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STRONGLY ALMOST SUMMABLE DIFFERENCE SEQUENCES AND
STATISTICAL CONVERGENCE

M. AIYUB

ABSTRACT. The idea of difference sequence space was introduced by Kizmaz [12] and
was generalized by Et and Golak [6]. In this paper, we introduce and examine some
properties of three sequence spaces defined by using a modulus function and give
various properties and inclusion relation on these spaces.

1. INTRODUCTION AND PRELIMINARIES

Let w be the set of all sequences of real numbers and 4., ¢ and ¢y be respectively the
Banach spaces of bounded, convergent and null sequences ¢ = (z) with the usual norm
||z|| = sup |zx|, where k € N = {1,2,3.....}, the positive integers.

A sequence z € £ is said to be almost convergent [14] if all Banach limits of z coincide.
Lorentz [14] defined:

. 1o : : :
é= {a: : 111131 - Z Tk4m €Xists, uniformly in m}.
k=1
Several authors including Lorentz [14], Duran [2] and King [11], have studied almost
convergent sequences. Maddox [16, 17] has defined z to be strongly almost convergent to
a number L if

1 : :
1171111 -~ Z |a:k+m — L| = 0 uniformly in m.
k=1
By [é] we denote the spaces of all strongly almost convergent sequences. It is easy to see
that ¢ C [¢] C & C loo.
The space of strongly almost convergent sequences was generalized by Nanda [20, 21].
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Let p = (px) be a sequence of strictly positive numbers. Nanda [20] defined:
& : 1 . Pk - .
= qz = (z¢) :lim ~ m — L™ =0, uniforml :
[C,P] {33 (zx) m 2 |$k+ | uniformly in m}

[6,p]0 = {a: = (z1) : lirrlni,; |g;k+m|1’k = 0, uniformly in m},

[&,p],, = {a:—(:ck) sup — Z|a:k+m| <oo}

m,n

Let A = (Ax) be a nondecreasing sequence of p051t1ve numbers tending to co such that
>\n+l < An + 1, A1 =1
The generalized de la Vallée-poussin mean is defined by

E Tk,

where I, = [n — A, + L,n] forn =1,2,....

A sequence z = (zx) is said to be (V, A) summable to a number L (see [13]), if t,(z) — L
asn — o0. If A, = n, then (V| A) summability and strongly (V, A) summability are reduced
to (C, 1) summability and [C, 1] summability, respectively.

The idea of difference sequence spaces was introduced by Kizmaz in [12]. In 1981,
Kizmaz defined the sequence spaces:

X(A) = {m = (z): Az € X}

for X = £, c and ¢g, where Az = (:rk — mk+1).
Then Et and Golak [6] generalized the above sequence spaces as below:

X(AT) = {x = (z): ATz € X}

for X = £y, c and cg, where » € N, Az = (z3), Az = (2, — Tpy1), ATz = (A" Lz —
ATz 1), and so that

Az =Y (1) L’; Thto.

v=0

Recently, Et and Basarir [5] extended the above sequence spaces to the sequence spaces
X(AT) for X = L (p), c(p), co(p), [é,p], [6,p]0 and [6,p]oo
We recall that a modulus f is a function from [0, 00) — [0, 00) such that
(#) f(z) =0if and only if z = 0,
(1) fz+y) < flz) + f(y) forallz >0, y >0,
(#12) f is increasing,
(iv) f is continuous from right at 0.

It follows that f must be a continuous everywhere on [0, ). The modulus function
may be bounded or unbounded. Ruckle [23] and Maddox [15] used a modulus function
f to construct some sequence spaces. Subsequently modulus function has been discussed
in [3, 4, 19, 22, 26].
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Further, let X,Y C w. Then we shall write ([27]):

M(X,Y)= m xl*Y:{aew:amEY forallmEX}.
zEX
The set X* = M(X,{;) is called the Kéthe-Toeplitz dual space or a- dual of X. Let X
be a sequence space. Then X is called:

(2) Solid (or normal) if (apzr) € X, whenever, (zx) € X for all sequences (ag) of
scalars with |ag| < 1for all & € N.
(¢4) Symmetric if (z) € X implies (z(x)) € X whenever 7 (k) is a permutation of N.
(#17) Perfect if X = X,
(iv) Sequence algebra if z.y € X, whenever z,y € X. It is well known that if X is
perfect then X is normal [10].

The following inequality will be used throughout this paper:

(1.1) |ak + bi [ < C[ ag[P* + [bx[P*]
where ag,br € C, 0 < py <sup, pr = H, C = max (1, 2H’1) , (see [18]).

2. MAIN RESULTS

In this section we prove some results involving the sequence space [17, A, f,p]O(AT, E),
I:Vr A7 f7p] 1(AT7 E) and I:vv )‘7 f7p:|oo(A7‘7 E)

Definition 2.1. Let E be Banach space. We define w(E) to be the vector space of
all E-valued sequences that is w(E) = {:n = (zg) : zx € E} Let f be a modulus
function and p = (pr) be any sequence of strictly positive real numbers.

