MIKUSIŃSKI'S OPERATIONAL CALCULUS APPROACH TO THE DISTRIBUTIONAL STIELTJES TRANSFORM

DENNIS NEMZER

ABSTRACT. We consider a space \mathcal{M} which was introduced by Yosida to provide a simplified version for Mikusiński operational calculus. The classical Stieltjes transform is extended to a subspace of \mathcal{M} and then studied. Some Abelian type theorems are presented.

1. Introduction

The ring of continuous complex-valued functions on the real line which vanish on $(-\infty, 0)$, denoted by $C_+(\mathbb{R})$, with addition and convolution has no zero divisors by Titchmarch's theorem. The quotient field of $C_+(\mathbb{R})$ is called the field of Mikusiński operators [6].

Yosida [10] constructed a space \mathcal{M} in order to provide a simplified version for Mikusiński's operational calculus without using Titchmarch's convolution theorem. Even though the space \mathcal{M} does not give the full space of Mikusiński operators, it contains many of the important operators needed for applications.

In this note, we use the space $\mathcal{M}(r) \subset \mathcal{M}$ to extend the classical Stieltjes transform. It turns out that $\mathcal{M}(r)$ is isomorphic to the space of distributions J'(r). Roughly speaking, a distribution T, which is supported on $[0, \infty)$, is in J'(r) provided there exist $k \in \mathbb{N}$ and a locally integrable function f satisfying a growth condition at infinity such that T is the k^{th} distributional derivative of f.

The space J'(r), and variations of J'(r), have been investigated by several authors [2, 4, 5, 7, 8, 9] in regards to extending the Stieltjes transform.

While the construction of J'(r) requires a space of testing functions, the concept of a dual space, and functional analysis, the construction of $\mathcal{M}(r)$ is algebraic, elementary, and only requires elementary calculus.

²⁰¹⁰ Mathematics Subject Classification. 44A15, 44A40, 46F10, 46F12.

Key words and phrases. Abelian theorems, generalized function, Mikusiński operational calculus, Stieltjes transform.

2. Preliminaries

Let $C_+(\mathbb{R})$ denote the space of all continuous functions on \mathbb{R} which vanish on the interval $(-\infty, 0)$.

For f, $g \in C_+(\mathbb{R})$, the convolution is given by

(2.1)
$$(f * g)(t) = \int_0^t f(t - x)g(x) \, dx$$

Let H denote the Heaviside function. That is, H(t) = 1 for $t \ge 0$ and zero otherwise. For each $n \in \mathbb{N}$, we denote by H^n the function $H * \cdots * H$ where H is repeated n times. The space \mathcal{M} is defined as follows.

$$\mathcal{M} = \left\{ rac{f}{H^k} : f \in C_+(\mathbb{R}), k \in \mathbb{N}
ight\}.$$

Two elements of \mathcal{M} are equal, denoted $\frac{f}{H^n} = \frac{g}{H^m}$, if and only if $H^m * f = H^n * g$. Addition, multiplication, and scalar multiplication are defined in the natural way, and

 \mathcal{M} with these operations is a commutative algebra with identity $\delta = \frac{H^2}{H^2}$.

(2.2)
$$\frac{f}{H^n} + \frac{g}{H^m} = \frac{H^m * f + H^n * g}{H^{n+m}}$$

(2.3)
$$\frac{f}{H^n} * \frac{g}{H^m} = \frac{f * g}{H^{n+m}}$$

(2.4)
$$\qquad \qquad \alpha \frac{f}{H^n} = \frac{\alpha f}{H^n}, \quad \alpha \in \mathbb{C}.$$

The generalized derivative is defined as follows. Let $W = \frac{f}{H^k} \in \mathcal{M}$. Then, $DW = \frac{f}{H^{k+1}}$.

Remark 2.1. For the construction of \mathcal{M} , the space of locally integrable functions which vanish on $(-\infty, 0)$ could have been used instead of $C_+(\mathbb{R})$. Also notice by identifying $f \in L^1_{loc}(\mathbb{R}^+)$ with $\frac{H*f}{H} \in \mathcal{M}$, $L^1_{loc}(\mathbb{R}^+)$ can be considered a subspace of \mathcal{M} .

