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DETERMINATION OF JUMPS OF A FUNCTION OF VP CLASS BY

ITS INTEGRATED FOURIER-JACOBI SERIES

SAMRA PIRI�

Abstract. The problem of determination of jump discontinuities in piecewise smooth
functions from their spectral data is relevant in signal processing. We obtain new
identity which determines the jumps of a periodic function of Vp; 1 6 p < 2; class
with a �nite number of discontinuities, by means of the tails of its integrated Fourier-

Jacobi series. Next, we establish (C;�), � > 1 �
1

p
; summability of the sequence

(n2an(w; f)

Z
Pn(w;x)dx); where an(w; f)

Z
Pn(w;x)dx is the n-th term of the in-

tegrated Fourier-Jacobi series of a function f .

1. Introduction and Preliminaries

The problem of locating the discontinuities of a function by means of its truncated

Fourier series, arises naturally from an attempt to overcome the Gibbs phenomenon, the

poor approximative properties of the Fourier partial sums of a discontinuous function

(i.e. the �nite sum approximation of the discontinuous function overshoots the function

itself, at a discontinuity by about 18 percent).

If a function f is integrable on [��; �]; then it has a Fourier series with respect to the

trigonometric system f1; cos nx; sinnxg1n=1; and we denote the n-th partial sum of the

Fourier series of f by Sn(x; f); i.e.,

Sn(x; f) =
a0(f)

2
+

nX
k=1

(ak(f)cos kx+ bk(f)sin kx);

where ak(f) =
1

�

�R
��

f(t)cos kt dt and bk(f) =
1

�

�R
��

f(t)sin kt dt are the k�th Fourier

coe�cients of the function f:

The identity determining the jumps of a function of bounded variation by means of

its di�erentiated Fourier partial sums has been known for a long time. Let f(x) be a
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function of bounded variation with period 2�, and Sn(x; f) be the partial sum of order

n of its Fourier series. By the classical theorem of Fejer [16] the identity:

(1.1) lim
n!1

S0n(x; f)

n
=

1

�
(f(x+ 0)� f(x� 0)) ;

holds at any point x: To characterize continuous periodic functions of BV in terms of

their Fourier coe�cients, Wiener [15] has introduced a concept of higher variation.

A function f is said to be of bounded p-variation, p � 1; on the segment [a; b] and to

belong to the class Vp[a; b] if

V b
a p(f) = sup

�a;b

nX
i

jf(xi)� f(xi�1)jp
o 1
p

<1;

where �a;b = fa = x0 < x1 < ::: < xn = bg is an arbitrary partition of the segment [a; b].

V b
a p(f) is the p-variation of f on [a; b]:

B.I. Golubov [8] has shown that identity (1.1) is valid for classes Vp.
Theorem (A). Let f(x) 2 Vp, (1 � p < 1) and r 2 N0: Then for any point x one

has the equation

(1.2) lim
n!1

S
(2r+1)
n (x; f)

n2r+1
=

(�1)r
(2r + 1)�

(f(x+ 0)� f(x� 0)):

Problems of everywhere convergence of Fourier series for every change of variable have

led D. Waterman [14] to another type of generalization.

Let � = f�ng be a nondecreasing sequence of positive numbers such that
X 1

�n
diverges

and fIng be a sequence of non overlapping segments In = [an; bn] � [a; b]: A function f

is said to be of �-bounded variation on I = [a; b] (f 2 �BV ) if
X jf(bn)� f(an)j

�n
<1

for every choice of fIng. The supremum of these sums is called the �-variation of f on

I. In the case � = fng; one speaks of harmonic bounded variation (HBV ):

The class HBV contains all Wiener classes. Avdispahic has shown in [3] that HBV is

the limiting case for validity of the identity (1.1):

Theorem (B). The equation (1.1) holds for any function f 2 HBV at any point x:

The third interesting generalization of the Jordan variation was given by Z. A. Chan-

turiya [5]. The modulus of variation of a bounded 2� periodic function f is the function

�f with domain the positive integers, given by

�f (n) = sup
�n

nX
k=1

jf(bk)� f(ak)j ;

where �n = f[ak; bk]; k = 1; :::; ng is an arbitrary partition of [0; 2�] into n non overlap-

ping segments.

