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INEQUALITIES ON CONVEX COMBINATIONS WITH THE

COMMON CENTER

ZLATKO PAVI�

Abstract. The article o�ers Jensen type inequalities for a class of functions gen-
eralizing convex functions. The results are obtained by applying such functions to
convex combinations with the common center. Functions of one and several variables
are used in these considerations.

1. Introduction

Recall the concept of convexity and a�nity. Let X be a real linear space. Let

x1; : : : ; xn 2 X be points (vectors), and let �1; : : : ; �n 2 R be coe�cients (scalars).

Their linear combination

x =

nX
i=1

�ixi

is convex if all coe�cients �i are nonnegative and if their sum is equal to 1. The above

combination is a�ne if only the coe�cient sum is equal to 1. The point x itself is called

the combination center.

A set S � X is convex (respectively a�ne) if it contains all convex (respectively a�ne)

combinations of its points. The convex (respectively a�ne) hull of the set S is the smallest

convex (respectively a�ne) set containing S, and it consists of all convex (respectively

a�ne) combinations of points of S. The convex (respectively a�ne) hull of the set S is

usually denoted with convS (respectively a�S).

Let C � X be a convex set. A function f : C ! R is convex if the inequality

(1.1) f

 
nX
i=1

�ixi

!
�

nX
i=1

�if(xi)

holds for all convex combinations of points xi 2 C. Let A � X be an a�ne set. A function

f : A ! R is a�ne if the equality holds in equation (1.1) for all a�ne combinations of

points xi 2 A. If we have two a�ne combinations with the common center,
nX
i=1

�ixi =

mX
j=1

�jyj ;
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then every a�ne function f satis�es the equality

nX
i=1

�if(xi) =

mX
j=1

�jf(yj):

To de�ne a convex function we usually take n = 2 in equation (1.1). Applying the

mathematical induction Jensen has attained the famous inequality in equation (1.1), see

[2]. Numerous books and papers have been written on Jensen's inequality. Di�erent

approaches can be seen in books [6] and [9], and papers [10], [3], [7] and [5]. An overview

of di�erent forms of Jensen's inequality can be found in [4].

2. Main Results

2.1. Functions of One Variable. The main result of this subsection is Theorem 2.1

relying on the idea of a convex function graph and its chord line. Using a function that

is more general than convex function, and two convex combinations with the common

center, we obtained the Jensen type inequality.

Let [a; b] � R be a bounded closed interval with endpoints a < b. Then every number

x 2 R can be uniquely presented as the binomial a�ne combination:

(2.1) x =
b� x

b� a
a+

x� a

b� a
b ;

which is convex if, and only if, the number x belongs to the interval [a; b]. Let I � R be

an interval containing [a; b], let f : I ! R be a function, and let f linefa;bg : R ! R be the

function of the line passing through the points A(a; f(a)) and B(b; f(b)) of the graph of

f . Applying the a�nity of the function f linefa;bg to the combination in (2.1), we obtain its

equation

(2.2) f linefa;bg(x) =
b� x

b� a
f(a) +

x� a

b� a
f(b) :

The consequence of the representations in equations (2.1) and (2.2) is the fact that every

convex function f : I ! R satis�es the inequality

(2.3) f(x) � f linefa;bg(x) for x 2 [a; b] ;

and the reverse inequality

(2.4) f(x) � f linefa;bg(x) for x 2 I n (a; b) :

In the following theorem, we use the functions satisfying the inequalities in equations

(2.3) and (2.4).

Theorem 2.1. Let I � R be an interval, let [a; b] � I be a closed interval with

endpoints a < b, and let f : I ! R be a function satisfying equations (2.3) and (2.4).

Let
Pn

i=1 �iai be a convex combination of points ai 2 [a; b], and let
Pm

j=1 �jbj be a

convex combination of points bj 2 I n (a; b).

If the above convex combinations have the common center

(2.5)

nX
i=1

�iai =

mX
j=1

�jbj ;
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then we have the inequality

(2.6)

nX
i=1

�if(ai) �

mX
j=1

�jf(bj):

Proof. Using the properties of the function f , and applying the a�nity of the function

f linefa;bg, we get

nX
i=1

�if(ai) �

nX
i=1

�if
line
fa;bg(ai) = f linefa;bg

 
nX
i=1

�iai

!

= f linefa;bg

0
@ mX
j=1

�jbj

1
A =

mX
j=1

�jf
line
fa;bg(bj)

�

mX
j=1

�jf(bj) ;

�nishing the derivation of the inequality in equation (2.6). �

The function used in Theorem 2.1 is shown in Figure 1. Although the �gure represents

a continuous function, it may also be discontinuous.

