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SYMMETRY ANALYSIS AND INVARIANTS SOLUTIONS OF

LAPLACE EQUATION ON SURFACES OF REVOLUTION

AMINU M. NASS

Abstract. One of the applications of symmetry method of di�erential equation is
�nding the invariants solution of linear and non-linear di�erential equations. In this
paper we considered Laplace equation on surfaces of revolution and discuss the sym-
metry algebra based on classical Lie symmetry theory. Symmetry reductions are
applied in order to obtain new harmonic functions on surfaces of revolution using the
Lie point symmetries.

1. Introduction

Most of the real life problems in the �eld of applied mathematics are modeled with

di�erential equations in various form. The di�culty of the di�erential equation depends

on the nature of the problem and the accuracy of the model used. But generally, physicist

conclude nature is non-linear. Nowadays must researchers involve in solving mathematical

physics problems, focus on �nding the solution of di�erential equation involved. But up to

now there is no unique method of �nding the analytical solution of di�erential equations.

The method of studying di�erential equations using their symmetries was introduced

by Sophus Lie, who also founded the theory of in�nitesimal transformations and Lie

groups. Lie's classical approach is based on �nding a symmetry group associated with

the di�erential equation. This is a local Lie group of point transformations on the space

of independent and dependent variables of di�erential equation that maps solutions to

solutions. The classical method of Lie allows computing the symmetry group associated

to a given di�erential equation. This symmetry group can further be used for many

important applications in the context of di�erential equations. For instance, for

� Determination of group invariant or similarity solutions

� Reduction of order of ordinary di�erential equations

� Reduction of partial di�erential equations (PDEs)(reduction in the number of

independents variables)

� Construction of new solutions from old solutions.
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Hence, Lie symmetry method is a powerful method for analyzing and �nding the solutions

of PDEs. A large amount of literature about the classical Lie symmetry theory, its

applications and its extensions is available e.g. [1, 2, 3, 4, 7, 10, 13, 15, 5, 6, 9] The

motivation of writing this paper come from the fact that, the symmetry properties and

reductions of most of the important equations of mathematical physics, with �at and

non-�at background metric, have been well investigated e.g. some studies of wave and

heat equation, using symmetries, on speci�c cases of surfaces of revolution such as sphere,

torus, cone and hyperbolic space have also been carried out recent in papers [1, 2, 3, 4, 14].

We extend the same method to study symmetry and use them to �nd harmonic functions

on surfaces of revolution. Which are important in the �eld of science.

2. Preliminaries

In this section we give some basic de�nitions from di�erential geometry [11], [12], [8].

Surface of revolution obtained by rotating a plane curve about an axis a form a large

class of surfaces.

De�nition 2.1. A parameterized surface X : D ! R
3 is a smooth function of an

open set D � R
2 into R3, de�ned by

X(u; v) = (X1(u; v); X2(u; v); X3(u; v)):

De�nition 2.2. Let X(x; y) : D � R
2 ! R

3 be a regular parametrization of surface

then, the Riemannian metric or �rst fundamental form of the patch X is de�ned by

g = ds2 = Edx2 + 2Fdxdy +Gdy2

with coe�cient of the �rst fundamental form de�ned by

E = Xx�Xx; F = Xx�Xy; G = Xy�Xy:(2.1)

De�nition 2.3. Matrix of First Fundamental form:

Let

g11 = E = Xx�Xx; g12 = F = Xx�Xy; g22 = G = Xy�Xy:(2.2)

Then it is often convenient to put the metric as

g = ds2 = g11dx
2 + 2g12dxdy + g22dy

2

where the symmetric matrix form is de�ned by

g =

�
g11 g12

g21 g22

�
= gij :

The inverse of g is

g�1 =
1

det(g)

�
g22 �g12
�g21 g11

�
= gij ;

with

det(g) = g11g22 � g212:
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De�nition 2.4. For any metric g, the Laplacian on (S; g) is de�ned by

�u =
1p
j g j

@

@xi
(
p
j g jgij

@

@xj
(u))

