SOME PROPERTIES OF FUNCTIONS CONCERNED WITH OZAKI AND NUNOKAWA RESULT

YUTAKA SHIMODA, YAYOI NAKAMURA AND SHIGEYOSHI OWA

ABSTRACT. For analytic functions f(z) with $f(0) = f'(0) = \cdots = f^{(n-1)}(0) = 0$ and $f^{(n)}(0) \neq 0$ in the open unit disk \mathbb{U} , a new class $\mathcal{A}_n(\lambda)$ concerned with Ozaki and Nunokawa result in 1972 is introduced. The object of the present paper is to discuss some properties of functions f(z) in the class $\mathcal{A}_n(\lambda)$.

1. Introduction

Let A_n be the class of functions f(z) of the form

(1.1)
$$f(z) = z + \sum_{k=n}^{\infty} a_k z^k \quad (n = 2, 3, 4, \cdots)$$

with $a_n \neq 0$ which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$.

For $f(z) \in \mathcal{A}_n$, we define the subclass $\mathcal{A}_n(\lambda)$ of \mathcal{A}_n consisting of f(z) which satisfy

$$\left|\frac{z^2f'(z)}{f(z)^2} - 1\right| < \lambda \qquad (z \in \mathbb{U})$$

for some real $\lambda > 0$. We note that $f(z) \in \mathcal{A}_2(1)$ is univalent in \mathbb{U} by Ozaki and Nunokawa [5].

The class $A_2(\lambda)$ was defined and discussed by Obradović and Ponnusamy [4]. The class $A_3(\lambda)$ with $0 < \lambda < 1$ was considered by Singh [7].

Resently, Shimoda, Nakamura and Owa [6] discussed some radius problems for $f(z) \in \mathcal{A}_2(\lambda)$ with $a_3 - a_2^2 = 0$.

In order to discuss our problems for $f(z) \in \mathcal{A}_n(\lambda)$, we have to recall here the following lemmas.

Lemma 1.1. Let the function w(z) defined by

(1.3)
$$w(z) = b_n z^n + b_{n+1} z^{n+1} + b_{n+2} z^{n+2} + \cdots \quad (b_n \neq 0)$$

Key words and phrases. Analytic, Jack's lemma, Carathéodory function.

²⁰¹⁰ Mathematics Subject Classification. 30C45.

be analytic in \mathbb{U} . If |w(z)| attains its maximum value at a point $z_0 \in \mathbb{U}$ on the circle |z| = r, then there exists a real number $k \geq n$ such that

$$(1.4) z_0 w'(z_0) = k w(z_0)$$

and

(1.5)
$$\operatorname{Re}\left(\frac{z_0w''(z_0)}{w'(z_0)}\right) \ge k - 1.$$

This lemma was given by Jack [2] (also, due to Miller and Mocanu [3]).

Lemma 1.2. Let the function p(z) given by

$$(1.6) p(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots$$

be analytic in \mathbb{U} . If p(z) satisfies Rep(z) > 0 $(z \in \mathbb{U})$, then

(1.7)
$$|c_n| \le 2 \quad (n = 1, 2, 3, \cdots).$$

The equality in (1.7) is attained for p(z) given by

$$(1.8) p(z) = \frac{1+z}{1-z}.$$

This lemma is called as Carathéodory's lemma [1].

2. Some properties for the class $\mathcal{A}_n(\lambda)$

First result of our problems is contained in:

Theorem 2.1. If $f(z) \in A_n(n-2)$ with $n \geq 3$, then

$$\left|\frac{z}{f(z)} - 1\right| < 1 \qquad (z \in \mathbb{U})$$

and

(2.2)
$$\operatorname{Re}\left(\frac{f(z)}{z}\right) > \frac{1}{2} \qquad (z \in \mathbb{U}).$$

Proof. For $A_n(n-2)$, we define the function w(z) by

$$w(z) = \frac{z}{f(z)} - 1 = b_n z^{n-1} + b_{n+1} z^n + b_{n+2} z^{n+1} + \cdots$$

Then w(z) is analytic in \mathbb{U} and w(0) = 0.

Further, we see that

(2.3)
$$\left| \frac{z^2 f'(z)}{f(z)^2} - 1 \right| = |w(z) - zw'(z)| < n - 2 \quad (z \in \mathbb{U}).$$

We suppose that there exists a point $z_0 \in \mathbb{U}$ such that

(2.4)
$$\max_{|z|=r} |w(z)| = |w(z_0)| = 1.$$

Then, Lemma 1.1 gives us that

(2.5)
$$z_0 w'(z_0) = k w(z_0) \quad (k \ge n - 1).$$

It follows from (2.3), (2.4), and (2.5) that

$$\left| \frac{z_0^2 f'(z_0)}{f(z_0)^2} - 1 \right| = \left| w(z_0) \left(1 - \frac{z_0 w'(z_0)}{w(z_0)} \right) \right|$$
$$= |k - 1| > n - 2.$$

This contradicts that $f(z) \in \mathcal{A}_n(n-2)$. This means that there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = 1$. Therefore, we conclude that |w(z)| < 1 $(z \in \mathbb{U})$, and prove that equation (2.1) Furthermore, it is easy to see that (2.1) gives equation (2.2), proving the theorem.

