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ON A RELATION BETWEEN OVERCONVERGENCE AND
SUMMABILITY OF POWER SERIES

TUNCAY TUNG! AND MEHMET KUGUKASLAN

ABSTRACT. In this paper, some relationships between the overconvergence of power
series and the existence of an elongation of the sequence of the partial sums of the
series, whose some regular matrix transformations converge, are investigated.

1. INTRODUCTION

Let f(z) = Y., anz™ be a power series with radius of convergence 1 and partial sums
Sn(z) = Yor_parz®. It is well known that the sequence of the partial sums {S,}o i
uniformly convergent to a holomorphic function f on each compact subset of the unit
disk D := {z : |z| < 1} and divergent for all z, where |z| > 1. It is also known that it
can be constructed such a power series with the property that a certain subsequence of
{Sr} converges to f on the open sets from exterior of the unit disk where the function
f is regular [10]. This is the phenomenon of overconvergence. The following theorem
gives a relation between the overconvergence of the power series and the existence of an

elongation of {S,} the sequence of the partial sums whose arithmetic means converge.

Theorem 1.1 (Drobot [1]). Let U be an open neighborhood of a point z; such that
|z1| > 1. Then, the sequence of the partial sums of the power series with radius of
convergence 1, can be elongated to become (C,1) summable in U if and only if it is
overconvergent on U.

In this paper, our aim is to investigate the equivalence between the overconvergence
of the power series and the existence of an elongation of {5, } the sequence of the partial
sums whose some regular matrix transformations converge.
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2. PRELIMINARIES

2.1. Overconvergence of Power Series. Let

x>
(2.1) Z anz"
n=0

be a power series with radius of convergence 1, i.e.

lim sup |an|% =1.
n—roo

Let S, be the nth partial sum of the series (2.1). It is well known that the sequence of
the partial sums {S,},. , is uniformly convergent to a holomorphic function f on each
compact subset of the unit disk D := {2z : |z| < 1} and divergent for all z, where |z| > 1.
It is also known that it can be constructed such a power series with the property that
a certain subsequence of {S,} converges to f on the open sets from exterior of the unit
disk where the function f is regular [10]. This is the phenomenon of overconvergence.

A power series in (2.1) is called overconvergent if there exists an open set U C
{z :|z| > 1} and a monotone increasing sequence of positive integers {nx} such that
{Sn, } converges compactly on U. In the special case that also UN{z : |z| < 1} # @ then
{Sn,} generates an analytic continuation of the sum of the series in (2.1) on the unit
disk.

The concept of overconvergence was discovered by Porter [10]. After then, it was
investigated by Ostrowski [6, 7, 8, 9] and used to characterize the best approximation of
polynomials to analytic functions by Walsh [11]. For details, we refer to Hille’s book [12,
Sec. 16.7].

2.2. Elongation of Sequences. Let m = {m,}, . be an arbitrary sequence of positive
integers. It is called that a sequence {Sn}zozo is being elongated with respect to the
sequence m = {m"}nEN if for each n the term S, is listed m,, —times, i.e. if it is written

by the following way:
(2.2) (S51,51,..-y51,52,52,...,52, .., Sny Sny ooy Sy o).

m1—times mo—times my, —times

The sequence (2.2) is called m—elongation of {S,}. It is obvious that the sequence {S,}
is convergent if and only if any m— elongation of {S,} is convergent with the same limit.

2.3. A-Summability. Let A = (a,x)(n,k = 1,2,3,...) be an infinite matrix of real (or
complex) numbers. A sequence (S,,) of real (or complex) numbers is said to be summable
to a number S by the method A = (a, ), shortly A-summable to S, if the limit relation

]
lim E an,kSk =S
n—00

k=1

holds, and it is written as A — limy 00 S, = S. The matrix A = (an k) is called regular
if it transforms convergent sequences to convergent sequences with the same limit.
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It is well known that the matrix A = (an ) is regular if and only if it satisfies the
following conditions (see [13, p. 142], also [14]):

o0
(i) There exists a constant M > 0 such that > |ap x| < M, for each n =1,2,3,..;
k=1

(ii) For each positive integer k,

(2.3) lim anx =0;

n—oo

(iil) limy oo Y, Gnk = 1.
k=1

Cesaro Matrices: The Cesaro means C, of order > 1 which transform the given
sequence {S,} into the sequence

oo = - (n—k—i—a—l)sk’

) n—k

=0
have the matrix representation ) defined by
(n—k+:—1 ¢ %
o gy 1 <n
anr=9 (%)

0 if k>n.

