SOME PROPERTIES FOR GENERAL INTEGRAL OPERATORS

DANIEL BREAZ, SHIGEYOSHI OWA¹ AND NICOLETA BREAZ

ABSTRACT. For analytic functions $f_j(z)$ in the open unit disk \mathbb{U} with $f_j(0) = 0$ and $f'_j(0) = 1$, two general integral operators $F_\beta(z)$ and $G_\beta(z)$ are introduced. In view of the results due to S. Owa, J. Nishiwaki and N. Niwa (Int. J. Open Problems Compt. Math. 1(2008), 1 - 7), new classes $\mathcal{T}^*_\delta(\alpha), \mathcal{S}^*_\delta(\alpha), \mathcal{K}^*_\delta(\alpha)$, and $\mathcal{C}^*_\delta(\alpha)$ are considered. The object of the present paper is to discuss some properties for the general integral operators $F_\beta(z)$ and $G_\beta(z)$ with the above classes.

1. INTRODUCTION

Let \mathcal{A} be the class of functions f(z) of the form

$$(1.1) f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For analytic functions f(z) and g(z) in \mathbb{U} , we say that f(z) is subordinate to g(z), written by $f(z) \prec g(z)$, if there exists an analytic function w(z) with w(0) = 0 and $|w(z)| < 1 (z \in \mathbb{U})$ such that f(z) = g(w(z)). In particular, if g(z) is univalent in \mathbb{U} , then the subordination $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$ (see Duren [2], or Miller and Mocanu [3]). Using subordinations, Owa, Nishiwaki and Niwa [4] have defined the following subclasses $S_{\delta}(\alpha)$ and $\mathcal{T}_{\delta}(\alpha)$ of \mathcal{A} .

A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S}_{\delta}(\alpha)$ if it satisfies

(1.2)
$$(f'(z))^{\delta} \prec \frac{\alpha(1-z)}{\alpha-z} \quad (z \in \mathbb{U})$$

for some real $\alpha > 1$ and $\delta > 0$. Also, a function $f(z) \in \mathcal{A}$ is said to be a member of the class $\mathcal{T}_{\delta}(\alpha)$ if it satisfies

(1.3)
$$\left(\frac{1}{f'(z)}\right)^{\delta} \prec \frac{\alpha(1-z)}{\alpha-z} \qquad (z \in \mathbb{U})$$

for some real $\alpha > 1$ and $\delta > 0$.

For the classes $S_{\delta}(\alpha)$ and $\mathcal{T}_{\delta}(\alpha)$, Owa, Nishiwaki and Niwa [4] have derived

¹ corresponding author

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic, subordination, general integral operator.

Theorem 1.1. If $f(z) \in \mathcal{A}$ satisfies

(1.4)
$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) < \frac{\alpha-1}{2\delta(\alpha+1)} \qquad (z \in \mathbb{U})$$

for some real $\alpha > 1$ and $\delta > 0$, then $f(z) \in \mathcal{S}_{\delta}(\alpha)$.

Theorem 1.2. If $f(z) \in \mathcal{A}$ satisfies

(1.5)
$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) > \frac{1-\alpha}{2\delta(\alpha+1)} \qquad (z \in \mathbb{U})$$

for some real $\alpha > 1$ and $\delta > 0$, then $f(z) \in \mathcal{T}_{\delta}(\alpha)$.

2. General integral operator $F_{\beta}(z)$

Considering Theorem 1.1 and Theorem 1.2, we introduce the following two classes $S^*_{\delta}(\alpha)$ and $\mathcal{T}^*_{\delta}(\alpha)$.

A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S}^*_{\delta}(\alpha)$ if it satisfies the inequality (1.4) for some real $\alpha > 1$ and $\delta > 0$. Also, we say that a function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{T}^*_{\delta}(\alpha)$ if it satisfies the inequality (1.5) for some real $\alpha > 1$ and $\delta > 0$. Thus note that $\mathcal{S}^*_{\delta}(\alpha) \subset \mathcal{S}_{\delta}(\alpha)$ and $\mathcal{T}^*_{\delta}(\alpha) \subset \mathcal{T}_{\delta}(\alpha)$.