We define the following sequence sets:

[V,X, £,p] (A7, B) =

- {:r € w(E) : lim)\i > [f(|Nfrk+m - L|)]

n
" kel,

Pk
= 0, uniformly in m for some L > O},

Pk
[V,A,f,p]O(AT’E) = {x cw(E): 11711n>\i Z [f(|ATg;k+m|) = 0, uniformly in m},
" kel,
and
~ 1 Pk
[V,)\,f,p]oo(AT’E) = {x € w(E): sup = Z [f(|A’$k+m|)] < oo}.
N ker,

Ifz e [V,)\,f,p]l(A’",E) then we shall write = — L[V,)\,f,p]l(Ar,E) and L will
be called Ag- strongly almost difference limit of z with respect to the modulus f.

Through this paper, Z will denote any one of the notions 0,1 or co.

In this case f(z) = z and pr = 1 for all &k € N, we shall write [V,)\]Z(AT,E) and
[V,)\,f]z(A",E) instead of [V,)\,f,p]z(A”,E). Ifz e [V,)\]l(A",E’) then we say that
z is A} p strongly almost convergent to L.
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The proofs of the following two theorems are obtained by using the known standard
techniques, therefore we give them without proofs (see for detail [3, 22]).

Theorem 2.1. Let p = (pg) be a bounded. Then the spaces [V,)\,f,p]z(Ar,E) are
linear spaces over the set of complex numbers C.

Theorem 2.2. Let p = (px) be a bounded and f be modulus function, then
I:V7)‘1f1p:|0(AT7E) C I:v7)\7f7p:|1(AT’E C I:V1}‘7f7p:|oo(AT7E)

Theorem 2.3. Ifr > 1, then the inclusion [V,)\,f,p]z(A’"’l,E) C [V,)\,f,p]z(A’",E)
1s strict. In general [V,)\,f,p]z(Ai,E’) C [V,)\,f,p]l(AT,E) forall1=1,2,3..r -1
and the inclusion is strict.

Proof. We give the proof for Z = oo only. It can be proved in similar way for Z = 0, 1.
Let z € [V,)\,f,p]oo(A’"’l,E). Then we have:

1 _
w5 3 1(18 muml ) <o

By definition of f, we have:

1 1 1
E Z f<|Ar$k+m|) S E Z f(|ATl$k+m|> + E Z f(|ATl$k+m+1|> < 00.

kel, kel, kCIy,
Thus,
[V, £,0] (A4 B) C [V, A, f,p] (A7, E).
Proceeding in this way, we have:
VoA fiPleo (A B) C [V, A, foploo(A7, B)

for all © = 1,2,3...r — 1. Let A\, = n for all n € N. Then the sequence z = (k"), for
example, belongs to [V,A,f,p]oo(A’,E), but doesn’t belong to [V,)\,f,p]oo(A’"’l,E)
for f(z) = z (if ¢ = (k7), then A"z, = (—1)"r! and A" 1z = (—1)"Frl(k + %) for
all k € N). O

Similarly, as in the previous theorems for the cases [V, A £, 0lo(AT, E)and [V, A, £, p]1(ATE)
we have:

Proposition 2.1. Let f be a sequence of modulus functions. Then:
I:V7 }‘1 f7p] 1(AT_1’ E) C I:V7 A7 f7p:|0(AT1 E)

Theorem 2.4. Let f; and fo be modulus functions. Then we have:
(Z) I:V7)‘7f17p]z(AT7E) C I:V7}‘7f10f27p:|z(AT7E)7
(ZZ) I:V7)‘7fl7p]z(AT7E) N I:V7)‘7f27p]z(Ar7E) C I:V7>‘7f1 + f27p:|z(AT7E)'

The following results are consequence of Theorem 2.4.

Proposition 2.2. Let f be a modulus functions. Then:

[V, \p],(A7,B) C [V,), f,p] (A7, E).
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Theorem 2.5. The sequence spaces [V,A,f,p]O(A",E), [V,A,f,p]l(A",E) and
[V,A,f,p]oo(AT,E) are not solid for r > 1.

Proof. Let pr, = 1 for all k, f(z) = z and A\, = n for all n € N. Then (zx) = (k") €
[V, f,Ploo (A7, E) but (apzi) ¢ [V, A, f,0leo(A7, E), when ap = (—1)F for all k € N.
Hence [V,)\,f, Ploo (AT, E) is not solid. The other cases can be proved by considering
similar examples. O

From the above theorem we may give the following corollary.

Corollary 2.1. The sequence spaces [V,)\,f,p]o(Ar,E), [V,A,f,p]l(A’,E) and
[V,)\,f,p]oo(Ar,E) are not perfect for r > 1.

Theorem 2.6. The sequence spaces [V,A,f,p]l(Ar,E) and [V,)\,f,p]oo(Ar,E) are
not symmetric for r > 1.