For o = 1 we obtain the arithmetic means of {S,} as

The matrices (a;’;’k) are called the Cesaro matrices of order «; and they are regular for
all positive integers o [14, p.33].

Riesz Matrices: Suppose that {p,} is a sequence of non-negative numbers which are
not all 0 and put

P,=po+p1+..+pn; po > 0.

The transformation of {S,} given by
=7 g:opk k

is called as the Riesz mean (R,p,). The matrix representation of the (R,p,) mean is
defined as follows

LB i k<
P00 i k>,

If we take p, = 1 for all n € N, then (R, p,) coincide with the Cesaro means C;. Besides,
(R, pr) is regular if and only if limy, ;00 B = o0 [14].
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3. MAIN RESULTS

Let us consider a power series

3=

(3.1) f(z)= Z an2"™ with limsupla,|™ =1
n=0

n—oo

and denote its partial sums as follows
n
(3.2) Sn(z) = az2"
k=0

Let A = (anx) be any regular matrix transformation. The matrix A transforms the
sequence {S,(z)} defined by (3.2) into the sequence {A4,(2)}, where

An(2) =) ankSk(2).
k=1

By the regularity of the matrix A, the sequence {4, } converges compactly to f on I.In
addition, it may happen that some subsequences of {A,} converge in |z| > 1 (for an
example see [3]).

One of the main results which will be proved in the next section is the following:

Theorem 3.1. Let A = (an) be any regular matriz transformation and U be an
open netghborhood of a point z; such that |z1| > 1. If the power series (3.1) is
overconvergent to a limit function F', then there exists an elongation of the sequence
(3.2) which is compactly A—summable in U to the function F.

The other result gives a partially converse of the above-mentioned theorem.

Theorem 3.2. Let (R,p,) be any regular Riesz method. Suppose that (3.1) has an
analytic continuation and that there exists an elongation of the sequence (8.2) such
that its sequence of (R, p,) means converges compactly in an open set U outside the
unit disk. Then, the power series (3.1) is overconvergent.

Drobot [1] and Gharibyan and Luh [3] proved, separately, these theorems for Cesaro
means of order o = 1 so that for all the Cesaro methods C,, @ > 1, instead of the regular
matrix transformation A = (a ). Luh and Stepanyan [2] interested in the same problem
for power series with radius of convergence zero using Cesaro methods. Especially, for
the same problem, Luh and NieR in [4] considered Faber series instead of power series.
They investigated the equivalence between the overconvergence of a Faber series and the
existence of an elongation of the partial sums of the Faber series whose Cesaro summable.

4, PROOFS OF MAIN RESULTS

4.1. Proof of Theorem 3.1. Before giving the proof of Theorem 3.1, we first prove a
general theorem on the A—summability for arbitrary sequences {f,} of functions which
are defined and compactly bounded on an open set U C C (i.e. for every compact set
B C U and every n € N there exists a constant K, such that |f,(2)| < K, for all z € B.)
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Theorem 4.1. Let A = (an k) be any regular matriz transformation, U C C be an
open set and suppose that {f,} ts a sequence of functions which are defined and
compactly bounded on U. If there exists a subsequence {fn,} which is compactly
convergent on U to a limit function F, then there exists an elongation of {fn}
which s compactly A—summable on U to the function F.

Proof. The open set U can be exhausted by a sequence {B,} of compact sets with the
property that B,, C B,11 C U for all n € N and that for every compact set B C U there
exists a positive integer ng = no(B) with B C By, (see [15, p.285]).

Assume that there exists a monotone increasing sequence {n;} of positive integers such
that {fn,} is compactly convergent on U to the limit function F'. Let {ez} be a sequence
of positive integers which will be determined later. We now elongate the sequence {f,}
to the sequence {]Tn} where the terms f,, for £k > 1 are listed ¢ + 1 times while the
others remain unchanged, i.e.