3. Stieltjes Transform

$$(3.1) \qquad \mathcal{M}_k(r) = \left\{ \frac{f}{H^k} \in \mathcal{M} : f(t) \, t^{-r-k+\alpha} \text{ is bounded as } t \to \infty \text{ for some } \alpha > 0 \right\}$$

(3.2)
$$\mathcal{M}(r) = \bigcup_{k=0}^{\infty} \mathcal{M}_k(r)$$

For $k = 0, 1, 2, \ldots$

Let $W \in \mathcal{M}(r)$. That is, $W = \frac{f}{H^k} \in \mathcal{M}_k(r)$, for some $k \in \mathbb{N}$. For r > -1, define the Stieltjes transform of index r by

(3.3)
$$\Lambda_z^r W = (r+1)_k \int_0^\infty \frac{f(t)}{(t+z)^{r+k+1}} dt, \quad z \in \mathbb{C} \setminus (-\infty, 0]_z$$

where $(r+1)_k = \frac{\Gamma(r+k+1)}{\Gamma(r+1)} = (r+1)(r+2)\cdots(r+k)$ and Γ is the gamma function.

Remark 3.1.

(1) The definition for the Stieltjes transform is well-defined. This follows by observing the following. First, $\frac{f}{H^k} = \frac{g}{H^n} (n \ge k)$ if and only if $g = H^{n-k} * f$. Also, for $m \in \mathbb{N}$,

$$\Lambda^r_z\left(rac{f}{H^k}
ight)=\Lambda^r_z\left(rac{H^m*f}{H^{m+k}}
ight),\ z\in\mathbb{C}ackslash(-\infty,0].$$

(2) Notice that the Stieltjes transform Λ_z^r is consistent with the classical Stieltjes transform S_z^r . That is, if $f \in L^1_{loc}(\mathbb{R}^+)$ such that f satisfies the growth condition in (3.1) with k = 0, then $S_z^r f = \Lambda_z^r \left(\frac{H*f}{H}\right)$, where $S_z^r f = \int_0^\infty \frac{f(t)}{(t+z)^{r+1}} dt$.

The Stieltjes transform can be obtained by iteration of the Laplace transform.

Theorem 3.1. Let $W = \frac{f}{H^k} \in \mathcal{M}(r)$. Then, $\Lambda_z^r W = \frac{1}{\Gamma(r+1)} \int_0^\infty e^{-zt} t^r \widehat{W}(t) dt$, Re(z) > 0, where

(3.4)
$$\widehat{W}(t) = t^k \widehat{f}(t) = t^k \int_0^\infty e^{-t\sigma} f(\sigma) d\sigma$$

Proof.

(3.5)
$$\frac{1}{\Gamma(r+1)} \int_0^\infty e^{-zt} t^r \widehat{W}(t) dt = \frac{1}{\Gamma(r+1)} \int_0^\infty \int_0^\infty e^{-(z+\sigma)t} t^{r+k} f(\sigma) d\sigma dt$$

Because of the growth condition on f, the interchanging of the order of integration is justified.

Hence,

$$(3.6)$$

$$\frac{1}{\Gamma(r+1)} \int_0^\infty \int_0^\infty e^{-(z+\sigma)t} t^{r+k} f(\sigma) d\sigma dt = \frac{1}{\Gamma(r+1)} \int_0^\infty f(\sigma) \left(\int_0^\infty e^{-(z+\sigma)t} t^{r+k} dt \right) d\sigma$$

$$= \frac{\Gamma(r+k+1)}{\Gamma(r+1)} \int_0^\infty \frac{f(\sigma)}{(\sigma+z)^{r+k+1}} d\sigma$$

$$= \Lambda_r^r W, \text{ Re } z > 0.$$

Therefore, by (3.5) and (3.6),

$$\Lambda^r_z W = rac{1}{\Gamma(r+1)} \int_0^\infty e^{-zt} t^r \widehat{W}(t) \, dt, \; \operatorname{Re}\left(z
ight) > 0 \, .$$

Remark 3.2. The Laplace transform operator (3.4) has similar properties as the classical Laplace transform (see [1]).

