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ODD-DIMENSIONAL RIEMANNIAN SPACES WITH ALMOST

CONTACT AND ALMOST PARACONTACT STRUCTURES

MARTA TEOFILOVA AND GEORGI ZLATANOV

Abstract. Riemannian spaces admitting almost contact and almost paracontact
structures are studied from the point of view of compositions in spaces with a sym-
metric a�ne connection. Linear connections with torsion preserving by covariant
di�erentiation the almost (para-)contact structure or the metric tensor are consid-
ered.

1. Introduction

Riemannian spaces with almost contact and almost paracontact structures have been

studied by various authors, e.g. [1, 3, 4, 5, 8, 9, 10]. The almost contact structure

is an odd-dimensional extension of the complex structure, and the almost paracontact

structure can be considered as an extension of the almost product structure.

By the help of n independent vector �elds in [13, 11, 12, 2] an apparatus for studying

of spaces endowed with a symmetric a�ne connection is constructed.

In this work we apply this apparatus to study odd-dimensional Riemannian spaces

V2n+1 admitting almost contact and almost paracontact structures. We prove that if

these structures are parallel to the Levi-Civita connection of the Riemannian metric the

space V2n+1 is a topological product of three di�erentiable manifolds Xn�Xn�X1. We

also determine the projecting a�nors of the structures and by their help obtain some

characteristics of the considered space.

In the last section, we study linear connections with respect to which the structures

of the space are parallel. We de�ne a connection with torsion which preserves the metric

tensor by covariant di�erentiation and compute the components of its curvature tensor.

2. Preliminaries

Let V2n+1 be a Riemannian space with metric tensor g��(
�
u) and Levi-Civita connection

r with Cristo�el symbols ��
�� . Then, it is known that r�g�� = 0.
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We introduce the following notations

(2.1)

�; �; 
; �; �; �; � = 1; 2; :::; 2n+ 1;

a; b; c; d; e = 1; 2; :::; 2n;

j; k; l; p; q; s = 1; 2; :::; n; �j; �k; �l; �p; �q; �s = n+ 1; n+ 2; :::; 2n:

Let v
�

� (� = 1; 2; :::; 2n+ 1) be independent vector �elds satisfying the following con-

ditions:

(2.2)

g��v
�

�v
�

� = 1; g��v
k

�v
�k

� = 0; g��v
a

� v
2n+1

� = 0;

g��v
k

�v
s

� = cos !
ks
; g��v

�k

�v
�s

� = cos !
�k�s
:

The net de�ned by the vector �elds v
�

� will be denoted by
n
v
�

o
. The reciprocal covec-

tors
�
v� of the vectors v

�

� are de�ned by

(2.3) v
�

� �
v� = ��� , v

�

� �
v� = ���;

where �
�
� is the identity a�nor.

If we choose the net
n
v
�

o
to be the coordinate net, we have

(2.4)
v
1

�
�

1p
g11

; 0; 0; :::; 0
�
; v
2

�
�
0; 1p

g22
; 0; :::; 0

�
; :::; v

2n+1

�
�
0; 0; :::; 0; 1p

g2n+1 2n+1

�
;

1
v�
�p

g11; 0; 0; :::; 0
�
;
2
v�
�
0;
p
g22; 0; :::; 0

�
; :::;

2n+1
v �

�
0; 0; :::; 0;

p
g2n+1 2n+1

�
:

According to (2.2) and (2.4), in the parameters of the coordinate net
n
v
�

o
the matrix

of the metric tensor has the form

(2.5) kg��k =







gsk 0 0

0 g�s�k 0

0 0 g2n+1 2n+1







 :

From (2.4) and (2.5) it follows that g�� v
2n+1

� =
2n+1
v � . Also, the following equalities

are valid [13]:

(2.6) r� v
�

� =
�

T
�
� v

�

� ; r�

�
v� = �

�

T
�
�

�
v� ;

where r� v
�

� = @� v
�

� + �
�
�� v

�

� and r�

�
v� = @�

�
v� � ��

��

�
v� .

After contracting with
�
v� both sides of the �rst equality in (2.6) and taking into

account (2.3), we obtain

(2.7)
�

T
�
� = @� v

�

� �
v� + ��

�� v
�

� �
v� :

According to (2.4), in the parameters of the coordinate net
n
v
�

o
equalities (2.7) take

the form

(2.8)

�

T
�
� =

p
g��p
g��

��
�� for � 6= �;

�

T
�
� = ��

�� � 1
2
@� g��
g��

(no summing over �):
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Now, let us consider the following a�nor [11, 12, 2]:

(2.9) a�� = v
a

� a
v� � v

2n+1

� 2n+1
v �:

From (2.3) and (2.9) we obtain a
�
� a�� = ���. Hence, the a�nor a

�
� de�nes a composition

X2n �X1 of the basic manifolds X2n and X1.

