ADV MATH SCI JOURNAL

STRONGLY ALMOST SUMMABLE DIFFERENCE SEQUENCES AND STATISTICAL CONVERGENCE

M. AIYUB

ABSTRACT. The idea of difference sequence space was introduced by Kizmaz [12] and was generalized by Et and Çolak [6]. In this paper, we introduce and examine some properties of three sequence spaces defined by using a modulus function and give various properties and inclusion relation on these spaces.

1. INTRODUCTION AND PRELIMINARIES

Let ω be the set of all sequences of real numbers and ℓ_{∞} , c and c_0 be respectively the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x|| = \sup |x_k|$, where $k \in \mathbb{N} = \{1, 2, 3,\}$, the positive integers.

A sequence $x \in \ell_{\infty}$ is said to be almost convergent [14] if all Banach limits of x coincide. Lorentz [14] defined:

$$\hat{c} = \Big\{x: \lim_n rac{1}{n} \sum_{k=1}^n x_{k+m} ext{ exists, uniformly in } m \Big\}.$$

Several authors including Lorentz [14], Duran [2] and King [11], have studied almost convergent sequences. Maddox [16, 17] has defined x to be strongly almost convergent to a number L if

$$\lim_n rac{1}{n} \sum_{k=1}^n \left| x_{k+m} - L
ight| = 0$$
 uniformly in m

By $[\hat{c}]$ we denote the spaces of all strongly almost convergent sequences. It is easy to see that $c \in [\hat{c}] \subset \hat{c} \subset \ell_{\infty}$.

The space of strongly almost convergent sequences was generalized by Nanda [20, 21].

²⁰¹⁰ Mathematics Subject Classification. 40A05, 46A45.

Key words and phrases. Difference sequence, modulus function, statistical convergent.

Let $p = (p_k)$ be a sequence of strictly positive numbers. Nanda [20] defined:

$$egin{aligned} & [\hat{c},p] = igg\{x = (x_k): \lim_n rac{1}{n} \sum_{k=1}^n ig| x_{k+m} - L ig|^{p_k} = 0, ext{ uniformly in } m igg\}, \ & \left[\hat{c},p
ight]_0 = igg\{x = (x_k): \lim_n rac{1}{n} \sum_{k=1}^n ig| x_{k+m} ig|^{p_k} = 0, ext{ uniformly in } m igg\}, \ & \left[\hat{c},p
ight]_\infty = igg\{x = (x_k): \sup_{m,n} rac{1}{n} \sum_{k=1}^n ig| x_{k+m} igg|^{p_k} < \infty igg\}. \end{aligned}$$

Let $\lambda = (\lambda_k)$ be a nondecreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1, \ \lambda_1 = 1.$

The generalized de la Vallée-poussin mean is defined by

$$t_n(x) = rac{1}{\lambda_n} \sum_{k \in I_n} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$ for n = 1, 2,

A sequence $x = (x_k)$ is said to be (V, λ) summable to a number L (see [13]), if $t_n(x) \to L$ as $n \to \infty$. If $\lambda_n = n$, then (V, λ) summability and strongly (V, λ) summability are reduced to (C, 1) summability and [C, 1] summability, respectively.

The idea of difference sequence spaces was introduced by Kizmaz in [12]. In 1981, Kizmaz defined the sequence spaces:

$$X(riangle) = \left\{x = (x_k): riangle x \in X
ight\}$$

for $X = \ell_{\infty}, c$ and c_0 , where $\bigtriangleup x = (x_k - x_{k+1})$.