To formulated the problem we consider a surfaces of revolution generated by revolving

a unit speed pro�le curve with metric given by

(2.3) g = dx2 + e2f(x)dy2:

Therefore, using the de�nition of Laplacian on Riemannian manifolds (2.4), Laplace equa-

tion on surfaces of revolution with metric (2.3) is given by

(2.4) f 0(x)ux + uxx + e�2f(x)uyy = 0 :

3. Objectives of the research

We consider Laplace equation

f 0(x)ux + uxx + e�2f(x)uyy = 0 ;

on surfaces of revolution parameterized by:

(3.1) X(x; y) = (v(x); ef(x) cos (y); ef(x) sin (y)) :

The main objectives to be achieved are:

(1) Obtain the determining equations for the symmetries of (2.4).

(2) Finding the Lie symmetries algebra of (2.4).

(3) Finally use the symmetries to obtain the symmetry reduction and �nd the exact

solutions.

4. Symmetries algebra of Laplace equation on surfaces of revolutions

To obtain a Lie symmetries of Laplace equation

f 0(x)ux + uxx + e�2f(x)uyy = 0

on the surface of revolution, we consider a one parameter lie group of in�nitesimal trans-

formations in (x; y; u) given by:

x� = x+ ��(x; y; u) +O(�) ;

y� = y + �� (x; y; u) +O(�) ;

u� = u+ ��(x; y; u) +O(�) ;

where � is the parameter of the group, therefore the corresponding generator of the Lie

algebra is of the form:

(4.1) X = �(x; y; u)
@

@x
+ � (x; y; u)

@

@y
+ �(x; y; u)

@

@u
:

If X [2] represent the second prolongation of X, then using the invariance criterion:

(4.2) X [2](f 0(x)ux + uxx + e�2f(x)uyy)juxx=�e�2f(x)uyy�f 0(x)ux = 0 ;
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and comparing the coe�cient of u and its derivative gives the following system of eight

determining equations:

e1 : �xfx + �xx + �yye
�2f(x) = 0 ;

e2 : �fxx + �xfx + 2�ux � �xx � �yye
�2f(x) = 0 ;

e3 : 2e�2(x)�uy � �xfx � �xx � �yye
�2(x) = 0 ;

e4 : �x + e�2(x)�y = 0 ;

e5 : �uu = 0 ;

e6 : �u = 0 ;

e7 : �u = 0 ;

e8 : ��fx + �x � �y = 0 :

Using (e4)x � e�2f(x)(e8)y gives

e9 : �e�2(x)�yfx + �xx + e�2(x)�yy = 0 :

Putting e9 in e3 gives

e10 : �uy = 0 :

From (e4)y + (e8)x gives:

e11 : ��fxx + �xx + �yye
�2(x) � �xfx = 0 :

Putting (e11) in e2 gives:

e12 : �ux = 0 :

Therefore, from e5, e10 and e12 we can conclude that:

(4.3) � = au+ g(x; y) :

So the symmetry algebra of Laplace equation

f 0(x)ux + uxx + e�2f(x)uyy = 0 ;

on surfaces of revolution is in�nite dimensional generated by

X = �(x; y)
@

@x
+ � (x; y)

@

@y
+ �(x; y; u)

@

@u
;

where � = � (x; y) is a harmonic function on M2 satisfying:

(4.4) e�2f(x)�yy + �xx + fx�x = 0 ;

and the function � = �(x; y) is given by the following relations:

(4.5) �x � �fx � �y = 0 ;

(4.6) �ye
�2f(x) + �x = 0 :

Finally, we can say that any solution of (4.4) can gives a symmetry algebra of Laplace

equation on surfaces of revolution and the result can be summarized as in the following

theorem.