The positions (tangent planes) of the basic manifolds X2n and X1 are denoted by

P (X2n) and P (X1), respectively [7].

According to [11, 12], the a�nors

1
a
�
� = 1

2 (�
�
� + a

�
�) = v

a

� a
v�;

2
a
�
� = 1

2 (�
�
� � a

�
�) = v

2n+1

� 2n+1
v �

are the projecting a�nors of the composition X2n �X1. If v
� is an arbitrary vector, we

have v� =
1
a
�
� v� +

2
a
�
� v� =

1
V � +

2
V � , where

1
V � =

1
a
�
� v� 2 P (X2n) and

2
V � =

2
a
�
� v� 2

P (X1). Obviously, v
a

� 2 P (X2n), and v
2n+1

� 2 P (X1).

Let Xa�Xb (a+ b = n) be an arbitrary composition in the Riemannian space Vn, and

P (Xa) and P (Xb) be the positions of the di�erentiable manifolds Xa and Xb, respectively.

According to [7], the composition Xa�Xb is of the type (c; c), i.e. (Cartesian, Cartesian),

if the positions P (Xa) and P (Xb) are translated parallelly along any line in the space Vn.

3. Almost contact and almost paracontact structures on V2n+1

Let us consider the following a�nors

(3.1) b
�

�
� = �

�
v
k

� k
v� � v

�k

�
�k
v�

�
;

where � = 1; i (i is the imaginary unit, i.e. i2 = �1). According to (2.3) and (3.1) we

have b
�

�
� v

2n+1

� = 0 and b
�

�
�

2n+1
v � = 0.

Let � = 1. From (2.3) and (3.1) we obtain

b
1

�
� b

1

�
� = ��� � v

2n+1

� 2n+1
v �;

i.e. the a�nor b
1

�
� de�nes an almost paracontact structure on V2n+1.

In the parameters of the coordinate net, it is easy to prove that

(3.2) g�� b
1

�
� b

1

�
� = g�� � 2n+1

v �

2n+1
v � ;

i.e. the almost paracontact structure b
1

�
� is compatible with the Riemannian metric g�� ,

and hence V2n+1 is an almost paracontact Riemannian manifold [1, 8].

In the case � = i the a�nor (3.1) de�nes an almost contact structure in V2n+1 which

is not compatible with the Riemannian metric g�� , i.e. (3.2) does not hold for b
i

�
�.

Theorem 3.1. The a�nor b
�

�
� is parallel to the Levi-Civita connection r, i.e. r� b

�

�
� =

0, i� the coe�cients of the derivative equations (2.6) satisfy

(3.3)
�s
T
k
� =

s

T
�k
� = 0;

a

T
2n+1

� =
2n+1
T
a

� = 0:
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Proof. Let

(3.4) r� b
�

�
� = 0:

According to (2.6) and (3.1), equality (3.4) takes the form

(3.5)
�

T
k
� v

�

� k
v� �

k

T
�
� v

k

� �
v� �

�

T
�k
� v

�

�
�k
v� +

�k
T
�
� v

�k

� �
v� = 0:

After contracting (3.5) with �
s

�, v
�s

� and v
2n+1

�, we obtain the following equalities which

are equivalent to (3.5):

(3.6)

2
�k
T
s
� v

�k

� +
2n+1
T
s

� v
2n+1

� = 0; 2
k

T
�s
� v

k

� +
2n+1
T
�s

� v
2n+1

� = 0;

k

T
2n+1

� v
k

� �
�k
T

2n+1
� v

�k

� = 0:

From the independency of the vectors v
�

� it follows that equalities (3.6) are equivalent to

conditions (3.3) which proves the statement. �

Let us note that manifolds satisfying (3.4) are contact and paracontact analogues to

Kähler manifolds.

Corollary 3.1. If r� b
�

�
� = 0, in the parameters of the net

n
v
�

o
, the Christo�el

symbols ��
�� satisfy

(3.7) �
�k
�s = 0; �k

��s = 0; �a
�2n+1 = 0; �2n+1

�a = 0:

Proof. According to (2.8), equalities (3.3) take the form (3.7). �

Corollary 3.2. If r� b
�

�
� = 0, the composition X2n�X1 de�ned by the a�nor (2.9),

is of the type (c; c).