The proofs of the following properties follow directly by using the previous theorem and the properties of the Laplace transform.

Properties. Let $W = \frac{f}{H^k} \in \mathcal{M}(r)$. Then for r > -1 and $z \in \mathbb{C} \setminus (-\infty, 0]$, (1) $\Lambda_z^r \tau_c W = \Lambda_{z+c}^r W$, c > 0 and $\tau_c W = \frac{\tau_c f}{H^k}$, $\tau_c f(t) = f(t-c)$. (2) $\Lambda_z^r D^m W = (r+1)_m \Lambda_z^{r+m} W$, m = 1, 2, ...(3) $\frac{d^m}{dz^m} \Lambda_z^r W = (-1)^m (r+1)_m \Lambda_z^{r+m} W = (-1)^m \Lambda_z^r D^m W$, m = 1, 2, ...(4) $\Lambda_z^{r+1}(tW) = \Lambda_z^r W - z \Lambda_z^{r+1} W$, where $tW = \frac{tf}{H^k} - \frac{kf}{H^{k-1}}$, $k \ge 2$.

Theorem 3.2. Let $W \in \mathcal{M}(r)$. Then, there exist positive numbers α and β such that

(i)
$$\Lambda_z^r W = o(z^{-\alpha})$$
 as $z \to 0$, $|\arg z| \le \psi < \frac{\pi}{2}$.
(ii) $\Lambda_z^r W = o(z^{-\beta})$ as $z \to \infty$, $|\arg z| \le \psi < \frac{\pi}{2}$

Proof. Let $W = \frac{f}{H^k} \in \mathcal{M}(r)$, where for some positive constants M, α , and γ ,

$$||f(t)|\leq M\,t^{r+k-lpha}, \;\; ext{for}\;t\geq\gamma.$$

(i) $\Lambda_z^r W = \frac{1}{\Gamma(r+1)} (t^{r+k} \widehat{f}(t))^{\wedge}(z), \text{ Re } z > 0.$ Now,

$$rac{t^{r+k}f(t)}{t^{r+k}}=\widehat{f}(t) o { ext{0}} ext{ as } t o \infty.$$

Therefore, by a classical Abelian theorem for the Laplace transform [3],

$$rac{z^{r+k+1}(t^{r+k}\,\widehat{f}(t))^\wedge}{\Gamma(r+k+1)} o 0 ext{ as } z o 0, \ |argz|\leq \psi < rac{\pi}{2}.$$

Thus,

$$\lim_{\substack{z \to 0 \\ |argz| \le \psi < \frac{\pi}{2}}} z^{r+k+1} \Lambda_z^r W = 0.$$

This completes the proof of (i). Now, for the proof of (ii). There exist A > 0 and B > 0 such that

$$|t^{r+k}\widehat{f}(t)| \leq At^{r+k} + rac{B}{t^{1-lpha}}, \ t>0 \ (ext{see} \ [7], \ ext{p. 211}).$$

Thus, the function $t^{r+k}\widehat{f}(t)$ is locally integrable on $[0,\infty)$.

Now,

$$egin{aligned} |\Lambda_z^r W| &\leq rac{1}{\Gamma(r+1)} \int_0^\infty e^{-t \operatorname{Re} z} t^{r+k} |\widehat{f}(t)| \, dt \ &\leq rac{1}{\Gamma(r+1)} \int_0^\infty e^{-t \operatorname{Re} z} \left(A t^{r+k} + rac{B}{t^{1-lpha}}
ight) \, dt \ &= rac{C}{(\operatorname{Re} z)^{r+k+1}} + rac{D}{(\operatorname{Re} z)^{lpha}}, \ \operatorname{Re} z > 0, \end{aligned}$$

for some positive constants C, D.

Thus,

$$\lim_{\substack{z o\infty\\|argz|\leq\psi<rac{\pi}{2}}}z^eta\Lambda_z^rW=0, ext{ where }eta=rac{1}{2}\min\{lpha,r+k+1\}.$$

This completes the proof of the theorem.