Figure 1. A function satisfying equations (2.3) and (2.4)

Involving the binomial convex combination �a + �b to the equality in equation (2.5)

by assuming that
nX
i=1

�iai = �a+ �b =

mX
j=1

�jbj ;

and following the proof of Theorem 2.1, we achieve the double inequality
nX
i=1

�if(ai) � �f(a) + �f(b) �

mX
j=1

�jf(bj):
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The functions used in Theorem 2.1 satisfy Jensen's inequality for convex combinations

whose points are outside the open interval (a; b), and whose center is in the closed interval

[a; b].

Corollary 2.1. Let f : I ! R be a function satisfying equations (2.3)-(2.4), and let

c =
Pm

j=1 �jbj be a convex combination of points bj 2 I n (a; b).

If the center c belongs to [a; b], then

(2.7) f

0
@ mX
j=1

�jbj

1
A �

mX
j=1

�jf(bj):

Corollary 2.2. A convex function f : I ! R satis�es Theorem 2.1 for every closed

interval [a; b] � I with endpoints a < b.

Corollary 2.3. Let f : I ! R be a function such that it satis�es Theorem 2.1 for

every closed interval [a; b] � I with endpoints a < b. Then f is convex.

Proof. Let

(2.8) c = �1b1 + �2b2

be a binomial convex combination of points b1; b2 2 I such that b1 < b2. Taking a = b1

and b = b2, equation (2.8) becomes the common center of the trivial convex combination

c 2 [a; b] and the binomial convex combination �1b1 + �2b2 of points b1; b2 2 I n (a; b).

We can apply the corollary assumption, and get the inequality

(2.9) f (�1b1 + �2b2) = f(c) � �1b1 + �2b2

which proves the convexity of the function f . �

Bringing together the two previous corollaries, we obtain a characterization of convex

functions as follows.

Proposition 2.1. A function f : I ! R is convex if, and only if, it satis�es Theorem

2.1 for every closed interval [a; b] � I with endpoints a < b.

2.2. Generalizations to More Dimensions. It can be said that the main result in this

subsection is Theorem 2.2 generalizing Theorem 2.1 to more dimensions. Example 2.1

shows that we can not transfer all results of the previous subsection to more dimensions.

Let C � R2 be a convex set, and let 4 = convfA;B;Cg � C be a triangle with vertices

A, B and C. In what follows we use a function f : C ! R that satis�es the inequality

(2.10) f(P ) � f
plane
fA;B;Cg(P ) for P 2 4;

and the reverse inequality

(2.11) f(P ) � f
plane
fA;B;Cg(P ) for P 2 C n 4o;

where f
plane
fA;B;Cg is the function of the plane passing through the corresponding points of

the graph of f , and 4o is the interior of 4.

The generalization of Theorem 2.1 to two dimensions is as follows.
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Lemma 2.1. Let C � R
2 be a convex set, let 4 = convfA;B;Cg � C be a triangle

with vertices A, B, C, and let f : C ! R be a function satisfying equations (2.10)-

(2.11). Let
Pn

i=1 �iAi be a convex combination of points Ai 2 4, and let
Pm

j=1 �jBj

be a convex combination of points Bj 2 C n 4
o.

If the above convex combinations have the common center

(2.12)

nX
i=1

�iAi =

mX
j=1

�jBj ;

then we have the inequality

nX
i=1

�if(Ai) �

mX
j=1

�jf(Bj):

Proof. We can implement the same analytic procedure as in Theorem 2.1 using the

a�nity of the plane function f
plane
fA;B;Cg. �

Including the trinomial convex combination �A+�B+
C to the equality in equation

(2.12) by assuming that

nX
i=1

�iAi = �A+ �B + 
C =

mX
j=1

�jBj ;

and applying Lemma 2.1 to the left and right equality of the above equation, we obtain

the double inequality

nX
i=1

�if(Ai) � �f(A) + �f(B) + 
f(C) �

mX
j=1

�jf(Bj):

Corollary 2.4. Let f : C ! R be a function satisfying equations (2.10)-(2.11), and

let D =
Pm

j=1 �jBj be a convex combination of points Bj 2 C n 4
o.

If the center D belongs to 4, then

f

0
@ mX
j=1

�iBj

1
A �

mX
j=1

�jf(Bj):

The next example demonstrates that a generalization of Corollary 2.2 to convex func-

tions of two variables is not possible.

Example 2.1. Take the convex function f(x; y) = x2 + y2, the triangle with vertices

A(0; 0), B(3; 0) and C(0; 3), and the outside points B1(1;�1), B2(2; 2) and B3(�1; 1).