Then Et and Çolak [6] generalized the above sequence spaces as below:

$$X(riangle^r)=\left\{x=(x_k): riangle^r x\in X
ight\}$$

for $X = \ell_{\infty}, c$ and c_0 , where $r \in \mathbb{N}$, $\triangle^0 x = (x_k), \ \triangle x = (x_k - x_{k+1}), \ \triangle^r x = (\triangle^{r-1} x_k - \triangle^{r-1} x_{k+1})$, and so that

$$riangle^r x = \sum_{v=0}^r (-1)^v egin{bmatrix} r \ v \end{bmatrix} x_{k+v}.$$

Recently, Et and Basarir [5] extended the above sequence spaces to the sequence spaces $X(\triangle^r)$ for $X = \ell_{\infty}(p), c(p), c_0(p), [\hat{c}, p], [\hat{c}, p]_0$ and $[\hat{c}, p]_{\infty}$.

We recall that a modulus f is a function from $[0,\infty) \to [0,\infty)$ such that

(i) f(x) = 0 if and only if x = 0,

- $(ii) \ f(x+y) \leq f(x) + f(y) \ \text{for all} \ x \geq 0, \ y \geq 0,$
- (iii) f is increasing,
- (iv) f is continuous from right at 0.

It follows that f must be a continuous everywhere on $[0, \infty)$. The modulus function may be bounded or unbounded. Ruckle [23] and Maddox [15] used a modulus function f to construct some sequence spaces. Subsequently modulus function has been discussed in [3, 4, 19, 22, 26]. Further, let $X, Y \subset \omega$. Then we shall write ([27]):

$$M(X,Y) = igcap_{x\in X} x^{-1} * Y = igg\{ a\in\omega: ax\in Y \ ext{ for all } x\in X igg\}.$$

The set $X^{\alpha} = M(X, \ell_1)$ is called the Köthe-Toeplitz dual space or α - dual of X. Let X be a sequence space. Then X is called:

- (i) Solid (or normal) if $(\alpha_k x_k) \in X$, whenever, $(x_k) \in X$ for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$.
- (ii) Symmetric if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$ whenever $\pi(k)$ is a permutation of \mathbb{N} .
- (*iii*) Perfect if $X = X^{\alpha \alpha}$.
- (iv) Sequence algebra if $x.y \in X$, whenever $x, y \in X$. It is well known that if X is perfect then X is normal [10].

The following inequality will be used throughout this paper:

(1.1)
$$|a_k + b_k|^{p_k} \le C[|a_k|^{p_k} + |b_k|^{p_k}],$$

where $a_k, b_k \in \mathbb{C}, 0 \le p_k \le \sup_k p_k = H, C = \max(1, 2^{H-1})$, (see [18]).

2. MAIN RESULTS

In this section we prove some results involving the sequence space $[\hat{V}, \lambda, f, p]_0(\triangle^r, E)$, $[\hat{V}, \lambda, f, p]_1(\triangle^r, E)$ and $[\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$.

Definition 2.1. Let E be Banach space. We define $\omega(E)$ to be the vector space of all E-valued sequences that is $\omega(E) = \left\{ x = (x_k) : x_k \in E \right\}$. Let f be a modulus function and $p = (p_k)$ be any sequence of strictly positive real numbers.

We define the following sequence sets:

$$ig[\hat{V},\lambda,f,pig]_1(riangle^r,E)= \ = ig\{x\in\omega(E): \lim_nrac{1}{\lambda_n}\sum_{k\in I_n}\left[fig(ig| riangle^r x_{k+m}-Lig|ig)
ight]^{p_k}=0, ext{ uniformly in m for some $L>0$}ig\},$$

$$ig[\hat{V},\lambda,f,pig]_0(riangle^r,E)=ig\{x\in\omega(E):\lim_nrac{1}{\lambda_n}\sum_{k\in I_n}\Big[fig(ig| riangle^r x_{k+m}ig|ig)\Big]^{p_k}=0, ext{uniformly in }mig\},$$

and

$$ig[\hat{V},\lambda,f,pig]_{\infty}(riangle^r,E)=ig\{x\in\omega(E):\sup_{n,m}rac{1}{\lambda_n}\sum_{k\in I_n}ig[fig(ig| riangle^r x_{k+m}ig)ig]^{p_k}\leq\inftyig\}.$$

If $x \in [\hat{V}, \lambda, f, p]_1(\triangle^r, E)$ then we shall write $x_k \to L[\hat{V}, \lambda, f, p]_1(\triangle^r, E)$ and L will be called λ_E - strongly almost difference limit of x with respect to the modulus f.