Theorem 4.1. Let M2 be a surface of revolution with parametrization

X(x; y) = (v(x); ef(x) cos(y); ef(x) sin(y)) ;

then the symmetry algebra of Laplace equation

f 0(x)ux + uxx + e�2f(x)uyy = 0
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on M2 is in�nite dimensional algebras generated by

X = �(x; y)
@

@x
+ � (x; y)

@

@y
+ �(x; y; u)

@

@u
;

where � (x; y) is a harmonic function on M2 satisfying the relation

e�2f�yy + �xx + fx�x = 0 :

The function �(x; y) is given by the relations

��fx + �x � �y = 0 ;

e�2f�y + �x = 0 ;

and the function �(x; y; u) is given by � = au+ g(x; y) :

5. Symmetries Algebra of Laplace equation on surfaces of revolution for

simpler forms of � (x; y)

In this section we provide example of symmetries algebras of Laplace equation on

surfaces of revolution using simple solutions of (4.4).

5.1. For � = constant = k. Here we have two cases.

5.1.1. For � = constant = k and � = 0. The symmetries algebras are:

X1 =
@

@y
; X2 = u

@

@u
; Xg = g(x; y)

@

@u
:

5.1.2. For � = constant = k and � 6= 0. Using (4.6) � = �(x) and from (4.5) we have:

(5.1) ��fx + �x = 0 :

Solving (5.1) gives �(x) = k2e
f(x): Therefore the symmetries algebras are

X1 = ef(x)
@

@x
; X2 =

@

@y
; X3 = u

@

@u
; Xg = g(x; y)

@

@u
:

5.2. For � = � (y) and � 6= 0. From (4.4) we have:

� = k1y + k2 :

Using (4.6) and (4.5) we have:

(5.2) � = k1e
f(x)

Z
e�f(x)dx+ k3e

f(x) :

Therefore the symmetries algebras are:

X1 = (y
@

@y
+ ef(x)

Z
e�f(x)dx

@

@x
); X2 =

@

@y
;

X3 = ef(x)
@

@x
X4 = u

@

@u
; Xg = g(x; y)

@

@u
:
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5.3. For � = � (x) and � 6= 0. From (4.4) we have:

(5.3) � (x) = k1

Z
e�f(x)dx+ k2 :

Substituting (5.3) in (4.6) gives:

(5.4) �y(x; y) + k1e
f(x) = 0 :

Solving (5.4) and (4.5) simultaneously and using (5.3) gives:

(5.5) � = �k1ye
f(x) + k3e

f(x) :

Therefore the symmetries are:

X1 = (

Z
e�f(x) @

@y
� yef(x)

@

@x
); X2 =

@

@y

X3 = ef(x)
@

@x
Xu = u

@

@u
; Xg = g(x; y)

@

@u
:

6. Symmetry reductions and invariant solutions

In this section we give symmetry reduction of Laplace equation on surfaces of revolution

and solve the reduced PDE to �nd harmonic functions on surfaces of revolution using the

standard method of similarity of variables.

6.1. Reductions and exact solutions for � = constant = k, � = 0.

6.1.1. Subalgebra h 1
a
X1 +

1
b
X2i . Similarity variables are:

z(x; y) = x; u = V (z)e
ay

b :(6.1)

Substituting (6.1) in (2.4) we have the reduction as:

(6.2) V
00

(z) + f
0

(z)V
0

(z) +
a2

b2
e�2f(z)V (z) = 0 :

This ODE has a symmetry X = V
@

@V
which reduces (6.2) to Riccati equation:

(6.3)
dw(t)

dt
= �w2(t)� w(t)

df(t)

dt
�
a2

b2
e�2f(t) :

Solving (6.3) we have:

w(t) = �

tan

�
a
R

e�f(z)dz+c1b

b

�
a

bef(t)
;

and changing variables we have:

V (z) = cos

 
a
R
e�f(z)dz + c1b

b

!
c2 :

Therefore the solution is:

u(x) = e
ay

b cos

 
a
R
e�f(x)dx+ c1b

b

!
c2 :
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6.1.2. Subalgebra h 1
a
X1 +

1
b
Xg=(cy+d)i . Similarity variables are:

z(x; y) = x; u = V (z) +
a

b
(
cy2

2
+ yd) :(6.4)