For analytic functions $f_j(z)$ given by

(2.1)
$$f_j(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
 $(j = 1, 2, 3, \cdots),$

we define the general integral operator $F_{\beta}(z)$ by

(2.2)
$$F_{\beta}(z) = \int_0^z \left(\prod_{j=1}^n \left(f'_j(t)\right)^{\beta_j}\right) dt$$

with $\beta_j > 0 \ (j = 1, 2, 3, \cdots)$ and

$$\sum_{j=1}^n \beta_j = \beta.$$

This general integral operator $F_{\beta}(z)$ was first introduced by Breaz, Owa and Breaz in [1]. Now, we derive

Theorem 2.1. If $f_j(z) \in S^*_{\delta_j}(\alpha_j)$ for each $j = 1, 2, 3, \cdots, n$, then

(2.3)
$$\operatorname{Re}\left(\frac{z\,F_{\beta}''(z)}{F_{\beta}'(z)}\right) < \frac{(1-\alpha)\beta}{2\delta(\alpha+1)} \qquad (z\in\mathbb{U}),$$

where

$$rac{1-lpha}{2\delta(lpha+1)} = \max_{1 \leq j \leq n} rac{1-lpha_j}{2\delta_j(lpha_j+1)}$$

and $\sum_{j=1}^{n} \beta_j = \beta$. This implies that $F_{\beta}(z) \in \mathcal{S}^*_{\frac{\delta}{\beta}}(\alpha)$.

Proof. From the definition (2.2), we see that

$$\operatorname{Re}\left(\frac{zF_{\beta}''(z)}{F_{\beta}'(z)}\right) = \sum_{j=1}^{n} \operatorname{Re}\left(\beta_{j}\frac{zf_{j}''(z)}{f_{j}'(z)}\right)$$
$$< \sum_{j=1}^{n} \frac{(1-\alpha_{j})\beta_{j}}{2\delta_{j}(\alpha_{j}+1)} \leq \frac{1-\alpha}{2\delta(\alpha+1)}\left(\sum_{j=1}^{n}\beta_{j}\right) = \frac{(1-\alpha)\beta}{2\delta(\alpha+1)}$$

for $z \in \mathbb{U}$. This completes the proof of the theorem.

Corollary 2.1. If $f_j(z) \in \mathcal{S}^*_{\delta}(\alpha)$ for all $j = 1, 2, 3, \cdots, n$, then $F_{\beta}(z) \in \mathcal{S}^*_{\frac{\delta}{\beta}}(\alpha)$.

Example 2.1. Let us consider the functions $f_j(z)$ $(j = 1, 2, 3, \dots, n)$ which satisfy

$$\prod_{j=1}^n ig(f_j'(z)ig)^{eta_j} = (1-z)^{p-1} \qquad (z\in\mathbb{U})$$

with $p = rac{(1-lpha)eta}{\delta(lpha+1)} + 1.$ Then we have that

$$F_eta(z) = rac{1}{p} \left(1-(1-z)^p
ight)$$

and

$$\operatorname{Re}\left(rac{zF_{eta}^{\prime\prime}(z)}{F_{eta}^{\prime}(z)}
ight)=\operatorname{Re}\left(rac{(1-p)z}{1-z}
ight)<rac{(1-lpha)eta}{2\delta(lpha+1)}\qquad(z\in\mathbb{U}).$$

Theorem 2.2. If $f_j(z) \in \mathcal{T}^*_{\delta_j}(\alpha_j)$ for each $j = 1, 2, 3, \cdots, n$, then

(2.4)
$$\operatorname{Re}\left(\frac{zF_{\beta}''(z)}{F_{\beta}'(z)}\right) > \frac{(\alpha-1)\beta}{2\delta(\alpha+1)} \qquad (z \in \mathbb{U}),$$

where

$$rac{lpha-1}{2\delta(lpha+1)} = \min_{1\leq j\leq n} rac{lpha_j-1}{2\delta_j(lpha_j+1)}$$

and $\beta = \sum_{j=1}^n \beta_j$. This implies that $F_{\beta}(z) \in \mathcal{T}^*_{\frac{\delta}{\beta}}(\alpha)$.

Proof. Since $f_j(z)\in\mathcal{T}^*_{\delta_j}(lpha_j)$ $(j=1,2,3,\cdots,n),$ we have that

$$\operatorname{Re}\left(\frac{zF_{\beta}''(z)}{F_{\beta}'(z)}\right) = \sum_{j=1}^{n} \operatorname{Re}\left(\beta_{j}\frac{zf_{j}''(z)}{f_{j}'(z)}\right)$$
$$> \sum_{j=1}^{n} \frac{(\alpha_{j}-1)\beta_{j}}{2\delta_{j}(\alpha_{j}+1)} \ge \frac{\alpha-1}{2\delta(\alpha+1)}\left(\sum_{j=1}^{n}\beta_{j}\right) = \frac{(\alpha-1)\beta}{2\delta(\alpha+1)}$$

for $z \in \mathbb{U}$. This completes the proof of the theorem.