Through this paper, Z will denote any one of the notions 0, 1 or ∞ .

In this case f(x) = x and $p_k = 1$ for all $k \in \mathbb{N}$, we shall write $[\hat{V}, \lambda]_z(\triangle^r, E)$ and $[\hat{V}, \lambda, f]_z(\triangle^r, E)$ instead of $[\hat{V}, \lambda, f, p]_z(\triangle^r, E)$. If $x \in [\hat{V}, \lambda]_1(\triangle^r, E)$ then we say that x is $\triangle^r_{\lambda,E}$ strongly almost convergent to L.

The proofs of the following two theorems are obtained by using the known standard techniques, therefore we give them without proofs (see for detail [3, 22]).

Theorem 2.1. Let $p = (p_k)$ be a bounded. Then the spaces $[\hat{V}, \lambda, f, p]_{z}(\triangle^r, E)$ are linear spaces over the set of complex numbers \mathbb{C} .

Theorem 2.2. Let $p = (p_k)$ be a bounded and f be modulus function, then

$$\left[\hat{V},\lambda,f,p\right]_{0}(\triangle^{r},E)\subset\left[\hat{V},\lambda,f,p\right]_{1}(\triangle^{r},E\subset\left[\hat{V},\lambda,f,p\right]_{\infty}(\triangle^{r},E).$$

Theorem 2.3. If $r \geq 1$, then the inclusion $[\hat{V}, \lambda, f, p]_{\tau}(\triangle^{r-1}, E) \subset [\hat{V}, \lambda, f, p]_{\tau}(\triangle^{r}, E)$ is strict. In general $[\hat{V}, \lambda, f, p]_{z}(\triangle^{i}, E) \subset [\hat{V}, \lambda, f, p]_{z}(\triangle^{r}, E)$ for all i = 1, 2, 3...r - 1and the inclusion is strict.

Proof. We give the proof for $Z = \infty$ only. It can be proved in similar way for Z = 0, 1. Let $x \in [\hat{V}, \lambda, f, p]_{\infty}(\triangle^{r-1}, E)$. Then we have:

$$\sup_{m,n}rac{1}{\lambda_n}\sum_{k\in I_n}fig(ig| \Delta^{r-1}x_{k+m}ig|ig)<\infty\,.$$

By definition of f, we have:

$$\frac{1}{\lambda_n}\sum_{k\in I_n} f\left(\left|\triangle^r x_{k+m}\right|\right) \le \frac{1}{\lambda_n}\sum_{k\in I_n} f\left(\left|\triangle^{r-1} x_{k+m}\right|\right) + \frac{1}{\lambda_n}\sum_{k\in I_n} f\left(\left|\triangle^{r-1} x_{k+m+1}\right|\right) < \infty.$$
Thus

т шus,

 $ig[\hat{V},\lambda,f,pig]_{\infty}(riangle^{r-1},E)\subsetig[\hat{V},\lambda,f,pig]_{\infty}(riangle^{r},E)$.

Proceeding in this way, we have:

$$[\hat{V},\lambda,f,p]_\infty(riangle^i E) \subset [\hat{V},\lambda,f,p]_\infty(riangle^r,E)\,,$$

for all i = 1, 2, 3...r - 1. Let $\lambda_n = n$ for all $n \in \mathbb{N}$. Then the sequence $x = (k^r)$, for example, belongs to $[\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$, but doesn't belong to $[\hat{V}, \lambda, f, p]_{\infty}(\triangle^{r-1}, E)$ for f(x) = x (if $x = (k^r)$, then $\triangle^r x_k = (-1)^r r!$ and $\triangle^{r-1} x_k = (-1)^{r+1} r! (k + \frac{(r-1)}{2})$ for all $k \in \mathbb{N}$).