Substituting (6.4) in (2.4) we have the reduction as:

(6.5) V 00(z) + V 0(z)f 0(z) +
ac

b
e�2f(z) = 0 :

Solving this second order ODE by letting q(x) = V
0

(x) and using integrating factor we

have:

V (z) =

Z  
�

�
ad
�R

e�f(z) dz
�
� c1b

�
e�f(z)

b

!
dz + c2 :

Changing the variables gives us harmonic function:

u (x; y) =

Z  
�

�
ad
�R

e�f(x) dx
�
� c1b

�
e�f(x)

b

!
dx+ c2 +

a
�
1
2cy

2 + dy
�

b
:

6.2. Reductions and exact solutions for � = Constant = k and � 6= 0.

6.2.1. Subalgebra h 1
a
X1 +

1
b
X3i . Similarity variables are:

z(x; y) = y; u (x; y) = V (z) e
a

�R
e
�f(x)

dx

�
b :(6.6)

Substituting (6.6) in (2.4) we have the reduction as:

(6.7) b2V
00

(z) + a2V
0

(z) = 0 ;

which gives:

V (z) = C1 sin
�az
b

�
+ C2 cos

�az
b

�
:

After changing the variables we have the solution of (2.4) as:

u (x; y) =
�
C1 sin

�ay
b

�
+ C2 cos

�ay
b

��
e
a

�R
e
�f(x)

dx

�
b :

6.2.2. Subalgebra h 1
a
X1 +

1
b
X2i . Similarity variables are

z(x; y) = y �
a

b

Z
e�f(x)dx; u = V (z) :(6.8)

Substituting (6.8) in (2.4) we have the reduction as:

(6.9) V
00

(z) = 0 ;

which gives:

V (z) = Az +B :

By charging variables we have:

u = cy �
ac

b

Z
e�f(x)dx+ d :

6.3. Reductions and exact solutions for � = � (y) and � 6= 0.
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6.3.1. Subalgebra h 1
a
X2 +

1
b
X3 +Xg=(cy+d)i . Similarity variables are:

z (x; y) = �
a

b

Z
e�f(x) dx+ y; u(x; y) = V (z) + (cay + ad)

Z
e�f(x)dx :

Substituting in (2.4) we have the reduction as:

(6.10) V
00

(z) = 0 ;

which gives:

(6.11) V (z) = c1z + c2 :

By changing variables we have:

u = c1

�
�a

b

Z
e�f(x) + y

�
+ (acy + ad)

Z
e�f(x)dx+ c2 :

6.3.2. Subalgebra h 1
a
X2 +

1
b
X3 +

1
c
X4i . Similarity variables are:

z (x; y) =
a

b

Z
e�f(x) dx� y; u(x; y) = V (z)e

by

c :

Substituting in (2.4) we have the reduction as:

(6.12) (a2c2 + b2c2)V
00

(z)� 2b3V
0

(z) + b4V (z) = 0 :

Solving the ODE (6.12) and �nding the real solution we have:

u = (c1 + c2)e

ab(ay+b

R
e�f(x)dx)

c(a2+b2) cos

 
ab(ay + b

R
e�f(x)dx)

c(a2 + b2)

!
:

6.3.3. Subalgebra h 1
a
X3 +Xg=(cy+d)i . Similarity variables are:

z (x; y) = y; u (x; y) = V (z) + (aby + ac)

Z
e�f(x) dx :

Substituting in (2.4) we have the reduction as:

V
00

(z) = 0 ;

which gives:

V (z) = c1z + c2 :

Therefore the harmonic function is given by:

u (x; y) = c1y + c2 + (aby + ac)

Z
e�f(x) dx :

7. Conclusion

In this paper we have successfully analyzed the symmetry algebra of Laplace equation

on surfaces of revolution. Symmetries algebras found are utilized to �nd harmonic func-

tions on surfaces of revolution which are of great importance in the �eld of mathematics

such as in electromagnetism, �uid dynamics and astronomy.
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