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ON A RELATION BETWEEN OVERCONVERGENCE AND

SUMMABILITY OF POWER SERIES

TUNCAY TUNÇ1 AND MEHMET KÜÇÜKASLAN

Abstract. In this paper, some relationships between the overconvergence of power
series and the existence of an elongation of the sequence of the partial sums of the
series, whose some regular matrix transformations converge, are investigated.

1. Introduction

Let f(z) =
P1

n=0 anz
n be a power series with radius of convergence 1 and partial sums

Sn(z) =
Pn

k=0 akz
k. It is well known that the sequence of the partial sums fSng

1
n=0 is

uniformly convergent to a holomorphic function f on each compact subset of the unit

disk D := fz : jzj < 1g and divergent for all z, where jzj > 1. It is also known that it

can be constructed such a power series with the property that a certain subsequence of

fSng converges to f on the open sets from exterior of the unit disk where the function

f is regular [10]. This is the phenomenon of overconvergence. The following theorem

gives a relation between the overconvergence of the power series and the existence of an

elongation of fSng the sequence of the partial sums whose arithmetic means converge.

Theorem 1.1 (Drobot [1]). Let U be an open neighborhood of a point z1 such that

jz1j > 1. Then, the sequence of the partial sums of the power series with radius of

convergence 1, can be elongated to become (C; 1) summable in U if and only if it is

overconvergent on U .

In this paper, our aim is to investigate the equivalence between the overconvergence

of the power series and the existence of an elongation of fSng the sequence of the partial

sums whose some regular matrix transformations converge.

1corresponding author
2010 Mathematics Subject Classi�cation. 30B30, 30B40, 40A25, 40G05.
Key words and phrases. Elongation, Overconvergence, Regular matrix transformations, Riesz means,

Analytic continuation.

15



16 T. TUNÇ AND M. KÜÇÜKASLAN

2. Preliminaries

2.1. Overconvergence of Power Series. Let

(2.1)

1X
n=0

anz
n

be a power series with radius of convergence 1, i.e.

lim sup
n!1

janj
1
n = 1:

Let Sn be the nth partial sum of the series (2.1). It is well known that the sequence of

the partial sums fSng
1
n=0 is uniformly convergent to a holomorphic function f on each

compact subset of the unit disk D := fz : jzj < 1g and divergent for all z, where jzj > 1.

It is also known that it can be constructed such a power series with the property that

a certain subsequence of fSng converges to f on the open sets from exterior of the unit

disk where the function f is regular [10]. This is the phenomenon of overconvergence.

A power series in (2.1) is called overconvergent if there exists an open set U �

fz : jzj � 1g and a monotone increasing sequence of positive integers fnkg such that

fSnkg converges compactly on U . In the special case that also U \ fz : jzj � 1g 6= ; then

fSnkg generates an analytic continuation of the sum of the series in (2.1) on the unit

disk.

The concept of overconvergence was discovered by Porter [10]. After then, it was

investigated by Ostrowski [6, 7, 8, 9] and used to characterize the best approximation of

polynomials to analytic functions by Walsh [11]. For details, we refer to Hille's book [12,

Sec. 16.7].

2.2. Elongation of Sequences. Let m = fmngn2N be an arbitrary sequence of positive

integers. It is called that a sequence fSng
1
n=0 is being elongated with respect to the

sequence m = fmngn2N if for each n the term Sn is listed mn�times, i.e. if it is written

by the following way:

(2.2) (S1; S1; :::; S1| {z }
m1�times

; S2; S2; :::; S2| {z }
m2�times

; :::; Sn; Sn; :::; Sn| {z }
mn�times

; :::):

The sequence (2.2) is called m�elongation of fSng. It is obvious that the sequence fSng

is convergent if and only if any m� elongation of fSng is convergent with the same limit.

2.3. A-Summability. Let A = (an;k)(n; k = 1; 2; 3; :::) be an in�nite matrix of real (or

complex) numbers. A sequence (Sn) of real (or complex) numbers is said to be summable

to a number S by the method A = (an;k), shortly A-summable to S, if the limit relation

lim
n!1

1X
k=1

an;kSk = S

holds, and it is written as A� limn!1Sn = S. The matrix A = (an;k) is called regular

if it transforms convergent sequences to convergent sequences with the same limit.
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It is well known that the matrix A = (an;k) is regular if and only if it satis�es the

following conditions (see [13, p. 142], also [14]):

(i) There exists a constant M > 0 such that
1P
k=1

jan;kj �M; for each n = 1; 2; 3; :::;

(ii) For each positive integer k,

(2.3) lim
n!1

an;k = 0;

(iii) limn!1

1P
k=1

an;k = 1:

Cesaro Matrices : The Cesaro means C� of order � � 1 which transform the given

sequence fSng into the sequence

��n =
1�

n+�

n

� nX
k=0

�
n� k + �� 1

n� k

�
Sk;

have the matrix representation
�
a�n;k

�
de�ned by

a�n;k =

8<
:

(n�k+��1n�k )
(n+�n )

if k � n

0 if k > n:

For � = 1 we obtain the arithmetic means of fSng as

�n = �1n =
1

n+ 1

nX
k=0

Sk:

The matrices
�
a�n;k

�
are called the Cesaro matrices of order �; and they are regular for

all positive integers � [14, p.33].