Proof. Having in mind (3.4), equalities (3.7) hold.

Then, according to [7], from �a
�2n+1 = �2n+1

�a = 0 it follows that the composition X2n�X1

is of the type (c; c). �

From (2.5) it follows that the composition X2n � X1 is orthogonal. The coordinate

net
n
v
�

o
gives rise to coordinates which are adapted to the composition X2n � X1. In

accordance to [6], the line element of the space V2n+1 is of the form

(3.8) ds2 = gab(
c
u)d

a
ud

b
u+ g2n+1 2n+1(

2n+1
u )d(

2n+1
u )2;

where gab is the metric tensor of the manifold X2n.

Theorem 3.2. If condition (3.4) holds, the Riemannian space X2n is a space of the

composition Xn�Xn with line element de�ned in the parameters of the net
n
v
�

o
by

(3.9) ds2 = gks(
j
u)d

k
ud

s
u+ g�k�s(

�j
u)d

�k
ud

�s
u :
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Proof. The tensors b
�

d
a, rc b

�

d
a and gab are the full projections of the tensors b

�

�
�, r� b

�

�
�

and g�� , respectively, over the positions P (X2n).

From (3.1) it follows that b
�

d
a b

�

c
d = ��ca. Hence, the a�nor b

�

d
a de�nes a composition

Xn � Xn in the manifold X2n. Because of the condition rc b
�

d
a = 0, the composition

Xn �Xn is of the type (c; c) [7]. From (2.5) it follows that the composition Xn �Xn is

orthogonal. Then, according to [6], the line element of Xn �Xn is of the form (3.9). �

Let P (Xn) and P (Xn) are the positions of the di�erentiable manifolds Xn and Xn,

respectively. The projecting a�nors of the composition Xn �Xn are:

1

b�� = � v
k

� k
v�;

2

b�� = � v
�k

�
�k
v�:

For an arbitrary vector w� 2 P (X2n) we have w
� =

1

b
�
� w� +

2

b
�
� w� =

1
W � +

2
W � , where

1
W � =

1

b
�
� w� 2 P (Xn), and

2
W � =

2

b
�
� w� 2 P (Xn). Obviously, v

k

� 2 P (Xn), and

v
�k

� 2 P (Xn).

The following statements are immediate consequences of our results:

Proposition 3.1. If condition (3.4) holds, the Riemannian space V2n+1 is a topo-

logical product of three basic di�erentiable manifolds Xn, Xn and X1, i.e. V2n+1 is

a space of the composition Xn �Xn �X1.

Proposition 3.2. If (3.4) holds, in the parameters of the coordinate net
n
v
�

o
the

line element of the space V2n+1 is of the form

(3.10) ds2 = gks(
j
u)d

k
ud

s
u+ g�k�s(

�j
u)d

�k
ud

�s
u+ g2n+1 2n+1(

2n+1
u )d(

2n+1
u )2:

Now we will prove the following theorem.

Theorem 3.3. Condition (3.4) is equivalent to the following:

(3.11)
1

b�� r�

1

b�� = 0;
2

b�� r�

2

b�� = 0;
2
a�� r�

2
a�� = 0;

where
1

b�� ,
2

b�� and
2
a�� are the projecting a�nors of the composition Xn �Xn �X1.

Proof. Because of
1

b�� = � v
k

� k
v� ,

2

b�� = � v
�k

�
�k
v� and

2
a�� = v

2n+1

� 2n+1
v � , we obtain

(3.12)

1

b�� r�

1

b
�
� = � v

k

� k
v� r�

�
v
s

� s
v�

�
;

2

b�� r�

2

b
�
� = � v

�k

�
�k
v� r�

�
v
�s

� �s
v�

�
;

2
a�� r�

2
a
�
� = v

2n+1

� 2n+1
v � r�

�
v

2n+1

� 2n+1
v �

�
:
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According to (2.6) and (3.12), we get

(3.13)

1

b�� r�

1

b
�
� = �

�
�s
T
k
� v

�s

� +
2n+1
T
k

� v
2n+1

�

�
k
v� ;

2

b�� r�

2

b
�
� = �

�
s

T
�k
� v

s

� +
2n+1
T
�k

� v
2n+1

�

�
�k
v� ;

2
a�� r�

2
a
�
� =

a

T
2n+1

� v
a

� 2n+1
v � :