Corollary 2.2. If $f_j(z) \in \mathcal{T}^*_{\delta}(\alpha)$ for all $j = 1, 2, 3, \cdots, n$, then $F_{\beta}(z) \in \mathcal{T}^*_{\frac{\delta}{\beta}}(\alpha)$.

Example 2.2. Let consider the functions $f_j(z)$ $(j = 1, 2, 3, \dots, n)$ defined by

$$\prod_{j=1}^n ig(f_j'(z)ig)^{eta_j} = (1-z)^{2(1-p)} \qquad (z\in\mathbb{U})$$

with $p = \frac{(\alpha - 1)\beta}{2\delta(\alpha + 1)} + 1$. Then we have that $\operatorname{Re}\left(\frac{zF_{\beta}^{\prime\prime}(z)}{F_{\beta}^{\prime}(z)}\right) = \operatorname{Re}\left(\frac{2(p-1)z}{1-z}\right) > p-1 = \frac{(\alpha - 1)\beta}{2\delta(\alpha + 1)}$ $(z \in \mathbb{U}).$

3. General integral operator $G_{\beta}(z)$

Let us define the subclasses $\mathcal{K}^*_{\delta}(\alpha)$ and $\mathcal{C}^*_{\delta}(\alpha)$ of \mathcal{A} . A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{K}^*_{\delta}(\alpha)$ if it satisfies

(3.1)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < \frac{\alpha-1}{2\delta(\alpha+1)} + 1 \qquad (z \in \mathbb{U})$$

for some real $\alpha > 1$ and $\delta > 0$. Also, we say that a function $f(z) \in \mathcal{A}$ is said to be a member of the class $\mathcal{C}^*_{\delta}(\alpha)$ if it satisfies

(3.2)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \frac{1-\alpha}{2\delta(\alpha+1)} + 1 \qquad (z \in \mathbb{U})$$

for some real $\alpha > 1$ and $\delta > 0$.

For analytic functions $f_j(z)$ $(j = 1, 2, 3, \dots, n)$ given by (2.1), we introduce

(3.3)
$$G_{\beta}(z) = \int_{0}^{z} \left(\prod_{j=1}^{n} \left(\frac{f_{j}(t)}{t} \right)^{\beta_{j}} \right) dt$$

with $\beta_j > 0$ $(j = 1, 2, 3, \dots, n)$ and $\sum_{j=1}^n \beta_j = \beta$. For this general integral operator $G_\beta(z)$, we derive

Theorem 3.1. If $f_j(z) \in \mathcal{K}^*_{\delta_j}(\alpha_j)$ for each $j = 1, 2, 3, \cdots, n$, then

(3.4)
$$\operatorname{Re}\left(\frac{zG_{\beta}''(z)}{G_{\beta}'(z)}\right) < \frac{(1-\alpha)\beta}{2\delta(\alpha+1)} \qquad (z \in \mathbb{U}),$$

whe re

$$rac{1-lpha}{2\delta(lpha+1)}=\max_{1\leq j\leq n}rac{1-lpha_j}{2\delta_j(lpha_j+1)}$$

and $\beta = \sum_{j=1}^n \beta_j$. This means that $G_\beta(z) \in \mathcal{S}^*_{\frac{\delta}{\beta}}(\alpha)$.

Proof. Noting that $f_j(z) \in \mathcal{K}^*_{\delta_j}(lpha_j)$ $(j=1,2,3,\cdots,n),$ we see that

$$\operatorname{Re}\left(\frac{zG_{\beta}''(z)}{G_{\beta}'(z)}\right) = \sum_{j=1}^{n} \beta_{j} \left(\frac{zf_{j}'(z)}{f_{j}(z)} - 1\right)$$
$$< \sum_{j=1}^{n} \frac{(1-\alpha_{j})\beta_{j}}{2\delta_{j}(\alpha_{j}+1)} \leq \frac{1-\alpha}{2\delta(\alpha+1)} \left(\sum_{j=1}^{n} \beta_{j}\right) = \frac{(1-\alpha)\beta}{2\delta(\alpha+1)}$$

for $z \in \mathbb{U}$.

Corollary 3.1. If $f_j(z) \in \mathcal{K}^*_{\delta}(\alpha)$ for all $j = 1, 2, 3, \cdots, n$, then $G_{\beta}(z) \in \mathcal{S}^*_{\frac{\delta}{\beta}}(\alpha)$.