4. LOCALIZATION

Definition 4.1. Let $W = \frac{f}{H^k} \in \mathcal{M}$. W is said to vanish on an open interval (a, b), denoted W(t) = 0 on (a, b), provided there exists a polynomial p with degree at most k-1 such that p(t) = f(t) for a < t < b.

The support of $W \in \mathcal{M}$, denoted supp W, is the complement of the largest open set on which W vanishes.

Remark 4.1.

- (1) The definition of W vanishing on an interval does not depend on the representation of W.
- (2) The notion of an element of \mathcal{M} vanishing on an interval is consistent with the notion of a function vanishing on an interval. That is, f(t) = 0 for a < t < b if and only if $W_f(t) = 0$ on (a, b), where $f \in C_+(\mathbb{R})$ and $W_f = \frac{H*f}{H}$.
- (3) It follows that if W(t) = 0 on (a,b), where a < 0, then f(t) = 0 for all a < t < b, where $W = \frac{f}{H^k}$.

Example 4.1. Recall $\delta = \frac{H^2}{H^2}$. Notice that $H^2(t) = t$ on the open interval $(0, \infty)$. Thus, $\delta(t) = 0$ on $(0, \infty)$. Also, H(t) = 0 on $(-\infty, 0)$. So, $\delta(t) = 0$ on $(-\infty, 0)$. Therefore, supp $\delta = \{0\}$.

Example 4.2. Let
$$W = \frac{f}{H^3}$$
, where $f(t) = \begin{cases} t^2 & 0 \le t < 2 \\ t+2 & t \ge 2 \\ 0 & t < 0. \end{cases}$

Then W has compact support. Notice that W vanishes on $(-\infty, 0) \cup (0, 2) \cup (2, \infty)$, and hence, supp $W = \{0\} \cup \{2\}$.

Theorem 4.1. Let $W \in \mathcal{M}$. If DW(t) = 0 on (a, b), then W is constant on (a, b).

Proof. Let $W = \frac{f}{H^k}$ such that $DW = \frac{f}{H^{k+1}} = 0$ on (a, b). Therefore, there exists a polynomial $p(t) = \alpha_0 + \alpha_1 t + \ldots + \alpha_k t^k$ such that f(t) = p(t), for all a < t < b. That is,

$$f - k! \alpha_k H^{k+1} = \alpha_0 H + \alpha_1 H^2 + \dots + (k-1)! \alpha_{k-1} H^k$$
 on (a, b)

Thus,

$$rac{f}{H^k}-rac{k!lpha_k H^{k+1}}{H^k}=0 \,\, ext{on} \,\, (a,b)$$

That is, $W = \frac{f}{H^k} = k! \alpha_k H$ on (a, b).

5. Abelian Theorems

As an application, we establish some Abelian type theorems.

Let $W, V \in \mathcal{M}$. Then, W(t) = V(t) on (a, b) provided (W - V)(t) = 0 on (a, b).

Definition 5.1. Let $W \in \mathcal{M}$ and $\xi, \lambda \in \mathbb{C}$ where $\operatorname{Re} \lambda > -1$. W is said to be equivalent at the origin (infinity) to ξt^{λ} , denoted $W(t) \sim \xi t^{\lambda}$ as $t \to 0^+ (t \to \infty)$, provided there exist an interval (a,b) with a < 0 and b > 0 (a > 0 and $b = \infty$) and $g \in L^1_{loc}(\mathbb{R}^+)$ such that $W(t) = W_g(t)$ on (a,b), where $W_g = \frac{H*g}{H} \in \mathcal{M}$, and $\frac{g(t)}{t^{\lambda}} \to \xi$ as $t \to 0^+ (t \to \infty)$.

Lemma 5.1. Let $k \in \mathbb{N}$, $\alpha > 0$, and r > -1. If $f \in L^1_{loc}(\mathbb{R}^+)$ such that $f(t)t^{-r-k+\alpha}$ is bounded on $[b, \infty)$ (for some b > 0), then

$$\int_b^\infty rac{f(t)}{(t+z)^{r+k+1}} \, dt$$
 is bounded in the half-plane $\operatorname{Re} z > 0$.