Similarly, as in the previous theorems for the cases $[\hat{V}, \lambda, f, p]_0(\triangle^r, E)$ and $[\hat{V}, \lambda, f, p]_1(\triangle^r E)$ we have:

Proposition 2.1. Let f be a sequence of modulus functions. Then:

$$\left[\hat{V},\lambda,f,p
ight]_{1}(riangle^{r-1},E)\subset\left[\hat{V},\lambda,f,p
ight]_{0}(riangle^{r},E).$$

Theorem 2.4. Let f_1 and f_2 be modulus functions. Then we have:

(i) $\left[\hat{V},\lambda,f_1,p\right]_{z}(\bigtriangleup^r,E) \subset \left[\hat{V},\lambda,f_1of_2,p\right]_{z}(\bigtriangleup^r,E),$

$$ig(ii) \; ig[\hat{V},\lambda,f_1,pig]_z(riangle^r,E) \cap ig[\hat{V},\lambda,f_2,pig]_z(riangle^r,E) \subset ig[\hat{V},\lambda,f_1+f_2,pig]_z(riangle^r,E).$$

The following results are consequence of Theorem 2.4.

Proposition 2.2. Let f be a modulus functions. Then:

$$ig[\hat{V},\lambda,pig]_z(riangle^r,E)\subsetig[\hat{V},\lambda,f,pig]_z(riangle^r,E).$$

Theorem 2.5. The sequence spaces $[\hat{V}, \lambda, f, p]_0(\triangle^r, E)$, $[\hat{V}, \lambda, f, p]_1(\triangle^r, E)$ and $[\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$ are not solid for $r \ge 1$.

Proof. Let $p_k = 1$ for all k, f(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $(x_k) = (k^r) \in [\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$ but $(\alpha_k x_k) \notin [\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$, when $\alpha_k = (-1)^k$ for all $k \in \mathbb{N}$. Hence $[\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$ is not solid. The other cases can be proved by considering similar examples.

From the above theorem we may give the following corollary.

Corollary 2.1. The sequence spaces $[\hat{V}, \lambda, f, p]_0(\triangle^r, E)$, $[\hat{V}, \lambda, f, p]_1(\triangle^r, E)$ and $[\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$ are not perfect for $r \ge 1$.

Theorem 2.6. The sequence spaces $[\hat{V}, \lambda, f, p]_1(\triangle^r, E)$ and $[\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$ are not symmetric for $r \geq 1$.

Proof. Let $(p_k) = 1$ for all k, f(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $x_k = (k^r) \in [\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$. Let (y_k) be an arrangement of (x_k) , which is defined by $(y_k) = \left\{ x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, x_{36}, x_8, x_{49}, x_{10} \dots \right\}$.
Then $(y_k) \notin [\hat{V}, \lambda, f, p]_{\infty}(\triangle^r, E)$.

Remark 2.1. The space $[\hat{V}, \lambda, f, p]_0(\triangle^r, E)$ is not symmetric for $r \geq 2$.

Theorem 2.7. The sequence spaces $[\hat{V}, \lambda, f, p]_{*}(\triangle^{r}, E)$. are not sequence of algebras.

Proof. Let $p_k = 1$ for all $k \in \mathbb{N}$, f(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $x = (k^{r-2})$, $y = (k^{r-2}) \in [\hat{V}, \lambda, f, p]_z(\Delta^r, E)$, but $x, y \in [\hat{V}, \lambda, f, p]_z(\Delta^r, E)$.

3. STATISTICAL CONVERGENT

The notion of statistical convergence was introduced by Fast [7] and studied by various authors [1, 9, 24, 25]. In this section we define $\triangle_{\lambda,E}^r$ almost statistically convergent sequences and give some inclusion relations between $\hat{s}(\triangle_{\lambda}^r, E)$ and $[\hat{V}, \lambda, f, p]_1(\triangle^r, E)$.