From (3.13) it follows that conditions (3.11) hold i� conditions (3.3) hold, too. And,

according to Theorem 3.1, (3.3) are equivalent to condition (3.4). Then, (3.4) and (3.11)

are also equivalent which completes the proof. �

In accordance to (3.7), for the components of the curvature tensor R �
��� = @��

�
�� �

@��
�
�� + ��

���
�
�� � ��

���
�
�� we obtain

(3.14) R
�j

�ks = R
�j

ks� = R
j

��k�s
= R

j
�k�s�

= R 2n+1
�ab = R 2n+1

ab� = 0:

4. Transformations of linear connections

4.1. Linear connections with torsion. Let us consider the linear connection

(4.1) 1��
�� = ��

�� + S�
�� ;

where S�
�� is the deformation tensor. The covariant derivative and the curvature tensor

with respect to 1� are denoted by 1r and 1R.

Theorem 4.1. The a�nors (3.1) are parallel to r and 1r i� in parameters of the

net
n
v
�

o
the tensor S�

�� satis�es

(4.2) Ss
��k = Ss

�2n+1 = S�s
�k = S�s

�2n+1 = S2n+1
�a = 0:

Proof. Let conditions (3.4) hold and let

(4.3) 1r� b
�

�
� = 0:

According to (4.1), we have 1r� b
�

�
� = r� b

�

�
� + S

�
�� b

�

�
� � S�

�� b
�

�
� , from where it follows

that equalities (3.4) and (4.3) hold i�

(4.4) P �
�� = S�

�� b
�

�
� � S�

�� b
�

�
� = 0:

We choose
n
v
�

o
for the coordinate net. In its parameters of the net, the matrix of the

a�nor b
�

�
� has the form

(4.5)





b���




 =









��ks 0 0

0 ����k�s
...

0 : : : 0









:
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From (4.4) and (4.5) we compute the following non-zero components of P :

(4.6)

P
j

s�k
= �2�Sj

s�k
; P

j

�s�k
= �2�Sj

�s�k
; P

j
s2n+1 = ��Sj

s2n+1;

P
j
2n+1;2n+1 = ��Sj

2n+1;2n+1; P
j
�s2n+1 = ��Sj

�s2n+1; P
j
2n+1�s = �2�Sj

2n+1�s;

P
�j
�sk = 2�S

�j
�sk; P

�j
sk = 2�S

�j
sk; P

�j
�s2n+1 = �S

�j
�s2n+1

P
�j
2n+1;2n+1 = �S

�j
2n+1;2n+1; P

�j
s2n+1 = �S

�j
s2n+1; P

�j
2n+1s = 2�S

�j
2n+1s;

P 2n+1
sk = �S2n+1

sk ; P 2n+1
�sk = �S2n+1

�sk ; P 2n+1
s�k

= ��S2n+1
k�s ;

P 2n+1
�s�k

= ��S2n+1
�s�k

; P 2n+1
2n+1s = �S2n+1

2n+1s; P 2n+1
2n+1�s = ��S2n+1

2n+1�s;

Then, according to (4.6), equalities (4.4) hold i� (4.2) hold, too. �

From (4.1) and (4.2) we get the non-zero components of 1� expressed by the compo-

nents of � and S:

(4.7)

1�
j
sk = �

j
sk + S

j
sk;

1�
j
�ks

= S
j
�ks
; 1�

j
2n+1s = S

j
2n+1s

1�
�j

�s�k
= �

�j

�s�k
+ S

�j

�s�k
; 1�

�j
k�s = S

�j
k�s;

1�
�j
2n+1�s = S

�j
2n+1�s;

1�2n+1
s2n+1 = S2n+1

s2n+1;
1�2n+1

�s2n+1 = S2n+1
�s2n+1;

1�2n+1
2n+1;2n+1 = S2n+1

2n+1;2n+1:

Having in mind (4.7), we compute the following components of the curvature tensor
1R �

��� :

1R
�j

�sk = 1R
j

��s�k
= 1R 2n+1

�ab = 0;

1R
�j

ks� = 2
�
@[kS

�j
s]� + S

�j

[kj�ljS
�l
s]�

�
; 1R

j
�k�s�

= 2
�
@[�kS

j

�s]� + S
j

[�kjljS
l
�s]�

�
;

1R2n+1
ab� = 2

�
@[aS

2n+1
b]� + S2n+1

[aj2n+1jS
2n+1
b]�

�
;

