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SYMMETRY ANALYSIS AND INVARIANTS SOLUTIONS OF
LAPLACE EQUATION ON SURFACES OF REVOLUTION

AMINU M. NASS

ABSTRACT. One of the applications of symmetry method of differential equation is
finding the invariants solution of linear and non-linear differential equations. In this
paper we considered Laplace equation on surfaces of revolution and discuss the sym-
metry algebra based on classical Lie symmetry theory. Symmetry reductions are
applied in order to obtain new harmonic functions on surfaces of revolution using the
Lie point symmetries.

1. INTRODUCTION

Most of the real life problems in the field of applied mathematics are modeled with
differential equations in various form. The difficulty of the differential equation depends
on the nature of the problem and the accuracy of the model used. But generally, physicist
conclude nature is non-linear. Nowadays must researchers involve in solving mathematical
physics problems, focus on finding the solution of differential equation involved. But up to
now there is no unique method of finding the analytical solution of differential equations.
The method of studying differential equations using their symmetries was introduced
by Sophus Lie, who also founded the theory of infinitesimal transformations and Lie
groups. Lie's classical approach is based on finding a symmetry group associated with
the differential equation. This is a local Lie group of point transformations on the space
of independent and dependent variables of differential equation that maps solutions to
solutions. The classical method of Lie allows computing the symmetry group associated
to a given differential equation. This symmetry group can further be used for many
important applications in the context of differential equations. For instance, for

e Determination of group invariant or similarity solutions

Reduction of order of ordinary differential equations

Reduction of partial differential equations (PDEs)(reduction in the number of
independents variables)

Construction of new solutions from old solutions.
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Hence, Lie symmetry method is a powerful method for analyzing and finding the solutions
of PDHEs. A large amount of literature about the classical Lie symmetry theory, its
applications and its extensions is available e.g. [1, 2, 3, 4, 7, 10, 13, 15, 5, 6, 9] The
motivation of writing this paper come from the fact that, the symmetry properties and
reductions of most of the important equations of mathematical physics, with flat and
non-flat background metric, have been well investigated e.g. some studies of wave and
heat equation, using symmetries, on specific cases of surfaces of revolution such as sphere,
torus, cone and hyperbolic space have also been carried out recent in papers [1, 2, 3, 4, 14].
We extend the same method to study symmetry and use them to find harmonic functions
on surfaces of revolution. Which are important in the field of science.

2. PRELIMINARIES

In this section we give some basic definitions from differential geometry [11], [12], [8].
Surface of revolution obtained by rotating a plane curve about an axis a form a large
class of surfaces.

Definition 2.1. A parameterized surface X : D — R® s a smooth function of an
open set D C R? into R3, defined by

X(’LL, ’U) = (Xl(u)v))XQ(u)U))X?)(u’ ’U))

Definition 2.2. Let X(z,y) : D C R? — R® be a regular parametrization of surface
then, the Riemannian metric or first fundamental form of the patch X is defined by

g = ds® = Edz? + 2Fdzdy + Gdy®

with coefficient of the first fundamental form defined by

(2.1) E = X.Xg F=X:-Xy, G=Xy-Xy.
Definition 2.3. Matriz of First Fundamental form:

Let

(22) gi1 = E = XxXx, gdiz2 = F= X$Xy, gao = G= XyXy

Then it is often convenient to put the metric as
g = ds® = g11dz® + 2g12dzdy + gordy®

where the symmetric matriz form is defined by
_ (911 G121\ _
g (921 gzz) 9is-

1 — 22 12 — 4
g det(g) (—921 g1 g

The wnverse of g is

with
det(g) = g11922 — 9%2~
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Definition 2.4. For any metric g, the Laplacian on (S, g) is defined by
1 0 i 0
5 (VTa1e 55 )
To formulated the problem we consider a surfaces of revolution generated by revolving
a unit speed profile curve with metric given by
(2.3) g = dz? + e (@ dy?.

Therefore, using the definition of Laplacian on Riemannian manifolds (2.4), Laplace equa-
tion on surfaces of revolution with metric (2.3) is given by

(2.4) F(@)us + Uge + e 2@y, =0.

3. OBJECTIVES OF THE RESEARCH
We consider Laplace equation
(@)t + tge + e @y, =0,
on surfaces of revolution parameterized by:
(3.1) X(z,y) = (v(z), e’ cos (y), e’ @ sin () .
The main objectives to be achieved are:

(1) Obtain the determining equations for the symmetries of (2.4).

(2) Finding the Lie symmetries algebra of (2.4).

(3) Finally use the symmetries to obtain the symmetry reduction and find the exact
solutions.