Definition 3.1. A sequence $x = (x_k)$ is said to be $\triangle_{\lambda,E}^r$ -almost statistically convergent to the number L if for every $\epsilon > 0$,

$$\lim_n rac{1}{\lambda_n} ig|ig\{k\in I_n: ig| riangle^r x_{k+m} - Lig| \ge \epsilonig\}ig| = 0$$
 uniformly in m.

In this case we write $\hat{s}(\triangle_{\lambda}^{r}, E) - \lim x = L$, or $x_{k} \to L\hat{s}(\triangle_{\lambda}^{r}, E)$.

When $\lambda_n = n$ and L = 0 we shall write $\hat{s}(\triangle^r, E)$ instead of $\hat{s}(\triangle^r_{\lambda}, E)$.

The proof of the following theorem is easily obtained by using the same technique as in Theorem 2 in Savaş [25], therefore we give it without proof.

Theorem 3.1. Let $\lambda = (\lambda_n)$ be the same as in section 1, then:

- (i) If $x_k \to L[\hat{V}, \lambda]_1(\triangle^r, E) \Rightarrow x_k$ then $L\hat{s}(\triangle^r_\lambda, E)$;
- (ii) If $x \in \ell_{\infty}(\triangle^{r}, E)$ and $x_{k} \to L\hat{s}(\triangle^{r}_{\lambda}, E)$, then $x_{k} \to L[\hat{V}, \lambda]_{1}(\triangle^{r}, E)$;
- $(iii) \ \hat{s}(\triangle_{\lambda}^{r}, E) \cap \ell_{\infty}(\triangle^{r}, E) = [\hat{V}, \lambda]_{1}(\triangle^{r}, E) \cap \ell_{\infty}(\triangle^{r}, E).$

Theorem 3.2. $\hat{s}(\Delta^r, E) \subset \hat{s}(\Delta^r_{\lambda}, E)$ if and only if $\liminf_n \frac{\lambda_n}{n} > 0$.

Proof. The sufficiency part of this proof can be obtained using the same technique as the sufficiency part of proof of Theorem 3 in Savaş [25].

For necessity suppose that $\liminf_n \frac{\lambda_n}{n} = 0$. As in ([8], p. 510) we can choose a subsequence (n(j)) such that $\frac{\lambda_n(j)}{n(j)} < \frac{1}{j}$. We define $x = (x_i)$ such that:

$$riangle^r x_i = \left\{ egin{array}{c} 1 ext{ if } i \in I_n(j), \ j=1,2,3...., \\ 0 ext{ otherwise.} \end{array}
ight.$$

Then $x \in [\hat{c}](\triangle^r, E)$ and by [4, Theorem 3.1 (i)], $x \in \hat{s}(\triangle^r, E)$. But $x \notin [\hat{V}, \lambda]_1(\triangle^r, E)$ and Theorem 3.1 (ii) implies that $x \notin \hat{s}(\triangle^r_\lambda, E)$. This completes the proof. \Box

Theorem 3.3. Let f be a modulus function and $\sup_k p_k = H$. Then:

$$[\hat{V}, \lambda, f, p]_1(\triangle^r, E) \subset \hat{s}(\triangle^r_{\lambda}, E).$$

Proof. Let $x \in [\hat{V}, \lambda, f, p]_1(\Delta^r, E)$ and $\epsilon > 0$ be given. Let Σ_1 denote the sum over $k \leq n$ such that $|\Delta^r x_{k+m} - L| \geq \epsilon$ and Σ_2 denote the sum of over $k \leq n$ such that $|\Delta^r x_{k+m} - L| < \epsilon$. Then:

$$\begin{aligned} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(\left| \Delta_{k+m}^r - L \right| \right) \right]^{p_k} &= \frac{1}{\lambda_n} \sum_1 \left[f\left(\left| \Delta_{k+m}^r - L \right| \right) \right]^{p_k} + \frac{1}{\lambda_n} \sum_2 \left[f\left(\left| \Delta_{k+m}^r - L \right| \right) \right]^{p_k} \\ &\geq \frac{1}{\lambda_n} \sum_1 \left[f\left(\left| \Delta_{k+m}^r - L \right| \right) \right]^{p_k} \geq \frac{1}{\lambda_n} \sum_1 \left[f\left(\epsilon \right) \right]^{p_k} \\ &\geq \frac{1}{\lambda_n} \sum_1 \min \left(\left[f\left(\epsilon \right) \right]^{\inf p_k}, \left[f\left(\epsilon \right) \right]^H \right) \\ &\geq \left| \left\{ k \in I_n : \left| \Delta^r x_{k+m} - L \right| \geq \epsilon \right\} \right| \min \left(\left[f\left(\epsilon \right) \right]^{\inf p_k}, \left[f\left(\epsilon \right) \right]^H \right). \end{aligned}$$

Hence $x \in \hat{s}(\triangle_{\lambda}^{r}, E)$.

Theorem 3.4. Let f be a bounded and $0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty$. Then: $\hat{s}(\triangle_{\lambda}^r, E) \subset [\hat{V}, \lambda, f, p]_1(\triangle^r, E)$.

Proof. Suppose that f is bounded. Let $\epsilon > 0$ and Σ_1 and Σ_2 be denoted in the previous theorem. Since f is bounded there exists an integer K such that f(x) < K for all $x \ge 0$. Then:

$$\begin{split} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(\left| \triangle_{k+m}^r - L \right| \right) \right]^{p_k} &= \frac{1}{\lambda_n} \sum_1 \left[f\left(\left| \triangle_{k+m}^r - L \right| \right) \right]^{p_k} + \frac{1}{\lambda_n} \sum_2 \left[f\left(\left| \triangle_{k+m}^r - L \right| \right) \right]^{p_k} \\ &\leq \frac{1}{\lambda_n} \sum_1 \max\left(K^h, K^H \right) + \frac{1}{\lambda_n} \sum_2 \left[f(\epsilon) \right]^{p_k} \\ &\leq \max\left(K^h, K^H \right) \frac{1}{\lambda_n} \left| \left\{ k \in I_n : \left| \triangle_{k+m}^r - L \right| \ge \epsilon \right\} \right| + \\ &+ \max\left(f(\epsilon)^h, f(\epsilon)^H \right) \end{split}$$

Hence $x \in [\hat{V}, \lambda, f, p]_1(\triangle^r, E)$.

Theorem 3.5. Let $0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty$. Then

 $\hat{s}(riangle_{\lambda}^{r},E)=\left[\hat{V},\lambda,f,p
ight]_{1}(riangle^{r},E)\,,$

if and only if f is bounded.

Proof. Let f is bounded bounded. By Theorem 3.4 and Theorem 3.5 we have $\hat{s}(\triangle_{\lambda}^{r}, E) = [\hat{V}, \lambda, f, p]_{1}(\triangle^{r}, E)$. Conversely, suppose that f is unbounded. Then there exists a positive sequence (t_{k}) with $f(t_{k}) = k^{2}$, for k = 1, 2, 3... If we choose

$$extstyle ^r x_i = \left\{ egin{array}{ccc} t_k \ i = k^2, \ i = 1, 2, 3.... \\ 0 \ ext{otherwise}. \end{array}
ight.$$

then we have:

$$\frac{1}{\lambda_n} \big| \big\{ k \in I_n : \big| \triangle_{k+m}^r \big| \ge \epsilon \big\} \big| \le \frac{\sqrt{\lambda_{n-1}}}{\lambda_n} \text{ for all } n, m$$

and so that $x \in \hat{s}(\triangle_{\lambda}^{r}, E)$ but $x \notin [\hat{V}, \lambda, f, p]_{1}(\triangle^{r}, E)$ for $E = \mathbb{C}$. This contradict to $\hat{s}(\triangle_{\lambda}^{r}, E) = [\hat{V}, \lambda, f, p]_{1}(\triangle_{\lambda}^{r}, E)$

Acknowledgment

The author thanks the referee(s) for their valuable suggestions that improved the presentation of the paper.

