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STRONGLY ALMOST SUMMABLE DIFFERENCE SEQUENCES AND

STATISTICAL CONVERGENCE

M. AIYUB

Abstract. The idea of di�erence sequence space was introduced by Kizmaz [12] and
was generalized by Et and Çolak [6]. In this paper, we introduce and examine some
properties of three sequence spaces de�ned by using a modulus function and give
various properties and inclusion relation on these spaces.

1. Introduction and Preliminaries

Let ! be the set of all sequences of real numbers and `1; c and c0 be respectively the

Banach spaces of bounded, convergent and null sequences x = (xk) with the usual norm

kxk = sup jxkj, where k 2 N = f1; 2; 3:::::g, the positive integers.

A sequence x 2 `1 is said to be almost convergent [14] if all Banach limits of x coincide.

Lorentz [14] de�ned:

ĉ =
n
x : lim

n

1

n

nX
k=1

xk+m exists, uniformly in m
o
:

Several authors including Lorentz [14], Duran [2] and King [11], have studied almost

convergent sequences. Maddox [16, 17] has de�ned x to be strongly almost convergent to

a number L if

lim
n

1

n

nX
k=1

��xk+m � L
�� = 0 uniformly in m:

By
�
ĉ
�
we denote the spaces of all strongly almost convergent sequences. It is easy to see

that c �
�
ĉ
�
� ĉ � `1:

The space of strongly almost convergent sequences was generalized by Nanda [20, 21].
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Let p = (pk) be a sequence of strictly positive numbers. Nanda [20] de�ned:

�
ĉ; p
�
=

�
x = (xk) : lim

n

1

n

nX
k=1

��xk+m � L
��pk = 0; uniformly in m

�
;

�
ĉ; p
�
0
=

�
x = (xk) : lim

n

1

n

nX
k=1

��xk+m��pk = 0; uniformly in m

�
;

�
ĉ; p
�
1

=

�
x = (xk) : sup

m;n

1

n

nX
k=1

��xk+m��pk <1

�
:

Let � = (�k) be a nondecreasing sequence of positive numbers tending to 1 such that

�n+1 � �n + 1; �1 = 1:

The generalized de la Vallée-poussin mean is de�ned by

tn(x) =
1

�n

X
k2In

xk;

where In = [n� �n + 1; n] for n = 1; 2; ::::

A sequence x = (xk) is said to be (V; �) summable to a number L (see [13]), if tn(x)! L

as n!1: If �n = n, then (V; �) summability and strongly (V; �) summability are reduced

to (C; 1) summability and [C; 1] summability, respectively.

The idea of di�erence sequence spaces was introduced by Kizmaz in [12]. In 1981,

Kizmaz de�ned the sequence spaces:

X(4) =

�
x = (xk) : 4x 2 X

�

for X = `1; c and c0, where 4x =
�
xk � xk+1

�
:

Then Et and Çolak [6] generalized the above sequence spaces as below:

X(4r) =

�
x = (xk) : 4

rx 2 X

�

for X = `1; c and c0, where r 2 N, 4
0x = (xk), 4x = (xk � xk+1); 4

rx = (4r�1xk �

4r�1xk+1); and so that

4rx =

rX
v=0

(�1)v
�
r

v

�
xk+v:

Recently, Et and Basarir [5] extended the above sequence spaces to the sequence spaces

X(4r) for X = `1(p), c(p), c0(p),
�
ĉ; p
�
,
�
ĉ; p
�
0
and

�
ĉ; p
�
1
:

We recall that a modulus f is a function from [0;1)! [0;1) such that

(i) f(x) = 0 if and only if x = 0;

(ii) f(x+ y) � f(x) + f(y) for all x � 0; y � 0;

(iii) f is increasing,

(iv) f is continuous from right at 0.

It follows that f must be a continuous everywhere on [0;1). The modulus function

may be bounded or unbounded. Ruckle [23] and Maddox [15] used a modulus function

f to construct some sequence spaces. Subsequently modulus function has been discussed

in [3, 4, 19, 22, 26].
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Further, let X;Y � !: Then we shall write ([27]):

M(X;Y ) =
\
x2X

x�1 � Y =

�
a 2 ! : ax 2 Y for all x 2 X

�
:

The set X� = M(X; `1) is called the Köthe-Toeplitz dual space or �- dual of X. Let X

be a sequence space. Then X is called:

(i) Solid (or normal) if (�kxk) 2 X, whenever, (xk) 2 X for all sequences (�k) of

scalars with j�kj � 1 for all k 2 N:

(ii) Symmetric if (xk) 2 X implies
�
x�(k)

�
2 X whenever �(k) is a permutation of N:

(iii) Perfect if X = X��:

(iv) Sequence algebra if x:y 2 X, whenever x; y 2 X: It is well known that if X is

perfect then X is normal [10].