{fn} = (f17 f2y ceey fn1717 f‘n1)fn1¥"’$ f’n17fn1+l) cey fnkfly fnk7fnka "')fnk)"’)'
—_— —_—
€1+1—times €x+1—times

If we denote the nth term of the transformation of the elongated sequence {ﬁ} under
the matrix A by A,, then

ni1+e€1

Zanva Za’nufu Z an,ufnl(z)
v=ni+1
na+e2

+ Z Anpte fu(z Z Anpter fra(2) +
v=ni+1 v=nos+1

ng Nk+e€k
+ Z At 1 fu(z Z Qw1 i (2) +
v=nr_1+1 v=ni+1

Z Z An,v+Br_1 (fll(z) - f'nk (Z)) + Z an,ugy(z),

k=1lv=np_1+1

k
where fr = > €, and {g,} is an elongation of {f,, }, that is

v=1

{gV} = (fnmf‘nla""fn1)fn27fn2)"'af‘nz)“ﬂ fnkafnk;-“rfnk a)

ni1+e;—times No—ni+ez—times Ng—"Nk_1+ex—times

Since the subsequence {f,,} of {f,} converges compactly to the function F on U, then
the m—elongation of {fn,}, {gx} is so, where m = {my} = {nx — nx_1 + €x}. By the
regularity of the matrix A = (a, ), the sequence {h,} defined by

)
= Z Qn,v9v (z)
v=1

converges compactly to the function F on U. If we prove that

ST tnpas s (Fo(2) — Fan2)

k=lv=np_1+1
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tends to zero, when n — oo, the assertion follows. Let {7,} be a sequence of nonnegative
numbers which tends to zero. Let us now choose the natural numbers €, &k € N, such
that for each k£ > 1 the inequality

Nk

Tn
(41) >> lanwrol € 3
v=ng_1+1
holds, where
My = max sup |fu(2)|-

ne—1+1<v<nk 2B,
Consequently, by the inequality (4.1) it is obtained that

U2

[ee]
Z 2My, Z |anu+6: 1]
k=1

v=ng_1+1
1 oo ’y
n
pREITATIEY g
v=1 k=2

n1
= Z 2M1|an,v| + Tn.

v=1

5 ansin s (52— fun(2)]

k=1v=np_1+1

IN

IA

By the fact that -y, tends to zero, when n — oo and by (2.3), we have the desired result.
The proof is complete. O

The following theorem gives overconvergence phenomena on the sequence of the partial
sums of a power series.

Theorem 4.2. Given a simply connected domain Gg with D C Gy, H_))¢ Gp, an
open set Uy C G§ with simply connected components and a function f which is
holomorphic on Uy. Then there exists a holomorphic function fo on Go with power
series expansion

o0 n
1
4.2 z) = anz" with limsup|a,|™ =1, Sn(z) = anz”
4y S&=3 msup an| @=3

and a subsequence {S,, } of {Sn} converges compactly on the open set U := Go U Uq
to the function
fo(z) of  z€Go
F(z):= .
(2) {f(z) if z € Up.

For the proof see [5].
The following theorem gives the proof of Theorem 3.1.

Theorem 4.3. Consider the power series (4.2) from Theorem 4.2. Then there exists
an elongation of the sequence of its partial sums which is compactly A—summable
on U to the function F.

Proof. The sequence of partial sums of the considered power series obviously satisfies all
assumptions of Theorem 4.1. |
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Remark. If we consider Cesaro Matrix of order o instead of the matrix A in Theorem
4.1 and Theorem 4.3, we obtain Theorem 1 and Theorem 2 in [3], respectively.

4.2. Proof of Theorem 3.2. Let f(z) = > oo, anz™ be a power series with radius of
convergence 1 and partial sums S,(2) = >.,_,axz". Let (R,p,) be any regular Riesz
matrix transformation, that is lim,,_,., P, = 00, where P, = pg + p1 + ... + Pn, 0o > 0.

Suppose that there exists an m = {m,}52, elongation of the sequence {S,(2)} such
that its sequence of the Riesz means converges compactly in an open set U outside the
unit disk, that is, the sequence {R,(z)} defined by

1 < =
Rn(z) = B ZPkSk(z),
" k=0

where
{gk(z)} = (SO7 ‘807 sty SO7 Sly Sl7 ) ‘817 sy Sny STH sy Sny )7

mo—times m1—times m,—times

is convergent uniformly on every compact subset of U.
Let us consider that a special subsequence of these (R, p,) Riesz means has the form

1 n ,kal n Mk 1
m@ =g | X o) se =2 (1- 2wt

v=PFk—1 k=0

where
k Bn—1
ﬂkzzmm B-1=0; M, = Z Pv, M_; =0.
v=0 v=0

Thus, if f has an analytic contiunation, the proof of Theorem 3.2 is the same with the
proof of Theorem 7 in [3], since lim,, 0o My, = 0. So we did not repeat it here.

Remark. If we take p, = 1 for each n = 0,1,2,..., we get Theorem 7 in [3] from
Theorem 3.2.
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