The following is an initial value theorem.

Theorem 5.1. Let $W \in \mathcal{M}(r)$ and $\nu > -1$. If $W(t) \sim \xi t^{\nu}$ as $t \to 0^+$, then for $r > \nu$,

$$\lim_{\substack{z \to 0 \\ |argz| \le \psi < \frac{\pi}{2}}} \frac{z^{r-\nu} \Gamma(r+1) \Lambda_z^r W}{\Gamma(r-\nu) \Gamma(\nu+1)} = \xi.$$

Proof. Since $W(t) \sim \xi t^{\nu}$ as $t \to 0^+$, $W(t) = W_g(t)$ on $(-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$, where $g \in L^1_{loc}(\mathbb{R}^+)$ and $\frac{g(t)}{t^{\nu}} \to \xi$ as $t \to 0^+$. We may assume that g(t) = 0 on $[\varepsilon, \infty)$.

Now, $W = W_g + V$, where for some $k \in \mathbb{N}$, $V \in \mathcal{M}_k(r)$ and supp $V \subseteq [\varepsilon, \infty)$. Thus, by a classical Abelian theorem for the Stieltjes transform and the previous lemma, we obtain

$$\lim_{\substack{z \to 0 \\ |argz| \le \psi < \frac{\pi}{2}}} \frac{z^{r-\nu} \Gamma(r+1) \Lambda_z^r g}{\Gamma(r-\nu) \Gamma(\nu+1)} = \xi,$$

and,

$$\lim_{\substack{z\to 0\\|argz|\leq\psi<\frac{\pi}{2}}}\frac{z^{r-\nu}\Gamma(r+1)\Lambda_z^r V}{\Gamma(r-\nu)\Gamma(\nu+1)}=0.$$

Therefore,

$$\lim_{\substack{z \to 0 \\ |argz| \leq \psi < \frac{\pi}{2}}} \frac{z^{r-\nu} \Gamma(r+1) \Lambda_z^r W}{\Gamma(r-\nu) \Gamma(\nu+1)} = \xi.$$

Lemma 5.2. Let a > 0 and $k \in \mathbb{N}$. Then, for n = 0, 1, 2, ..., k - 1 and $r > \nu > -1$,

$$\lim_{\substack{z\to\infty\\ \operatorname{Re} z>0}} z^{r-\nu} \int_a^\infty \frac{t^n}{(t+z)^{r+k+1}} \, dt = 0.$$

Proof. Follows by induction on k.

Now, the final value theorem.

Theorem 5.2. Let $W \in \mathcal{M}$ and $\nu > -1$. If $W(t) \sim \xi t^{\nu}$ as $t \to \infty$, then for $r > \nu$,

$$\lim_{\substack{z\to\infty\\argz|\leq\psi<\frac{\pi}{2}}}\frac{z^{r-\nu}\Gamma(r+1)\Lambda_z^rW}{\Gamma(r-\nu)\Gamma(\nu+1)}=\xi.$$

Proof. Since $W(t) \sim \xi t^{\nu}$ as $t \to \infty$, there exist $k \in \mathbb{N}$, c > 0, a polynomial p, and $g \in L^{1}_{loc}(\mathbb{R}^{+})$ such that supp $g \subseteq [c, \infty)$, deg $p \leq k - 1$, and $f(t) = (H^{k} * g)(t) + p(t)$ on (c, ∞) with $\frac{g(t)}{t^{\nu}} \to \xi$ as $t \to \infty$.

It follows that $W \in \mathcal{M}_k(r)$ and that $W = W_g + V$, where $V = \frac{f - H^k * g}{H^k} \in \mathcal{M}_k(r)$ and supp $V \subseteq [0, c]$. By using a classical Abelian theorem and noting that $\Lambda_z^r W_g$ is the same as the classical Stieltjes transform of g, we obtain

$$\lim_{\substack{z\to\infty\\|argz|\leq\psi<\frac{\pi}{2}}}\frac{z^{r-\nu}\Gamma(r+1)\Lambda_z^r W_g}{\Gamma(r-\nu)\Gamma(\nu+1)}=\xi.$$