4. SYMMETRIES ALGEBRA OF LAPLACE EQUATION ON SURFACES OF REVOLUTIONS
To obtain a Lie symmetries of Laplace equation
(@)t + Ugg + e @y, =0

on the surface of revolution, we consider a one parameter lie group of infinitesimal trans-
formations in (z,y,u) given by:

z* =z + ef(z,y,u) + O(e);
v =y +er(z,y,u) +O(e);
u* =u+ed(z,y,u) + O(e);

where € is the parameter of the group, therefore the corresponding generator of the Lie
algebra is of the form:

0 0 0
(41) X_§($7y7u)87$+T($7y7u)%+¢(x)y)u)87u

If X[2! represent the second prolongation of X, then using the invariance criterion:

(4.2) X[2](f/(a:)u9; + Upe + e_gf(z)uyy)|umm:—e*2f(m)uyy—f’(z)um =0 ,
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and comparing the coefficient of u and its derivative gives the following system of eight
determining equations:

€1 ¢zfz + ¢z:c + ¢yy672f($) =0;

€a ! Efz:c + Ezf:c + 2¢uz - g:ca: - gyyeizf(x) =0,
es: 2672($)¢uy — Tofo — Toz — Tyyefz(x) =0;
es: To+e 2®¢, =0;

es: Puy =0;
es: &u =0;
er: T, =0;

eg: —Efe+& — 1y =0.

Using (e4)s — e 27(®)(eg),, gives

€y : —e_g(z)fyfw + Tpx + 6_2(I)Tyy =0.
Putting eg in ez gives

€10 - ¢uy =0.
From (es)y + (es)s gives:

e11: —&fez + &z + gyyeiz(x) —&fz=0.
Putting (e11) in ey gives:

€12 Puz =0.
Therefore, from es, €15 and e;, we can conclude that:
(4.3) ¢ =au+g(z,y).

So the symmetry algebra of Laplace equation
fl(@)ug + ugy + e_2f(z)uyy =0,

on surfaces of revolution is infinite dimensional generated by

X = éa,9) 2 + (0, v) 2 + d(a,y,u) 2,

Oz dy Ou
where 7 = 7(z,y) is a harmonic function on M? satisfying:
(4.4) efzf(m)Tyy + Tz + 272 =0,

and the function ¢ = £(z,y) is given by the following relations:
(4'5) gm_gfm_TyZO;

(4.6) £,e7@ L1 = 0.

Finally, we can say that any solution of (4.4) can gives a symmetry algebra of Laplace
equation on surfaces of revolution and the result can be summarized as in the following
theorem.

Theorem 4.1. Let M? be a surface of revolution with parametrization
X(2,y) = (v(z), e’ cos(y), e/ sin(y)),
then the symmetry algebra of Laplace equation

F(@)uy + gy + efzf(x)uyy =0
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on M? is infinite dimensional algebras generated by

0 0 0
X = g(w)y)aim + T($7y)aiy + ¢($7y)u)a H

where 7(z,y) is a harmonic function on M? satisfying the relation
e 2 Ty + Tup + foTe = 0.
The function £(z,y) s given by the relations
—Efet&—Ty=0;
e e+ =0,
and the function ¢(z,y,u) ts given by ¢ = au + g(z,v) .

5. SYMMETRIES ALGEBRA OF LAPLACE EQUATION ON SURFACES OF REVOLUTION FOR
SIMPLER FORMS OF 7(z,y)

In this section we provide example of symmetries algebras of Laplace equation on
surfaces of revolution using simple solutions of (4.4).

5.1. For 7 = constant = k. Here we have two cases.

5.1.1. For T = constant = k and £ = 0. The symmetries algebras are:

d] 8 d]
X = — Xo = u— X, = —_—.
1 ay) 2 uau7 g g(w)y)au
5.1.2. For T = constant = k and £ # 0. Using (4.6) £ = £(z) and from (4.5) we have:
(5.1) —&fe+& =0.
Solving (5.1) gives £(z) = koef(®). Therefore the symmetries algebras are
0 0 0 0
X, =ef® Xy = = Xs=u—, X,= —.
1 € 6$7 2 ayy 3 u6u7 g g(m7y)au

5.2. For 7 = 7(y) and £ # 0. From (4.4) we have:
T = kly + kg .
Using (4.6) and (4.5) we have:

(5.2) £ =k ef® /e*f(””)da: + kgel®)
Therefore the symmetries algebras are:

3} 9 5}
X = (g2 f(w)/ 1@ gy 2 Xy = 2
1 (yay +e € m6$)7 2 6y7
8 3} 5}
X3 = ef(w)% Xy = Uy Xy =9g(z,y)—
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5.3. For 7 = 7(z) and ¢ # 0. From (4.4) we have:

(5.3) T(z) = k1 /e*f(x)da: + ks .
Substituting (5.3) in (4.6) gives:

(5.4) y(z,y) + kref® =0,
Solving (5.4) and (4.5) simultaneously and using (5.3) gives:
(5.5) ¢ = —kiye/® 4 kzef @)

Therefore the symmetries are:

0 o 0
_ —fx) & of(2) 2 - <
X4 (/e By ye Gm)’ X5 By

0 0 0
Xz3=e 52 Xu u@u’ Xy =9(z,y) 5

6. SYMMETRY REDUCTIONS AND INVARIANT SOLUTIONS

In this section we give symmetry reduction of Laplace equation on surfaces of revolution
and solve the reduced PDE to find harmonic functions on surfaces of revolution using the
standard method of similarity of variables.