The following inequality will be used throughout this paper:

(1.1)
��ak + bk

��pk � C
�
jakj

pk + jbkj
pk
�
;

where ak; bk 2 C; 0 � pk � supk pk = H, C = max
�
1; 2H�1

�
; (see [18]).

2. Main Results

In this section we prove some results involving the sequence space
�
V̂ ; �; f; p

�
0
(4r; E),�

V̂ ; �; f; p
�
1
(4r; E) and

�
V̂ ; �; f; p

�
1
(4r; E):

De�nition 2.1. Let E be Banach space. We de�ne !(E) to be the vector space of

all E-valued sequences that is !(E) =

�
x = (xk) : xk 2 E

�
. Let f be a modulus

function and p = (pk) be any sequence of strictly positive real numbers.

We de�ne the following sequence sets:�
V̂ ; �; f; p

�
1
(4r; E) =

=

�
x 2 !(E) : lim

n

1

�n

X
k2In

�
f
���4rxk+m � L

����pk = 0; uniformly in m for some L > 0

�
;

�
V̂ ; �; f; p

�
0
(4r; E) =

�
x 2 !(E) : lim

n

1

�n

X
k2In

�
f
���4rxk+m

����pk = 0;uniformly in m

�
;

and �
V̂ ; �; f; p

�
1
(4r; E) =

�
x 2 !(E) : sup

n;m

1

�n

X
k2In

�
f
���4rxk+m

����pk � 1�:
If x 2

�
V̂ ; �; f; p

�
1
(4r; E) then we shall write xk ! L

�
V̂ ; �; f; p

�
1
(4r; E) and L will

be called �E- strongly almost di�erence limit of x with respect to the modulus f:

Through this paper, Z will denote any one of the notions 0; 1 or 1:

In this case f(x) = x and pk = 1 for all k 2 N, we shall write
�
V̂ ; �

�
z
(4r; E) and�

V̂ ; �; f
�
z
(4r; E) instead of

�
V̂ ; �; f; p

�
z
(4r; E). If x 2

�
V̂ ; �

�
1
(4r; E) then we say that

x is 4r
�;E strongly almost convergent to L.
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The proofs of the following two theorems are obtained by using the known standard

techniques, therefore we give them without proofs (see for detail [3, 22]).

Theorem 2.1. Let p = (pk) be a bounded. Then the spaces
�
V̂ ; �; f; p

�
z
(4r; E) are

linear spaces over the set of complex numbers C:

Theorem 2.2. Let p = (pk) be a bounded and f be modulus function, then�
V̂ ; �; f; p

�
0
(4r; E) �

�
V̂ ; �; f; p

�
1
(4r; E �

�
V̂ ; �; f; p

�
1
(4r; E):

Theorem 2.3. If r � 1, then the inclusion
�
V̂ ; �; f; p

�
z
(4r�1; E) �

�
V̂ ; �; f; p

�
z
(4r; E)

is strict. In general
�
V̂ ; �; f; p

�
z
(4i; E) �

�
V̂ ; �; f; p

�
z
(4r; E) for all i = 1; 2; 3:::r � 1

and the inclusion is strict.

Proof. We give the proof for Z = 1 only. It can be proved in similar way for Z = 0; 1:

Let x 2
�
V̂ ; �; f; p

�
1
(4r�1; E). Then we have:

sup
m;n

1

�n

X
k2In

f

���4r�1xk+m
��� <1 :

By de�nition of f , we have:

1

�n

X
k2In

f

���4rxk+m
��� � 1

�n

X
k2In

f

���4r�1xk+m
���+

1

�n

X
k2In

f

���4r�1xk+m+1

��� <1 :

Thus, �
V̂ ; �; f; p

�
1
(4r�1; E) �

�
V̂ ; �; f; p

�
1
(4r; E) :

Proceeding in this way, we have:

[V̂ ; �; f; p]1(4iE) � [V̂ ; �; f; p]1(4r; E) ;

for all i = 1; 2; 3::::r � 1: Let �n = n for all n 2 N: Then the sequence x = (kr), for

example, belongs to
�
V̂ ; �; f; p

�
1
(4r; E); but doesn't belong to

�
V̂ ; �; f; p

�
1
(4r�1; E)

for f(x) = x
�
if x = (kr); then 4rxk = (�1)rr! and 4r�1xk = (�1)r+1r!(k + (r�1)