By a theorem of Avdispahic [1], there exist the following inclusion relations between

Wiener's, Waterman's and Chanturiya's classes:
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Theorem (C).

fn�gBV � V 1
1��

� V [n�] � fn�gBV;
for 0 < � < � < 1:

Clearly, Fejer's identity (1.1) is a statement about Cesaro summability of the sequence

fkbk cos kx � kak sin kxg; ak = ak(f) and bk = bk(f) being the k-th cosine and sine

coe�cient, respectively. Looking at Fejer's theorem in this way, several mathematicians

have extended it to more general summability methods. We note two results [2] which

represent the extension to (C;�) summability, � > 0:

Theorem (D). If f 2 Vp; p > 1 the sequence fkbk cos kx� kak sin kxg is (C;�) sum-

mable to
1

�
(f(x+ 0)� f(x� 0)) for any � > 1� 1

p
and every x:

Corollary(E). If f 2 V [n� ] (fn�gBV ) for some 0 < � < 1; then the sequence

fkbk cos kx� kak sin kxg is summable to
1

�
(f(x+ 0)� f(x� 0)) by any Cesaro

method of order � > �:

Theorem (D) and Corollary (E), are in some sense the most natural generalization of

Fejer's theorem. Indicating the relationship between the order of Cesaro summability of

the sequence fkbk(f) cos kx�kak(f) sin kxg and the "order of variation" of a function f ,

they complete the earlier picture whose elements were:

1) (C;�) summability for � > 0 and the class BV ;

2) (C;�) summability for � > 1 and whole class of regulated functions (i.e. functions

possessing the one-sided limits at each point);

3) (C; 1) summability for the class HBV:

Similar identities hold if we consider the integrated rather than the di�erentiated

Fourier series [9]. By Rn(x; f) we denote the n-th order tails of the Fourier series of the

function f; i.e.,

Rn(x; f) =

1X
k=n

(ak(f)coskx+ bk(f)sinkx);

for n 2 N:
For any function f; integrable on [��; �], f (�r), r 2 N0; is de�ned as follows

f (�r�1) �
Z
f (�r);

where f (0) � f; and the constants of integration are successively determined by the

condition
�Z

��

f (�r)(t)dt = 0:

Theorem (F). Let r 2 N0 and suppose the function f 2 Vp, 1 6 p < 2, has a �nite

number of discontinuities. Then:

1. the identity

lim
n!1

n2r+1R(�2r�1)
n (f ;x) =

(�1)r+1
(2r + 1)�

(f(x+)� f(x�))
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is valid for each �xed x 2 [��; �];
2. there is no way to determine the jump at the point x 2 [��; �] of an arbitrary

function f 2 Vp, p > 1; by means of the sequence (R
(�2r�2)
n (f ; :)); n 2 N:

Such results �nd their application in recovering edges in piecewise smooth functions

with �nitely many jump discontinuities [6].

We say that a function w is a generalized Jacobi weight and write w 2 GJ , if

w(t) = h(t)(1� t)�(1 + t)� jt� x1j�1 :::jt� xM j�M ;
h 2 C[�1; 1]; h(t) > 0 (jtj � 1); !(h; t; [�1; 1])t�1 2 L[0; 1];

�1 < x1 < ::: < xM < 1; �; �; �1; :::; �M > �1:
By �(w) = (Pn(w;x))

1

n=0 we denote the system of algebraic polynomials

Pn(w;x) = (w)xn+ lower degree terms with positive leading coe�cients n(w), which

are orthonormal on [�1; 1] with respect to the weight w 2 GJ , i.e.,Z 1

�1

Pn(w; t)Pm(w; t)w(t)dt = �nm:

Such polynomials are called the generalized Jacobi polynomials. If fw 2 L[�1; 1]; and
w 2 GJ; then the n th partial sum of the Fourier series of f with respect to the system

�(w) is given by

Sn(w; f ;x) =

n�1X
k=0

ak(w; f)Pk(w;x) =

Z 1

�1

f(t)Kn(w;x; t)w(t)dt ;

where ak(w; f) =

Z 1

�1

f(t)Pk(w; t)w(t)dt is the k th Fourier coe�cient of the function f ,

and

Kn(w;x; t) =

n�1X
k=0

Pk(w;x)Pk(w; t) ;

is the Dirichlet kernel of the system �(w).

