differentiation and products with C'*°
- differentiable functions. The notion ’association’ in G is a faithful generalization of the
equality of distributions and enables obtaining results in terms of distributions again.
About embedding of the space of distributions into the space of Colombeau generalized
functions one can read papers [16, 21, 11]. We can see some products of distributions in
a Colombeau algebra in [10, 5, 6, 8, 9, 4, 7] and other papers written by this author.

Following this approach, we evaluate in this paper some products of distributions with
coinciding singularities, as embedded in Colombeau algebra, in terms of associated dis-
tributions. The results obtained in this way can be reformulated as regularized products
in the classical distribution theory.

2. COLOMBEAU ALGEBRA

In this section we will introduce basic notations and definitions from Colombeau theory.
Let Ng denoted the set of non-negative integers, i.e. Ng = N U{0}. Let §;; = 1 for
1 =7 and 6;; = 0 for 2 # j; 1,7 € No. Then, for ¢ € Ng we denote

A4,(R) = {0 (@) € D) | [ (0)do = 8oy, 5 = 01,00
R
where D (R) is the space of all C* functions ¢ : R — C with compact support. The

elements of the set A, (R) are called test functions.
It is obvious that A; D As D As... . Also, Ag # 0 for all k¥ € N (this is proved in [3]).
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1
For ¢ € Ay (R) and € > 0 it is denoted ¢, = o (g) and J’(x) =p(—z).
Definition 2.1. Let £ (R) be the algebra of functions f (p,z): Ag(R) x R — C that
are wnfinitely differentiable for fized ’parameter’ ¢. The generalized functions of
Colombeau are elements of the quotient algebra
_ éu[R]
Z[R]

G=G(R)

Here &y [R] is the subalgebra of 'moderate’ functions such that for each compact
subset K of R and any p € Ng there is a ¢ € N such that, for each ¢ € A, (R) there are
¢>0,n>0 and it holds:

sup |07 f (e, z)| < ce™?
zeK

for 0 <e <.

Z[R] is an ideal of £x7 [R] consisting of all functions f (¢, ) such that for each compact
subset K of R and any p € Ng there is a ¢ € N such that for every r > ¢ and each
¢ € A, (R) there are ¢ > 0, 7 > 0 and it holds:

sup |OP f (e, z)| < ce™ 1
zeK
for 0 <e <.

The Colombeau algebra G (R) contains the distributions on R canonically embedded

as a C - vector subspace by the map:

i:D'(R) - G(R): uﬁﬁ:{ﬂ((p,x): (w%) (w):goEAq(R)}

where * denotes the convolution product of two distributions and is given by: (f % g) (z) =
J () g(z—y)dy.
R

According to the above, we can also write: % (p,z) = (u(y), ¢ (y — z)) where (u, @)
denotes the integral [ u (z)yp (z)dz.
R

Definition 2.2. (a) Generalized functions f,g € G(R) are said to be associated,
denoted f = g, if for some representatives f (e, z) and g (e, z) and arbitrary ¢ (z) €
D (R) there s a g € Ng such that for any ¢ (z) € Aq (R)

E*}O_*_
R

(b) A generalized function f € G s said to admit some u € D' (R) as ’associated
distribution’, denoted f = u, if for some representative f (g, z) of f and any ¢ (z) €
D (R) there s a g € Ng such that for any ¢ (z) € Aq (R)

lim / £ (pe,2)0 (2) de = (u, )
R

E*}O_}.



124 M.MITEVA AND B.JOLEVSKA-TUNESKA

These definitions are independent of the representatives chosen and the distribution
associated, if it exists, is unique. The association is a faithful generalization of the equality
of distributions.

By Colombeau product of distributions is meant the product of their embedding in
G whenever the result admits an associated distribution.

If the regularized model product of two distributions exists, then their Colombeau
product also exists and it is same with the first one.

The relation f ~ u is asymmetric, the distribution u stands on the r.h.s.; the relation
f ~ U is an equivalent relation in G so it is symmetric in G and it can also be written as
f—u=0.

We denote with 111’\|;| the embedding into G (R) of the distribution In|z| and with
§(s=1) (z) the embedding of the §¢*~1) (z), i.e the embedding of the (s — 1) - st derivative
of the Dirac delta function.

3. RESULTS ON SOME PRODUCTS OF DISTRIBUTIONS

Theorem 3.1. The product of the generalized functions In|z| and 6¢~Y(z) for s =
0,1,2,... in G(R) admits associated distributions and it holds:

— ——— —1)8
(3.1) In|z| 66-V(z) ~ Qa@—l)(m)
s
Proof. For given ¢ € Ag(R) we suppose that suppe(z) C [—!,1], without lost of gener-
ality. Then using the embedding rule and the substitution v = (y — z)/e we have the
representatives of the distribution In |z| in Colombeau algebra:

7] (¢eya) = ¢ /
x

z-+le y—z l
In |y|e (a) dy = /l1n|a: + ev|p(v)dv,

—le

Similar,
Py G P
661 (e, z) = T ¥ ! (_E) :
Then, for any 9(z) € D(R) we have:
(el (pe12) - 50D (per0) w(a)) = [ 0Tel (0, 0) 50D (g, 2) (e
G e (s—1)(_
= /715 </l In|z + ev|p(v)dv | @ (—z/e)Y(z)dz

_(_1)$ l (Sfl)u —eu ln'u—u v)dvdu
62 = [ e Vw(-ew) [ Inlew — eulou)dvd.

Es—l
using the substitution u = —z/e. By the Taylor theorem we have that

A () () (nw
(33 wi-ew) = 3 P et + ) e
k=0
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for n € (0,1) . Using this for (3.2) we have:

—~— — ST (L) Hig(d)
(Tl (pes2) - 5D (92,2 (o) = 3 S0 D g4 06e).

! !
where J; = / <p(v)dv/ In |ev — eu|utp® D (u)du and 4 = 0,1,...,5 — 1. Next using
! -

integration byipart we have:

1 14
Ji = /<P(v)d“/ Infev — eulu’* ™ (u)du
—1 —1

! !
= - ! / w(v)dv/ In |ev — eulp® ™V (u)d (Wt — ot
1+1 /), 1
1 ! ! ‘ 4
= —- / go(v)dv/ {(u”l —v"") Inlev — eulp®) (u)du
7+ 1 1 1
1 4 4 witl — ittt
— S AR € )
2,_'_1/_l<,0(v)dv/_l PP (u)du

The first term above is zero, and we have
il ! I
t+1)J; = Z/ vz*ktp(v)dv/ wk o (u)du = / ulpl™ N (u)du .
P — —

(—1)*" (s — 1)! .

S

So, the only non-zero term we have it for : = s — 1 and that is J,_; =

prpe! (=1)°9 (o)

(In]z| (pe, ) - 66— (pe, @), P(a)) = +0(e)

= Bl e, u6) + o).

Therefor passing to the limit, as € — 0, we obtain equation (3.1) proving the theorem. O
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