1R
j

skl = R
j

skl + 2
�
@[sS

j

k]l + �
j

[sjpjS
p

k]l + S
j

[sjpj�
p

k]l + S
j

[sjpjS
p

k]l

�
;

1R
�j

�s�k�l
= R

�j

�s�k�l
+ 2

�
@[�sS

�j
�k]�l

+ �
�j
[�sj�pjS

�p
�k]�l

+ S
�j
[�sj�pj�

�p
�k]�l

+ S
�j
[�sj�pjS

�p
�k]�l

�
:

4.2. A metric connection. Let V2n+1 be a space with r� b
�

�
� = 0, and let us consider

the connection

(4.8) 2��
�� = ��

�� + �S�
�� ;

where

(4.9) �S�
�� =

2n+1X
�=1

�
v� g��

nX
k=1

�
v
k

� v
k+n

� � v
k

� v
k+n

�

�
:

The covariant derivative and the curvature tensor with respect to the connection 2� are

denoted by 2r and 2R.

Theorem 4.2. The metric tensor of the space V2n+1 is parallel to the connection
2�, i.e.

(4.10) 2r�g�� = 0 :
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Proof. From (4.8) and (4.10) we get

(4.11) 2r�g�� = r�g�� � �S�
�� g�� � �S�

�� g��:

Let us consider the tensor

(4.12) T��� = �S�
��g�� :

According to (4.9) and (4.12), we have

(4.13) T��� =

2n+1X
�=1

�
v� g��

nX
k=1

�
v
k

� v
k+n

� � v
k

� v
k+n

�

�
g�� :

In the parameters of the coordinate net
n
v
�

o
we obtain

T��� =

2n+1X
�=1

�
v�

nX
k=1

1p
gkk
p
gk+n k+n

(g� k+n g�k � g� k+n g�k) ;

from where it follows that

(4.14) T�(��) = 0:

Then, (4.11), (4.12) and (4.14) imply (4.10) . �

By (2.4) and (4.9) we obtain the components of the deformation tensor �S of 2r and

then by (3.7) and (4.8) we get the non-zero Christo�el symbols of 2r in the parameters

of the coordinate net as follows:

(4.15)

2�
j
k n+s = �

p
gkkp

gjj
p
gn+j n+j

gn+s n+j ;

2�
j
n+k n+s = �

p
gn+k n+kp

gjj
p
gn+j n+j

gn+s n+j ;

2�
n+j
sk =

p
gssp

gjj
p
gn+j n+j

gjk;

2�
n+j
n+s k =

p
gn+s n+sp

gjj
p
gn+j n+j

gjk;

2�
j
2n+1 n+s = �

p
g2n+1 2n+1p

gjj
p
gn+j n+j

gn+s n+j ;

2�
n+j
2n+1 k =

p
g2n+1 2n+1p

gjj
p
gn+j n+j

gjk:

By (4.15) we compute the components of the curvature tensor 2R, for example

(4.16)

2R
j

skp = R
j

skp ; 2R
�j

�s�k�p
= R

�j

�s�k�p
; 2R2n+1

abc = 0;

2R
j

pk n+s =
gn+s n+sp
gn+j n+j

�
@k

p
gppp
gjj
� @p

p
gkkp
gjj

�
+
p
gpp

Pn

l=1 �
j
kl

gn+s n+lp
gll

p
gn+l n+l

�pgkk
Pn

l=1 �
j
pl

gn+s n+lp
gll
p
gn+l n+l

;

2R
n+j
2n+1 ks =

p
g2n+1 2n+1p
gn+j n+j

�
1p
gjj

glj�
l
ks � @k

gsjp
gjj

�
:

As an example we consider a 5-dimensional Riemannian space V5. The matrix (2.5)

has the form

(4.17) jjg�� jj =







gsk 0 0

0 g�s�k 0

0 0 g55







 ;
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where j; k; s = 1; 2, �j; �k; �s = 3; 4.

In the parameters of the net
n
v
�

o
the line element if given by

(4.18) ds2 = gsk(
j
u)d

k
ud

s
u+ g�k�s(

�j
u)d

�k
ud

�s
u+ g55(

5
u)d

5
u2:

From the last one of the equalities (4.16) we get

(4.19) 2R 3
512 =

p
g55p
g33

�
1p
g11

gl1�
l
12 � @1

g12p
g11

�
:

Since gl1�
l
12 =

1
2@2g11, (4.19) implies

(4.20) 2R 3
512 =

p
g55p
g33

�
1

2
p
g11

@2g11 � @1
g12p
g11

�
:
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