For a given weight w 2 GJ it is assumed that x0 = �1 and xM+1 = 1. In addition,

�(�; ") = [x� + ";x�+1 � "] ;

for a �xed " 2 (0; x�+1�x�2 ); � = 1; 2; :::;M:

For functions of ��bounded variation G. Kvernadze [10] has proved the following

theorem:

Theorem (G). Let r 2 N0, w 2 GJ, and suppose �BV is the class of functions of

�-bounded variation determined by the sequence � = (�k)
1

k=1: Then the identity

(1.3) lim
n!1

(Sn(w; f ;x))
2r+1

n2r+1
=

(�1)r(1� x2)�r�
1
2

(2r + 1)�
(f(x+ 0)� f(x� 0))

is valid for every f 2 �BV and each �xed x 2 (�1; 1); x 6= x1; :::; xM ; if �BV � HBV:

If, in addition, the weight w 2 GJ satis�es the following conditions:

(1.4) � � �1

2
; � � �1

2
; �1 � 0; :::; �M � 0; !(h; t)t�1 ln t 2 L[0; 1];



DETERMINATION OF JUMPS OF A FUNCTION OF . . . 21

then condition �BV � HBV is necessary for the validity of identity (1.3) for every

f 2 �BV and each �xed x 2 (�1; 1); x 6= x1; :::; xM as well.

In [11], [12] is shown that the jump of a function f belonging to the Wiener class

Vp; p > 1, can be determined through (C;�), � > 1 � 1

p
; summability of the sequence

of terms of it's di�erentiated Fourier-Jacobi series. Consesequently, the corresponding

(C;�) summability result holds for the Waterman classes fn�gBV and the Chanturiya

classes V [n� ] if � > �, 0 < � < 1:

2. Main Results

Theorem 2.1. Let r 2 N0 and suppose the function f 2 Vp; 1 6 p < 2; has a �nite

number of discontinuities and fw 2 L[�1; 1]; w 2 GJ. Then the identity

lim
n!1

nR(�1)
n (w; f ;x) = � 1

�
(1� x2)

1
2 (f(x+)� f(x�))

is valid for each �xed x 2 [�1; 1], where R
(�1)
n (w; f ;x) is the n-th order tails of the

integrated Fourier-Jacobi series of the function f:

Proof. By S
(� 1

2
;� 1

2
)

n (f ;x) we denote the n-th partial sum of the Fourier-Tchebyche�

series of function f [4]. We use the uniform equiconvergence of Fourier-Tchebyche� series

and Fourier series with respect to the system of generalized Jacobi polynomials for an

arbitrary function f 2 HBV and a �xed " 2 (0; x�+1�x�2 ); � = 0; 1; 2; :::;M

(2.1) kSn(w; f ;x)� S
(� 1

2
;� 1

2
)

n (f ;x)kC[�(�; "
2
)] = o(1);

proved by Kvernadze [10, p.185].

From the equiconvergence formula (2.1) and from the identities:

Sn(w; f ;x) = f(x)�Rn(w; f ;x);

S
(� 1

2
;� 1

2
)

n (f ;x) = f(x)�R
(� 1

2
;� 1

2
)

n (f ;x);

we obtain

(2.2) kRn(w; f ;x)�R
(� 1

2
;� 1

2
)

n (f ;x)kC[�(�; "
2
)] = o(1):

From an obvious identity [13]

S
(� 1

2
;� 1

2
)

n (f ;x) = Sn(g; �);

where x = cos �; g(�) = f(cos�) one has

R
(� 1

2
;� 1

2
)

n (f ;x) = Rn(g; �):

Integrating the last identity with respect to x we obtain

(2.3) [R
(� 1

2
;� 1

2
)

n (f ;x)](�1) = �(1� x2)
1
2R(�1)

n (g; �) +

Z
R(�1)
n (g; �)cos�d� :
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Multiplying by n the identity (2.3), we get

(2.4)

lim
n!1

n[R
(� 1

2
;� 1

2
)

n (f ;x)](�1) = �(1�x2)
1
2 lim
n!1

nR(�1)
n (g; �)+ lim

n!1
n

Z
R(�1)
n (g; �)cos�d� :

Since

jn
Z
R(�1)
n (g; �)cos�d�j 6

Z
njR(�1)

n (g; �)jd� ;

it is enough to estimate the term njR(�1)
n (g; �)j:

If G(�) =
� � �

2
; � 2 (0; 2�); is the 2� periodic sawtooth function, then the function g

can be represented as follows [9]:

(2.5) gc(�) � g(�)� 1

�

M�1X
m=0

[g]mG(� � �m);

where �m and [g]m; m = 0; 1; :::M � 1; are the locations of discontinuities and the

associated jumps of the function g; and gc is the 2�� periodic continuous function,

which is piecewise smooth on [��; �] :
Obviously,

(2.6) gc 2 C \ Vp:
Continuity of gc follows from (2.5). Besides, since G 2 V � Vp and Vp is a linear vector

space, gc 2 Vp as well.