Now, letting $T = f - H^k * g$, we obtain

$$z^{r-\nu}\Lambda_z^r V = (r+1)_k \ z^{r-\nu} \int_0^\infty \frac{T(t)}{(t+z)^{r+k+1}} \ dt$$

= $(r+1)_k \ z^{r-\nu} \int_0^c \frac{T(t)}{(t+z)^{r+k+1}} \ dt + (r+1)_k \ z^{r-\nu} \int_c^\infty \frac{p(t)}{(t+z)^{r+k+1}} \ dt.$

By the previous lemma, for Re z > 0, it follows that the limit of the second term converges to zero as $z \to \infty$. Now, for Re z > 0,

$$\left|z^{r-
u}\int_{0}^{c}rac{T(t)}{(t+z)^{r+k+1}}\,dt
ight|\leq |z|^{-k-
u-1}\int_{0}^{c}|T(t)|\,dt o 0\,\, ext{as}\,\,z o\infty.$$

The proof of the theorem is completed by observing that

$$z^{r-\nu}\Lambda_z^r W = z^{r-\nu}\Lambda_z^r W_g + z^{r-\nu}\Lambda_z^r V.$$

As a final remark, the map $\frac{f}{H^k} \to D^k f$ is a well-defined linear bijection from $\mathcal{M}(r)$ onto J'(r), where D denotes the distributional differential operator [11] and

$$J'(r) = \{D^k f : k \in \mathbb{N}, f \in L^1_{loc}(\mathbb{R}^+), f(t)t^{-r-k+lpha} ext{ bdd as } t \to \infty ext{ for some } lpha > 0\}.$$

Moreover, the Stieltjes transform for $\frac{f}{H^k} \in \mathcal{M}(r)$ and the Stieltjes transform for $D^k f \in J'(r)$ are equivalent.

ACKNOWLEDGMENT

The author would like to thank Professor Arpad Takači for providing helpful comments.

References

- D. ATANASIU, D. NEMZER: Extending the Laplace Transform, Math. Student 77 (2008), 203 212.
- R. D. CARMICHAEL, E. O. MILTON: Abelian Theorems for the Distributional Stieltjes Transform, J. Math. Anal. Appl. 72 (1979), 195-205.
- [3] G. DOETSCH: Theorie der Laplace Transformation, Band I, Verlag Birkhauser, Basel, 1950.
- [4] J. L. LAVOINE, O. P. MISRA: Sur la Transformation de Stieltjes des Distributions et son Inversion au Moyen de la Transformation de Laplace, , C.R. Acad. Sc. Paris 290 (1980), 139-142.
- [5] V. MARIĆ, M. SKENDŽIĆ, A. TAKAČI: On Stieltjes Transform of Distributions Behaving as Regularly Varying Functions, Acta Sci. Math. (Szoged) 50 (1986), 405-410.
- [6] J. MIKUSIŃSKI: Operational Calculus, Vol. I, Second Edition, International Series of Monographs in Pure and Applied Mathematics 109, Pergamon Press, Oxford; PWN – Polish Scientific Publishers, Warsaw, 1983.
- [7] O.P. MISRA, J.L. LAVOINE: Transform Analysis of Generalized Functions, Elsevier Science Publishers, Amsterdam, 1986.
- [8] D. NIKOLIÓ-DESPOTOVIĆ, S. PILIPOVIĆ: Abelian Theorem for the Distributional Stieltjes Transformation, Generalized Functions, Convergence Structures and their Applications, Plenum Press, New York and London, (1988) 269-277.
- [9] S. PILIPOVIĆ, B. STANKOVIĆ, A. TAKAČI: Asymptotic Behaviour and Stieltjes Transformation of Distributions, Taubner, Leipzig, 1990.
- [10] K. YOSIDA: Operational Calculus: A Theory of Hyperfunctions, Springer-Verlag, New York, 1984.
- [11] A. H. ZEMANIAN: Distribution Theory and Transform Analysis, Dover Publications, New York, 1987.

Department of Mathematics California State University, Stanislaus One University Circle Turlock, CA 95382, USA

E-mail address: jclarke@csustan.edu