2 ) for

all k 2 N
�
. �

Similarly, as in the previous theorems for the cases [V̂ ; �; f; p]0(4
r; E) and [V̂ ; �; f; p]1(4

rE)

we have:

Proposition 2.1. Let f be a sequence of modulus functions. Then:�
V̂ ; �; f; p

�
1
(4r�1; E) �

�
V̂ ; �; f; p

�
0
(4r; E):

Theorem 2.4. Let f1 and f2 be modulus functions. Then we have:

(i)
�
V̂ ; �; f1; p

�
z
(4r; E) �

�
V̂ ; �; f1of2; p

�
z
(4r; E);

(ii)
�
V̂ ; �; f1; p

�
z
(4r; E) \

�
V̂ ; �; f2; p

�
z
(4r; E) �

�
V̂ ; �; f1 + f2; p

�
z
(4r; E):

The following results are consequence of Theorem 2.4.

Proposition 2.2. Let f be a modulus functions. Then:�
V̂ ; �; p

�
z
(4r; E) �

�
V̂ ; �; f; p

�
z
(4r; E):
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Theorem 2.5. The sequence spaces
�
V̂ ; �; f; p

�
0
(4r; E) ,

�
V̂ ; �; f; p

�
1
(4r; E) and�

V̂ ; �; f; p
�
1
(4r; E) are not solid for r � 1:

Proof. Let pk = 1 for all k, f(x) = x and �n = n for all n 2 N: Then (xk) = (kr) 2

[V̂ ; �; f; p]1(4r; E) but (�kxk) =2 [V̂ ; �; f; p]1(4r; E), when �k = (�1)k for all k 2 N.

Hence [V̂ ; �; f; p]1(4r; E) is not solid. The other cases can be proved by considering

similar examples. �

From the above theorem we may give the following corollary.

Corollary 2.1. The sequence spaces
�
V̂ ; �; f; p

�
0
(4r; E) ,

�
V̂ ; �; f; p

�
1
(4r; E) and�

V̂ ; �; f; p
�
1
(4r; E) are not perfect for r � 1:

Theorem 2.6. The sequence spaces
�
V̂ ; �; f; p

�
1
(4r; E) and

�
V̂ ; �; f; p

�
1
(4r; E) are

not symmetric for r � 1:

Proof. Let (pk) = 1 for all k, f(x) = x and �n = n for all n 2 N: Then xk = (kr) 2�
V̂ ; �; f; p

�
1
(4r; E). Let (yk) be an arrangement of (xk), which is de�ned by

(yk) =

�
x1; x2; x4; x3; x9; x5; x16; x6; x25; x7; x36; x8; x49; x10::::::

�
:

Then (yk) =2
�
V̂ ; �; f; p

�
1
(4r; E): �

Remark 2.1. The space [V̂ ; �; f; p]0(4
r; E) is not symmetric for r � 2:

Theorem 2.7. The sequence spaces
�
V̂ ; �; f; p

�
z
(4r; E): are not sequence of algebras.

Proof. Let pk = 1 for all k 2 N:, f(x) = x and �n = n for all n 2 N: Then x = (kr�2),

y = (kr�2) 2
�
V̂ ; �; f; p

�
z
(4r; E), but x; y 2

�
V̂ ; �; f; p

�
z
(4r; E): �

3. Statistical Convergent

The notion of statistical convergence was introduced by Fast [7] and studied by various

authors [1, 9, 24, 25]. In this section we de�ne 4r
�;E almost statistically convergent

sequences and give some inclusion relations between ŝ(4r
�; E) and

�
V̂ ; �; f; p

�
1
(4r; E):

De�nition 3.1. A sequence x = (xk) is said to be 4r
�;E-almost statistically conver-

gent to the number L if for every � > 0,

lim
n

1

�n

���k 2 In :
��4rxk+m � L

�� � �
	�� = 0 uniformly in m:

In this case we write ŝ(4r
�; E)� limx = L, or xk ! Lŝ(4r

�; E):

When �n = n and L = 0 we shall write ŝ(4r; E) instead of ŝ(4r
�; E):

The proof of the following theorem is easily obtained by using the same technique as

in Theorem 2 in Sava³ [25], therefore we give it without proof.