Example 3.1. If we take the functions $f_j(z)$ $(j = 1, 2, 3, \dots, n)$ defined by

$$\prod_{j=1}^n \left(\frac{f_j(z)}{z}\right)^{\beta_j} = (1-z)^{p-1}$$

with $p = rac{(1-lpha)eta}{\delta(lpha+1)} + 1$, then we have that

$$G_eta(z)=rac{1}{p}\left(1-(1-z)^p
ight),$$

which implies that

$$\operatorname{Re}\left(rac{zG_{eta}''(z)}{G_{eta}'(z)}
ight)=\operatorname{Re}\left(rac{(1-p)z}{1-z}
ight)<rac{(1-lpha)eta}{2\delta(lpha+1)}\qquad(z\in\mathbb{U}).$$

Finally, we prove

Theorem 3.2. If $f_j(z) \in C^*_{\delta_j}(\alpha_j)$ for each $j = 1, 2, 3, \cdots, n$, then

(3.5)
$$\operatorname{Re}\left(\frac{zG_{\beta}''(z)}{G_{\beta}'(z)}\right) > \frac{(\alpha-1)\beta}{2\delta(\alpha+1)} \qquad (z \in \mathbb{U}),$$

where

$$rac{lpha-1}{2\delta(lpha+1)} = \min_{1\leq j\leq n} rac{lpha_j-1}{2\delta_j(lpha_j+1)}$$

and $\beta = \sum_{j=1}^n \beta_j$. This means that $G_{\beta}(z) \in \mathcal{T}_{\frac{\delta}{\beta}}^*(\alpha)$.

Proof. Note that, for $f_j(z) \in \mathcal{C}^*_{\delta_j}(\alpha_j)$ $(j = 1, 2, 3, \dots, n)$, we have that

$$\operatorname{Re}\left(\frac{zG_{\beta}'(z)}{G_{\beta}'(z)}\right) = \sum_{j=1}^{n} \beta_{j}\left(\frac{zf_{j}'(z)}{f_{j}(z)} - 1\right)$$
$$> \sum_{j=1}^{n} \frac{(\alpha_{j} - 1)\beta_{j}}{2\delta_{j}(\alpha_{j} + 1)} \leq \frac{\alpha - 1}{2\delta(\alpha + 1)}\left(\sum_{j=1}^{n} \beta_{j}\right) = \frac{(\alpha - 1)\beta}{2\delta(\alpha + 1)}$$

for $z \in \mathbb{U}$.

Corollary 3.2. If $f_j(z) \in C^*_{\delta}(\alpha)$ for all $j = 1, 2, 3, \cdots, n$, then $G_{\beta}(z) \in \mathcal{T}^*_{\frac{\delta}{\beta}}(\alpha)$.

Example 3.2. Considering the functions $f_j(z)$ $(j = 1, 2, 3, \dots, n)$ defined by

$$\prod_{j=1}^n \left(rac{f_j(z)}{z}
ight)^{eta_j} = (1-z)^{2(1-p)}$$

with $p = \frac{(\alpha - 1)\beta}{\delta(\alpha + 1)} + 1$, we have that $\operatorname{Re}\left(\frac{zG_{\beta}''(z)}{G_{\beta}'(z)}\right) = \operatorname{Re}\left(\frac{2(p-1)z}{1-z}\right) > p - 1 = \frac{(\alpha - 1)\beta}{2\delta(\alpha + 1)} \qquad (z \in \mathbb{U}).$

References

- D. BREAZ, S. OWA, N. BREAZ: A new general integral operator, Acta Universitatis Apulensis 16 (2008), 11 - 16.
- [2] P. L. DUREN: Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- S. S. MILLER, P. T. MOCANU: Differential Subordinations, Theory and Applications, Marcel Dekker, New York, Basel, 2000.
- [4] S. OWA, J. NISHIWAKI, N. NIWA: Subordination for certain analytic functions, Int. J. Open Problems Compt. Math. 1(2008), 1-7.

DEPARTMENT OF MATHEMATICS "1 DECEMBRIE 1918" UNIVERSITY ALBA IULIA ROMANIA *E-mail address*: dbreaz@uab.ro

DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION, YAMATO UNIVERSITY, KATAYAMA 2-5-1, SUITA, OSAKA 564-0082, JAPAN *E-mail address*: owa.shigeyoshi@yamato-u.ac.jp

DEPARTMENT OF MATHEMATICS "1 DECEMBRIE 1918" UNIVERSITY ALBA IULIA ROMANIA *E-mail address*: nbreaz@uab.ro