References

- J.S.CONNOR: The statistical and strong p Cesáo convergence of sequence, Analysis 8 (1998), 47-63.
- [2] J.P.DURAN: Infinite matrices and almost convergence, Math. Zeit. 128 (1972), 75-83.
- [3] A.ESI: Some new sequence spaces defined by a sequence of moduli, Turkish J. Math.21 (1997), 61-68.
- [4] M.ET: Strongly almost summable difference sequence of order m defined by a modulus, Stud. Sci. Math. Hung.40 (2003), 463-476.
- [5] M.ET, M.BASARIR: On some new generalized difference sequence spaces, Period. Math. 35 (1997), 169-175.
- [6] M.ET, R. ÇOLACK: On some generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377-386.
- [7] H.FAST: Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [8] A.R.FREEDMAN, J.J.SEMBER, R. RAPHAEL: Some p Cesáo-type summability spaces, Proc. London Math. Soc.37 (1978), 508-520.
- [9] A.FRIDY: On statistical convergence, Analysis 5 (1985), 301-313.
- [10] P.K.KAMTHAN, M.GUPTA: Sequence spaces and Series, Lecture Notes in Pure and Applied Mathematics, 65. Marcel Dekker, Inc., New York, 1981.
- [11] J.P.KING: Almost summable sequences, Proc. Amer. Math. Soc. 16 (1966), 1219-1225.
- [12] H.KIZMAZ: On certain sequence spaces, Canad .Math. Bull. 24 (1981), 169-176.
- [13] L.LINDLER: Über de la Valle-pousinche Summierbarkeit Allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar. 16 (1995), 375-387.
- [14] G.G. LORENZ: A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [15] I.J.MADDOX: Sequence spaces defined by a modulus, Mat. Proc. Camb. Phil. Soc. 100 (1986), 161-166.
- [16] I.J.MADDOX: Spaces of strongly summable sequences, Quart. J. Math.18 (1967), 345-355.
- [17] I.J.MADDOX: A new type of convergence, Math. Proc. Camb. Phil. Soc. 83 (1978), 61-64.
- [18] I.J.MADDOX: Elements of functional Analysis, Cambridge Univ. Press, 1970.

7

		1	

- [19] E.MALKOSKY, E.SAVAŞ: Some λ sequence spaces defined by a modulus, Arch Math, 36 (2000), 219-228.
- [20] S.NANDA: Strongly almost convergent sequences, Bull. Cal. Math. Soc. 76 (1984), 236-240.
- [21] S.NANDA: Strongly almost summable and strongly almost convergent sequences, Acta. Math. Hung. 49 (1987), 71-76.
- [22] E.ÖZTÜRK, T.BILGIN: Strongly summable sequence spaces defined by a modulus, Indian J. Pure and App. Math. 25 (1994), 621-625.
- [23] W.H.RUCKLE: FK spaces in which the sequence of coordinate vector is bounded, Canad. J. Math. 25 (1973), 973-978.
- [24] T.ŠALÁT: On Statistically convergent sequence of real numbers, Math.Slovaca 30 (1980), 139-150.
- [25] E.SAVAŞ: Strong almost convergence and almost λ -statistical convergence, Hokkaido. Math. J. 29 (2000), 531-536.
- [26] A.WASZAK: On the strong convergence in some sequence spaces, Fasc. Math. 33 (2002), 125-137.
- [27] A. WILANSKY: Summability through FunctionAlalysis, North-Holland Mathematics Studies, 1984.
- [28] K.YOSIDAK: Functional Analysis, Springer- Verlag, Berlian- Heidelberg New York, 1971.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BAHRAIN P.O. BOX-32038 KINGDOM OF BAHRAIN *E-mail address:* maiyub2002@yahoo.com