Theorem 3.1. Let � = (�n) be the same as in section 1, then:

(i) If xk ! L
�
V̂ ; �

�
1
(4r; E)) xk then Lŝ

�
4r
�; E

�
;

(ii) If x 2 `1
�
4r; E

�
and xk ! Lŝ

�
4r
�; E

�
, then xk ! L

�
V̂ ; �

�
1
(4r; E);

(iii) ŝ
�
4r
�; E

�
\ `1(4r; E) =

�
V̂ ; �

�
1
(4r; E) \ `1(4r; E):
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Theorem 3.2. ŝ
�
4r; E

�
� ŝ
�
4r
�; E

�
if and only if lim infn

�n
n
> 0:

Proof. The su�ciency part of this proof can be obtained using the same technique as the

su�ciency part of proof of Theorem 3 in Sava³ [25].

For necessity suppose that lim infn
�n
n

= 0. As in ([8], p. 510) we can choose a

subsequence (n(j)) such that
�n(j)

n(j) < 1
j
: We de�ne x = (xi) such that:

4rxi =

�
1 if i 2 In(j); j = 1; 2; 3:::::;

0 otherwise:

Then x 2
�
ĉ
�
(4r; E) and by [4, Theorem 3.1 (i)], x 2 ŝ

�
4r; E

�
. But x =2

�
V̂ ; �

�
1
(4r; E)

and Theorem 3.1 (ii) implies that x =2 ŝ
�
4r
�; E

�
. This completes the proof. �

Theorem 3.3. Let f be a modulus function and supk pk = H. Then:�
V̂ ; �; f; p

�
1
(4r; E) � ŝ(4r

�; E):

Proof. Let x 2
�
V̂ ; �; f; p

�
1
(4r; E) and � > 0 be given. Let �1 denote the sum over

k � n such that
��4rxk+m � L

�� � � and �2 denote the sum of over k � n such that��4rxk+m � L
�� < �. Then:

1

�n

X
k2In

�
f
���4r

k+m � L
����pk =

1

�n

X
1

�
f
���4r

k+m � L
����pk +

1

�n

X
2

�
f
���4r

k+m � L
����pk

�
1

�n

X
1

�
f
���4r

k+m � L
����pk � 1

�n

X
1

�
f
�
�
��pk

�
1

�n

X
1

min

 �
f
�
�
��inf pk

;
�
f
�
�
��H!

�
���k 2 In :

��4rxk+m � L
�� � �

	��min

��
f(�)

�inf pk
;
�
f(�)

�H�
:

Hence x 2 ŝ(4r
�; E): �

Theorem 3.4. Let f be a bounded and 0 < h = infk pk � pk � supk pk = H < 1.

Then: ŝ(4r
�; E) �

�
V̂ ; �; f; p

�
1
(4r; E):

Proof. Suppose that f is bounded. Let � > 0 and �1 and �2 be denoted in the previous

theorem. Since f is bounded there exists an integer K such that f(x) < K for all x � 0:

Then:

1

�n

X
k2In

�
f
���4r

k+m � L
����pk =

1

�n

X
1

�
f
���4r

k+m � L
����pk +

1

�n

X
2

�
f
���4r

k+m � L
����pk

�
1

�n

X
1

max
�
Kh;KH

�
+

1

�n

X
2

�
f(�)

�pk
� max

�
Kh;KH

� 1

�n

���k 2 In :
��4r

k+m � L
�� � �

	��+
+max

�
f(�)h; f(�)H

�
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Hence x 2
�
V̂ ; �; f; p

�
1
(4r; E): �

Theorem 3.5. Let 0 < h = infk pk � pk � supk pk = H <1. Then

ŝ(4r
�; E) =

�
V̂ ; �; f; p

�
1
(4r; E) ;

if and only if f is bounded.

Proof. Let f is bounded bounded. By Theorem 3.4 and Theorem 3.5 we have ŝ
�
4r
�; E

�
=�

V̂ ; �; f; p
�
1
(4r; E): Conversely, suppose that f is unbounded. Then there exists a posi-

tive sequence (tk) with f(tk) = k2, for k = 1; 2; 3::::. If we choose

4rxi =

�
tk i = k2; i = 1; 2; 3::::::

0 otherwise:
;

then we have:
1

�n

���k 2 In :
��4r

k+m

�� � �
	�� �

p
�n�1

�n
for all n;m

and so that x 2 ŝ(4r
�; E) but x =2

�
V̂ ; �; f; p

�
1
(4r; E) for E = C: This contradict to

ŝ
�
4r
�; E

�
=
�
V̂ ; �; f; p

�
1
(4r

�; E
�

�
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