Next our result is:

Theorem 2.2. If $f(z) \in A_n\left(\frac{n-3}{4}\right)$ with $n \geq 4$, then

$$\left|\frac{f(z)}{z}-1\right|<1 \qquad (z\in\mathbb{U}).$$

Proof. Let us define the function w(z) by

$$w(z)=rac{f(z)}{z}-1$$
 ,

for $f(z) \in \mathcal{A}_n\left(\frac{n-3}{4}\right)$. It follows that:

Since, w(z) is analytic in \mathbb{U} and w(0)=0, we suppose that there exists a point $z_0\in\mathbb{U}$ such that

$$\max_{|z|=r} |w(z)| = |w(z_0)| = 1.$$

Then, we can write $w(z_0)=e^{i heta}$ and

$$z_0w'(z_0) = kw(z_0) \quad (k \ge n-1).$$

Therefore, we have that

$$igg|rac{z_0^2f'(z_0)}{f(z_0)^2} - 1igg| = igg|rac{w(z_0)}{w(z_0) + 1}\left(rac{k}{w(z_0) + 1} - 1
ight)igg|$$
 $\geq rac{|k - 1 - w(z_0)|}{|w(z_0) + 1|^2} \geq rac{n - 3}{4},$

which contradicts our condition (2.7). This shows that there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = 1$ for $z_0 \in \mathbb{U}$. Thus we have that |w(z)| < 1 for all $z \in \mathbb{U}$, proving (2.6).

3. Coefficient inequalities for the class $\mathcal{A}_2(\lambda)$

In this section we consider some coefficient inequalities for f(z) in the class $A_2(\lambda)$.

Theorem 3.1. If $f(z) \in A_2(\lambda)$ with $0 < \lambda < 1$, then

$$|a_3 - a_2^2| \le 2\lambda,$$

$$|a_4 - 2a_2a_3 + a_2^3| \le \lambda,$$

and

$$|a_5 - 2a_2a_4 + 3a_2^2a_3 - a_3^2 - a_2^4| \le \frac{2}{3}\lambda.$$

Proof. Let us define the function p(z) by

$$p(z) = rac{z^2 f'(z)}{f(z)^2} - (1-\lambda) \ \lambda \ (z \in \mathbb{U}).$$

This gives us that p(z) is analytic in \mathbb{U} , $\operatorname{Re} p(z) > 0$ $(z \in \mathbb{U})$, and

$$p(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots$$

Noting that

$$\frac{z^2 f'(z)}{f(z)^2} - 1 + \lambda = \lambda + (a_3 - a_2^2) z^2 + 2(a_4 - 2a_2a_3 + a_2^3) z^3
+ 3(a_5 - 2a_2a_4 + 3a_2^2a_3 - a_3^2 - a_2^4) z^4 + \cdots,$$

we have that

$$a_3 - a_2^2 = \lambda c_2,$$

$$2(a_4 - 2a_2a_3 + a_2^3) = \lambda c_3,$$

and

$$3(a_5 - 2a_2a_4 + 3a_2^2a_3 - a_3^2 - a_2^4) = \lambda c_4.$$

Therefore, applying Lemma 1.2, we prove (3.1), (3.2) and (3.3).

If $a_2 = 0$ in Theorem 2.2, then we have:

Corollary 3.1. If $f(z) \in A_3(\lambda)$ with $0 < \lambda < 1$, then

$$|a_3| \leq 2\lambda$$
,

$$|a_4| < \lambda$$

and

$$|a_5| \leq \frac{8}{3}\lambda.$$

References

- [1] C. CARATHÉODORY: "Uber den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32(1911), 193 217.
- [2] I. S. JACK: Functions starlike and convex of order α, J. London Math. Soc., 3(1971), 469 474.
- [3] S. S. MILLER, P. T. MOCANU: Second-order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289 - 305.
- [4] M. OBRADOVIĆ, S. PONNUSAMY: Radius properties for subclasses of univalent functions, Analysis, 25(2005), 183 188.
- [5] S. OZAKI, M. NUNOKAWA: The Schwarzian derivative and univalernt functions, Proc. Amer. Math. Soc., 33 (1972), 392 - 394.
- [6] Y. SHIMODA, Y. NAKAMURA, S. OWA: Radius problems for certain strongly close-to-convex functions, Pan Amer. Math. Journal, 23(2013), 53 58.
- [7] V. SINGH: On a class of univalent functions, Internet. J. Math. Math. Sci., 23(2000), 855 857.

DEPARTMENT OF MATHEMATICS
KINKI UNIVERSITY
HIGASHI-OSAKA, OSAKA 577-8502, JAPAN

E-mail address: yutakashimoda119@gmail.com

DEPARTMENT OF MATHEMATICS
KINKI UNIVERSITY
HIGASHI-OSAKA, OSAKA 577-8502, JAPAN

E-mail address: yayoi@math.kindai.ac.jp

DEPARTMENT OF MATHEMATICS KINKI UNIVERSITY HIGASHI-OSAKA, OSAKA 577-8502, JAPAN

 $E\text{-}mail\ address: \ \mathtt{shige21@ican.zaq.ne.jp}$