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ON TWO FORMULAS CONTIGUOUS TO A TRANSFORMATION

DUE TO BAILEY

NEETHU. P, MEDHAT A. RAKHA1 AND ARJUN K. RATHIE

Abstract. The aim of this short research note is to provide two interesting formulas
contiguous to the following transformation due to Bailey (written here in corrected
form) viz.
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The results are derived with the help of two formulas contiguous to classical Whip-
ple's summation theorem on the sum of a 3F2 obtained earlier by Lavoie, et al.

The results established in this short research note are simple, interesting, easily
established and may are useful.

1. Introduction

In the theory of hypergeometric and generalized hypergeometric series, classical sum-

mation theorems such as those of Gauss, Gauss second, Kummer and Bailey for the series

2F1; Watson, Dixon, Whipple and Saalschütz for the series 3F2 and others play an im-

portant role. Several formulae were given by Gauss and Kummer expressing the product

of two hypergeometric series, such as e�x 1F1(x) as a series of the type 1F1(�x) and

(1 + x)�p 2F1

�
4x

(1 + x)2

�

as a series of the type 2F1(x). By employing the above mentioned classical summation

theorems, in 1928, Bailey [1] made a systematic search for several formulae. Evidently

if the product of two hypergeometric series can be expressed as a hypergeometric series

with argument x, the coe�cient of xn in the product must be expressible in terms of the

Gamma function.
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Recently good progress has been done in the direction of generalizing and extending

the above mentioned classical summation theorems. For this, we refer to the research

papers [2] - [5].

In our present investigation, we are interested in the following transformation due to

Bailey [1]
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Bailey [1] obtained this result by employing the following classical Whipple's summation

theorem [8] viz
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provided a+ b = 1 and e+ f = 1 + 2c.

In 1996, Lavoie, et al. [5] generalized the above mentioned classical Whipple's sum-

mation theorem (1.2) and have obtained explicit expressions of
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provided a+ b = 1 + i+ j and e+ f = 2c+ i+ 1 for i; j = 0;�1;�2;�3.

In our present investigation, we shall require the following results which can be ob-

tained from (1.3) by taking i = 1; j = �1 and i = �1; j = 1 respectively, these are
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provided a+ b = 1; e+ f = 2c+ 2:



ON TWO FORMULAS CONTIGUOUS TO A TRANSFORMATION. . . 3

� For i = �1; j = 1
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provided a+ b = 1; e+ f = 2c:

The aim of this short research note is to �nd the explicit expressions of

(1� x)�1 2F1

2
64 1; b;

� 4x
(1�x)2

2b+ 1
2 + l;

3
75

for l = �1.
The results are derived with the help of contiguous Whipple's summation theorems

(1.4) and (1.5). The results established in this short research note are simple interesting,

easily established and may be useful.

2. Main Results

The transformation formulas closely related to the Bailey's transformation to be es-

tablished in this short research note are given by
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and
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Proof. In order to derive (2.1), we proceed as follows. Denoting the left-hand side of

(2.1) by S, we have

S = (1� x)�1 2F1
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Expressing 2F1 as a series, we have after some algebra
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Now, replacing m by m� n and using the known result [6, Lemma 10, p. 56 Eq. (1)]
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Summing up the inner series, we have

S =
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Now assume that
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then we have
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It is now, easy to see that, the 3F2 can be evaluated with the help of the contiguous

Whipple's summation theorem (1.4) by taking a = �2m; b = 1 + 2m; c = b; e = 1
2 and
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2 and after some simpli�cation, we get
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summing up the series, we have
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In exactly the same manner, we can show that
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Substituting the results of A and B from (2.4) and (2.5) in (2.3), we easily arrive at the

right-hand side of our �rst main result (2.1). This completes the proof of (2.1).

In exactly the same manner, the result (2.2) can be established by employing the

contiguous Whipple's summation theorem (1.5), so we prefer to omit the details. �

Clearly the results (2.1) and (2.2) are closely related to the Bailey's transformation

(1.1).
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