6.1. Reductions and exact solutions for 7 = constant = k, £ = 0.
6.1.1. Subalgebra (£ X; + 1 X,). Similarity variables are:

(6.1) z(z,y) = =z, uw="V(z)e? .

Substituting (6.1) in (2.4) we have the reduction as:

(6.2) V') + f (2)V (2) + Z—jng(z)V(z) =0.

. = 0 . . . .
This ODE has a symmetry X = VW which reduces (6.2) to Riccati equation:

Solving (6.3) we have:
a e T®dz4c
tan (fbd“) .
w(t) = —

bef(t) !

and changing variables we have:

—f(2)4 b
V(z) = cos <afe ; zra >C2.

Therefore the solution is:

u(z) = e cos <

afe‘f(”)dx + clb>
b Co .
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6.1.2. Subalgebra (X1 + §X—(cy1q)) - Similarity variables are:

a  cy?

(6.4) ey =, w=V(E)+ oL +yd).
Substituting (6.4) in (2.4) we have the reduction as:
(6.5) V(z) + V'(2)f(2) + %e—W) -0.

29

Solving this second order ODE by letting g(z) = V,((B) and using integrating factor we

have:

b

Changing the variables gives us harmonic function:

V= [ (_ (ad (f &) dz) — c18) ef(”) do+ .

d([ e 1@ dg) — ¢;b) e~f@) ley? +d
u(x,y):/<_(a (J /) da) —cit) e >dm+c2+a<2cy vy

b b

6.2. Reductions and exact solutions for 7 = Constant = k and £ # 0.

6.2.1. Subalgebra (1X; + $X3) . Similarity variables are:

af [ e—F@ dm)

(6.6) z2(zy) =y, ulz,y)=V(z)e” 7
Substituting (6.6) in (2.4) we have the reduction as:
(6.7) PV (2)+a*V (2) =0,
which gives:
. [az az
V (z) = Cisin (T) + Cycos (T) .

After changing the variables we have the solution of (2.4) as:

a(f e f(2) dw) ’

u(z,y) = (C’l sin (%) + C; cos (%)) e 5

6.2.2. Subalgebra (%Xl + %X2> . Similarity variables are

(6.8) z(z,y) =y — %/e*f(w)dw, u="V(z).
Substituting (6.8) in (2.4) we have the reduction as:
(69) V”(z) = 0’

which gives:
V(z)=Az+ B.

By charging variables we have:

u:cy—%/e‘f(z)dm—i-d.

6.3. Reductions and exact solutions for 7 = 7(y) and £ # 0.
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6.3.1. Subalgebra (X Xo + $ X3 + Xg—(cy+a)) - Similarity variables are:

z(z,y) = —% / e @) dz 4y, u(z,y) = V(2) + (cay + ad) / e f@)dz .
Substituting in (2.4) we have the reduction as:
(6.10) Viz)=0,
which gives:
(6.11) V(z)=c1z+4cy.
By changing variables we have:

u=c (_ba/ef(x) + y) + (acy + ad)/e*f(x)da: +co.

6.3.2. Subalgebra (XX, + $X3 + 1X,) . Similarity variables are:

ol

@) =5 [P doy uey) =V
Substituting in (2.4) we have the reduction as:
(6.12) (@ + PPV (2) — 2%V (2) + 6%V (2) = 0.
Solving the ODE (6.12) and finding the real solution we have:

evts [ <ab(ay +bf ef@)dx))
cos

u=(atele @D c(a? + %)
6.3.3. Subalgebra (2 X3 + Xg—(cy+d)) - Similarity variables are:

2(2,9) =y, ulz,y)=V(2)+ (aby + ac)/e*f(m) dz.

Substituting in (2.4) we have the reduction as:

"

Vi(z)=0,
which gives:
V(z) =c1z+ca.

Therefore the harmonic function is given by:

u(z,y) = c1y + c2 + (aby + ac) /e*f(x) dr.

7. CONCLUSION

In this paper we have successfully analyzed the symmetry algebra of Liaplace equation
on surfaces of revolution. Symmetries algebras found are utilized to find harmonic func-
tions on surfaces of revolution which are of great importance in the field of mathematics
such as in electromagnetism, fluid dynamics and astronomy.
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