It is known that if gc 2 Vp, 1 6 p < 2; then the function g is continous if and only if

its Fourier coe�cients satisfy the following condition [7]:

(2.7)

1X
k=n

�
ak(f)

2 + bk(f)
2
�
= o

�
1

n

�
:

Thus, according to (2.6), (2.7) and Cauchy-Schwartz inequality we have:

njR(�1)
n (gc; �)j 6 n

1X
k=n

jak(gc)j+ jbk(gc)j
k

6
p
2 n

 
1X
k=n

(ak(gc)
2 + bk(gc)

2

! 1
2
 
1X
k=n

1

k2

! 1
2

(2.8) = n o
�
n�

1
2

�
O
�
n�

1
2

�
= o (1) ;

uniformly with respect to � 2 [��; �] :
As, by means of a change of variables the problem can always be reduced to the case

� = 0; according to [9, p.33] we have

(2.9) nR(�1)
n (G (�m); 0) = o (1) :

By use of (2.8) and (2.9) it follows

(2.10) lim
n!1

njR(�1)
n (g; �)j = 0 :

Using (2.3) and (2.10) we get
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(2.11) lim
n!1

n[R
(� 1

2
;� 1

2
)

n (f ;x)](�1) = �(1� x2)
1
2 lim
n!1

nR(�1)
n (g; �) :

Further, using Theorem (F) for r = 0 we have

(2.12) lim
n!1

n[R
(� 1

2
;� 1

2
)

n (f ;x)](�1) = �(1� x2)
1
2
�1
�

(g(�+)� g(��)) :
Hence, taking into account that f(x�) = g(��); � 2 [0; �] in the identity (2.12), we

get:

(2.13) lim
n!1

n[R
(� 1

2
;� 1

2
)

n (f ;x)](�1) = �(1� x2)
1
2
1

�
(f(x+)� f(x�)) :

Finally, result follows from the equiconvergence formula (2.2). �

Theorem 2.2. Let f be a function of bounded p-variation, i.e. f 2 Vp; 1 6 p < 2;

which has a �nite number of discontinuities such that fw 2 L[�1; 1]; w 2 GJ:

Then the sequence fn2an(w; f)
Z
Pn(w;x)dxg is (C;�), � > 1 � 1

p
summable to

(1� x2)
1
2

�
(f(x + 0) � f(x � 0)) for every x 2 [�1; 1], where fan(w; f)

R
Pn(w;x)dxg

is the n-th term of the integrated Fourier-Jacobi series of f .

Proof. By a
(� 1

2
;� 1

2
)

n (f)P
(� 1

2
;� 1

2
)

n (x) we denote the n -th term of the Fourier-Tchebyche�

series of f [4]. From the equiconvergence formula (2.1) and identities

Sn(w; f ;x) = Sn�1(w; f ;x) + an(w; f)Pn(w;x);

S
(� 1

2
;� 1

2
)

n (f ;x) = S
(� 1

2
;� 1

2
)

n�1 (f ;x) + a
(� 1

2
;� 1

2
)

n (f)P
(� 1

2
;� 1

2
)

n (x);

by the triangle inequality we get:

(2.14) kan(w; f)Pn(w;x)� a
(� 1

2
;� 1

2
)

n (f)P
(� 1

2
;� 1

2
)

n (x)kC[�(�; "
2
)] = o(1) :

According to the identity (2.11) we have:

lim
n!1

(n+ 1)[R
(� 1

2
;� 1

2
)

n+1 (f ;x)](�1) = �(1� x2)
1
2 lim
n!1

(n+ 1)R
(�1)
n+1 (g; �) :

Subtracting the last identity from the identity (2.11), we get

(2.15) lim
n!1

na
(� 1

2
;� 1

2
)

n (f)

Z
P
(� 1

2
;� 1

2
)

n (x)dx = �(1�x2)
1
2 lim
n!1

(an sinnx� bn cosnx)+

lim
n!1

�
[R

(� 1
2
;� 1

2
)

n (f ;x)](�1) + (1� x2)
1
2R(�1)

n (g; �)
�
:

The second sumand on the right side of the equation (2.16) tends to zero according to

(2.11). Now, multiplaing by n the identity

(2.16) lim
n!1

na
(� 1

2
;� 1

2
)

n (f)

Z
P
(� 1

2
;� 1

2
)

n (x)dx = �(1� x2)
1
2 lim
n!1

(an sinnx� bn cosnx) ;

we have:

(2.17)

lim
n!1

n2a
(� 1

2
;� 1

2
)

n (f)

Z
P
(� 1

2
;� 1

2
)

n (x)dx = (1� x2)
1
2 lim
n!1

(nbn cosnx� nan sinnx) :
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Finaly, the result follows from the Theorem (D) and the equiconvergence formula

(2.14) . �
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