Riesz Matrices : Suppose that fpng is a sequence of non-negative numbers which are

not all 0 and put

Pn = p0 + p1 + :::+ pn; p0 > 0:

The transformation of fSng given by

Rn =
1

Pn

nX
k=0

pkSk

is called as the Riesz mean (R; pn). The matrix representation of the (R; pn) mean is

de�ned as follows

rn;k =

� pk
Pn

if k � n

0 if k > n:

If we take pn = 1 for all n 2 N, then (R; pn) coincide with the Cesaro means C1. Besides,

(R; pn) is regular if and only if limn!1Pn =1 [14].
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3. Main Results

Let us consider a power series

(3.1) f(z) =

1X
n=0

anz
n with lim sup

n!1
janj

1
n = 1

and denote its partial sums as follows

(3.2) Sn(z) =

nX
k=0

akz
k

Let A = (an;k) be any regular matrix transformation. The matrix A transforms the

sequence fSn(z)g de�ned by (3.2) into the sequence fAn(z)g, where

An(z) =

1X
k=1

an;kSk(z):

By the regularity of the matrix A, the sequence fAng converges compactly to f on D.In

addition, it may happen that some subsequences of fAng converge in jzj > 1 (for an

example see [3]).

One of the main results which will be proved in the next section is the following:

Theorem 3.1. Let A = (an;k) be any regular matrix transformation and U be an

open neighborhood of a point z1 such that jz1j > 1. If the power series (3.1) is

overconvergent to a limit function F , then there exists an elongation of the sequence

(3.2) which is compactly A�summable in U to the function F .

The other result gives a partially converse of the above-mentioned theorem.

Theorem 3.2. Let (R; pn) be any regular Riesz method. Suppose that (3.1) has an

analytic continuation and that there exists an elongation of the sequence (3.2) such

that its sequence of (R; pn) means converges compactly in an open set U outside the

unit disk. Then, the power series (3.1) is overconvergent.

Drobot [1] and Gharibyan and Luh [3] proved, separately, these theorems for Cesaro

means of order � = 1 so that for all the Cesaro methods C�, � � 1, instead of the regular

matrix transformation A = (an;k). Luh and Stepanyan [2] interested in the same problem

for power series with radius of convergence zero using Cesaro methods. Especially, for

the same problem, Luh and Nieÿ in [4] considered Faber series instead of power series.

They investigated the equivalence between the overconvergence of a Faber series and the

existence of an elongation of the partial sums of the Faber series whose Cesaro summable.

4. Proofs of Main Results

4.1. Proof of Theorem 3.1. Before giving the proof of Theorem 3.1, we �rst prove a

general theorem on the A�summability for arbitrary sequences ffng of functions which

are de�ned and compactly bounded on an open set U � C (i.e. for every compact set

B � U and every n 2 N there exists a constant Kn, such that jfn(z)j � Kn for all z 2 B.)
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Theorem 4.1. Let A = (an;k) be any regular matrix transformation, U � C be an

open set and suppose that ffng is a sequence of functions which are de�ned and

compactly bounded on U . If there exists a subsequence ffnkg which is compactly

convergent on U to a limit function F , then there exists an elongation of ffng

which is compactly A�summable on U to the function F .

Proof. The open set U can be exhausted by a sequence fBng of compact sets with the

property that Bn � Bn+1 � U for all n 2 N and that for every compact set B � U there

exists a positive integer n0 = n0(B) with B � Bn0 (see [15, p.285]).

Assume that there exists a monotone increasing sequence fnkg of positive integers such

that ffnkg is compactly convergent on U to the limit function F . Let f�kg be a sequence

of positive integers which will be determined later. We now elongate the sequence ffng

to the sequence f efng where the terms fnk for k � 1 are listed �k + 1 times while the

others remain unchanged, i.e.

f efng = (f1; f2; :::; fn1�1; fn1 ; fn1 ; :::; fn1| {z }
�1+1�times

; fn1+1; :::; fnk�1; fnk ; fnk ; :::; fnk| {z }
�k+1�times

; :::):

If we denote the nth term of the transformation of the elongated sequence f efng under

the matrix A by An, then

An(z) :=

1X
�=1

an;� ef�(z) = n1X
�=1

an;�f�(z) +

n1+�1X
�=n1+1

an;�fn1(z)

+

n2X
�=n1+1

an;�+�1f�(z) +

n2+�2X
�=n2+1

an;�+�1fn2(z) + :::