Proof. Let (pg) = 1 for all k, f(z) = ¢ and A, = n for all n € N. Then z, = (k") €
[V, A, f,p]oo(Ar, E). Let (yx) be an arrangement of (zy), which is defined by

Then (vi) ¢ [V, A, £,p] (A7, B). O
Remark 2.1. The space [V,)\,f,p]o(A",E) is not symmetric for r > 2.
Theorem 2.7. The sequence spaces [V, A S p]z(A’, E). are not sequence of algebras.

Proof. Let pp = 1forallk € N., f(z) =z and A\, = n for all n € N. Then z = (k"~2),
y=(k""2) € [V,X f,p] (A", E), but z,y € [V, ), f,p] (A", E). O

3. STATISTICAL CONVERGENT

The notion of statistical convergence was introduced by Fast [7] and studied by various
authors [1, 9, 24, 25]. In this section we define A} p almost statistically convergent
sequences and give some inclusion relations between (A%, £) and [17, A, f,p] (AT E).

Definition 3.1. A sequence z = (zx) 1s said to be A p-almost statistically conver-
gent to the number L if for every e > 0,

11711n$|{k €, : |A’a:k+m — L| > e}| = 0 uniformly in m.

In this case we write §(A}, E) — limz = L, or o — L3(AY, E).

When A\, = n and L = 0 we shall write §(A", E) instead of §(A], E).

The proof of the following theorem is easily obtained by using the same technique as
in Theorem 2 in Savag [25], therefore we give it without proof.

Theorem 3.1. Let A = (A,,) be the same as in section 1, then:
(1) If 2 — L[V, A} (A", E) = ) then L3(A}, B);
(11) If ¢ € Lo (A", E) and zj, — L3(A}, E), then z, — L[V, )] (A", B);
(113) 3(A%, B) Nleo(AT, E) = [V, ] (A7, B) N Lo (AT, E).
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Theorem 3.2. §(AT,E) C §(A§\,E’) if and only if liminf, %" > 0.
Proof. The sufficiency part of this proof can be obtained using the same technique as the
sufficiency part of proof of Theorem 3 in Savag [25].

For necessity suppose that liminf, 2= = 0. As in ([8], p. 510) we can choose a
2"((]7; < Jl We define z = (z;) such that:

lifi € I,(5), 7=1,2,3....;

Tm. — ’ 14 )
A = { 0 otherwise.

subsequence (n(7)) such that

Then z € [é](AT,E) and by [4, Theorem 3.1 (i)], z € §(AT,E). But z ¢ [V,)\]l(AT,E)
and Theorem 3.1 (ii) implies that z ¢ .§(A§\, E) This completes the proof. O

Theorem 3.3. Let f be a modulus function and sup, px = H. Then:
[V, A, £,p],(A7, B) C 3(A%, B).

Proof. Let z € [V,)\,f,p]l(A’”,E) and € > 0 be given. Let ¥; denote the sum over
k < n such that |A’“mk+m - L| > € and ¥, denote the sum of over ¥ < n such that
|A’:nk+m - L| < €. Then:

e Z [0 0] = 5 105 - 01 3 [0 2]
3 [fhm - H)P 2 S ("
% lemin <[f(e)]mf“, [f(f)]H>

|{k €l,: |Armk+m - L| > 6}| min ([f(e)]infpk, [f(e)]H>.

v

v

v

Hence = € 3(A}, E). O

Theorem 3.4. Let f be a bounded and 0 < h = infypr < pr < sup,pr = H < .
Then: §(A%,E) C [V, X, f,p], (A7, E).

Proof. Suppose that f is bounded. Let € > 0 and ¥; and X, be denoted in the previous
theorem. Since f is bounded there exists an integer K such that f(z) < K for all z > 0.
Then:

o 2 [P0k =2D]” = 5 [k 2] S 2 [0 - 2]

kEL,
%Zmax (K", KH) + )\iz [f(s)]pk

g

IN

< max (Kh,KH))\in €L |Djm — L > e}|+

+ max (f(e)", f()¥)
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Hence z € [V,)\,f,p]l(AT,E). O
Theorem 3.5. Let 0 < h = infy pr < pr <sup,pr = H < c0. Then

8(A%, B) = [V, X, £,p], (AT, B),
if and only if f 1s bounded.

Proof. Let f is bounded bounded. By Theorem 3.4 and Theorem 3.5 we have §( I E’) =
[V, A, f,p]l(A’, E). Conversely, suppose that f is unbounded. Then there exists a posi-
tive sequence (t) with f(¢x) = k2, for k = 1,2,3..... If we choose

arg [ Bi=R =123
* 71 0 otherwise.

then we have:

)\i|{k€ I, : |A2+m| Ze}| < 7“1:%[ for all n,m

and so that z € 3(AL,E) but z ¢ [V,)\,f,p]l(Ar,E) for E = C. This contradict to
§( §7E) = [V7>‘7f7p]1( %E) O
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