+

nkX
�=nk�1+1

an;�+�k�1f�(z) +

nk+�kX
�=nk+1

an;�+�k�1fnk(z) + :::

=

1X
k=1

nkX
�=nk�1+1

an;�+�k�1 (f�(z)� fnk(z)) +

1X
�=1

an;�g�(z);

where �k =
kP

�=1

�� and fg�g is an elongation of ffn�g, that is

fg�g = (fn1 ; fn1 ; :::; fn1| {z }
n1+�1�times

; fn2 ; fn2 ; :::; fn2| {z }
n2�n1+�2�times

; :::; fnk ; fnk ; :::; fnk| {z }
nk�nk�1+�k�times

; :::):

Since the subsequence ffnkg of ffng converges compactly to the function F on U , then

the m�elongation of ffnkg, fgkg is so, where m = fmkg = fnk � nk�1 + �kg. By the

regularity of the matrix A = (an;k), the sequence fhng de�ned by

hn(z) :=

1X
�=1

an;�g�(z)

converges compactly to the function F on U . If we prove that

1X
k=1

nkX
�=nk�1+1

an;�+�k�1 (f�(z)� fnk(z))
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tends to zero, when n!1, the assertion follows. Let fng be a sequence of nonnegative

numbers which tends to zero. Let us now choose the natural numbers �k, k 2 N, such

that for each k > 1 the inequality

(4.1)

nkX
�=nk�1+1

jan;�+�k�1 j �
n

Mk2k

holds, where

Mk = max
nk�1+1���nk

sup
z2Bk

jf�(z)j:

Consequently, by the inequality (4.1) it is obtained that

j
1X
k=1

nkX
�=nk�1+1

an;�+�k�1 (f�(z)� fnk(z)) j �
1X
k=1

2Mk

nkX
�=nk�1+1

jan;�+�k�1 j

�
n1X
�=1

2M1jan;� j+
1X
k=2

n

2k�1

=

n1X
�=1

2M1jan;� j+ n:

By the fact that n tends to zero, when n!1 and by (2.3), we have the desired result.

The proof is complete. �

The following theorem gives overconvergence phenomena on the sequence of the partial

sums of a power series.

Theorem 4.2. Given a simply connected domain G0 with D � G0,
�

D6� G0, an

open set U0 � Gc
0 with simply connected components and a function f which is

holomorphic on U0. Then there exists a holomorphic function f0 on G0 with power

series expansion

(4.2) f(z) =

1X
n=0

anz
n with lim sup

n!1
janj

1
n = 1; Sn(z) =

nX
k=0

anz
n

and a subsequence fSnkg of fSng converges compactly on the open set U := G0 [ U0
to the function

F (z) :=

�
f0(z) if z 2 G0

f(z) if z 2 U0:

For the proof see [5].

The following theorem gives the proof of Theorem 3.1.

Theorem 4.3. Consider the power series (4.2) from Theorem 4.2. Then there exists

an elongation of the sequence of its partial sums which is compactly A�summable

on U to the function F .

Proof. The sequence of partial sums of the considered power series obviously satis�es all

assumptions of Theorem 4.1. �
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Remark. If we consider Cesaro Matrix of order � instead of the matrix A in Theorem

4.1 and Theorem 4.3, we obtain Theorem 1 and Theorem 2 in [3], respectively.

4.2. Proof of Theorem 3.2. Let f(z) =
P1

n=0 anz
n be a power series with radius of

convergence 1 and partial sums Sn(z) =
Pn

k=0 akz
k. Let (R; pn) be any regular Riesz

matrix transformation, that is limn!1 Pn =1, where Pn = p0 + p1 + :::+ pn; p0 > 0.

Suppose that there exists an m = fmng
1
n=0 elongation of the sequence fSn(z)g such

that its sequence of the Riesz means converges compactly in an open set U outside the

unit disk, that is, the sequence fRn(z)g de�ned by

Rn(z) =
1

Pn

nX
k=0

pk eSk(z);
where

feSk(z)g = (S0; S0; :::; S0| {z }
m0�times

; S1; S1; :::; S1| {z }
m1�times

; :::; Sn; Sn; :::; Sn| {z }
mn�times

; :::);

is convergent uniformly on every compact subset of U .

Let us consider that a special subsequence of these (R; pn) Riesz means has the form

�n(z) =
1

Mn

nX
k=0

0
@ �k�1X
�=�k�1

p�

1
ASk(z) =

nX
k=0

�
1�

Mk�1

Mn

�
akz

k;

where

�k =

kX
�=0

m� ; ��1 = 0; Mn =

�n�1X
�=0

p� ; M�1 = 0:

Thus, if f has an analytic contiunation, the proof of Theorem 3.2 is the same with the

proof of Theorem 7 in [3], since limn!1Mn =1. So we did not repeat it here.

Remark. If we take pn = 1 for each n = 0; 1; 2; :::, we get Theorem 7 in [3] from

Theorem 3.2.
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