Then we have
1

3
A+

1

3
B +

1

3
C =

1

4
B1 +

1

2
B2 +

1

4
B3

and

6 =
1

3
f(A) +

1

3
f(B) +

1

3
f(C) >

1

4
f(B1) +

1

2
f(B2) +

1

4
f(B3) = 5:

Lemma 2.1 which refers to the triangles can be generally extended to simplexes. In

short, the convex hull of points C1; : : : ; Cp+1 2 R
p is a p-simplex in Rp if the points

C1 � Cp+1; : : : ; Cp � Cp+1 are linearly independent.
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Let C � Rp be a convex set, and let S = convfC1; : : : ; Cp+1g � C be a p-simplex with

vertices C1; : : : ; Cp+1. In this observation we use a function f : C ! R that satis�es the

inequality

(2.13) f(P ) � f
hyperplane
fC1;:::;Cp+1g

(P ) for P 2 S;

and the reverse inequality

(2.14) f(P ) � f
hyperplane
fC1;:::;Cp+1g

(P ) for P 2 C n So;

where f
hyperplane
fC1;:::;Cp+1g

is the function of the hyperplane passing through the corresponding

points of the graph of f .

Theorem 2.2. Let C � R
p be a convex set, let S = convfC1; : : : ; Cp+1g � C be a

p-simplex with vertices C1; : : : ; Cp+1, and let f : C ! R be a function satisfying

equations (2.13)-(2.14). Let
Pn

i=1 �iAi be a convex combination of points Ai 2 S,

and let
Pm

j=1 �jBj be a convex combination of points Bj 2 C n S
o.

If the above convex combinations have the common center

(2.15)
nX
i=1

�iAi =
mX
j=1

�jBj ;

then we have the inequality

(2.16)

nX
i=1

�if(Ai) �

mX
j=1

�jf(Bj):

Proof. To derive the inequality in equation (2.16), we may also apply the proof of The-

orem 2.1 using the a�nity of the hyperplane function f
hyperplane
fC1;:::;Cp+1g

. �

Including the (p + 1)-membered convex combination
Pp+1

k=1 
kCk to the equality in

equation (2.15) in a way that

nX
i=1

�iAi =

p+1X
k=1


kCk =

mX
j=1

�jBj ;

and respecting Theorem 2.2, we get the double inequality

nX
i=1

�if(Ai) �

p+1X
k=1


kf(Ck) �

mX
j=1

�jf(Bj):

Corollary 2.5. Let f : C ! R be a function satisfying equations (2.13)-(2.14), and

let D =
Pm

j=1 �jBj be a convex combination of points Bj 2 C n S
o.

If the center D belongs to S, then

f

0
@ mX
j=1

�iBj

1
A �

mX
j=1

�jf(Bj):
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3. Applications to Quasi-Arithmetic Means

Functions investigated in Subsection 2.1 can be included to quasi-arithmetic means by

applying methods such as those for convex functions. More details on quasi-arithmetic

and power means can be found in [1] and [4].

Let I � R be an interval, and let
Pn

i=1 �ixi be a convex combination of points xi 2 I.

The discrete '-quasi-arithmetic mean of the points xi with the coe�cients �i is the point

(3.1) M'(xi; �i) = '�1

 
nX
i=1

�i'(xi)

!

which belongs to I because the convex combination
Pn

i=1 �i '(xi) belongs to '(I).

In order to apply the convexity, we use strictly monotone continuous functions '; :

I ! R such that  is convex with respect to ' ( is '-convex), which is to say that the

function f =  � '�1 is convex on the interval '(I). A similar notation is used for the

concavity.

We want to apply Theorem 2.1 to quasi-arithmetic means.

Theorem 3.1. Let I � R be an interval, and let [a; b] � I be a closed interval with

endpoints a < b. Let
Pn

i=1 �iai be a convex combination of points ai 2 [a; b], and

let
Pm

j=1 �jbj be a convex combination of points bj 2 I n (a; b). Let '; : I ! R

be strictly monotone continuous functions, and let f =  � '�1 be the composite

function.

If f satis�es equations (2.3)-(2.4) and  is increasing, and if the equality

(3.2) M'(ai; �i) =M'(bj ; �j)

is valid, then we have the inequality

(3.3) M (ai; �i) �M (bj ; �j):

Proof. Take J = '(I), and [c; d] = '([a; b]) where c < d. We will apply Theorem 2.1

to the function f : J ! R, the points ui = '(ai) 2 [c; d], and the points vj = '(bj) 2

J n (c; d).

Starting with the equality '
�
M'(ai; �i)

�
= '

�
M'(bj ; �j)

�
, that is,

nX
i=1

�iui =

mX
j=1

�jvj ;

and relying on Theorem 2.1, we get
nX
i=1

�if(ui) �

mX
j=1

�jf(vj):

Applying the increasing function  �1 to the above inequality, it follows that

 �1

 
nX
i=1

�if(ui)

!
�  �1

0
@ mX
j=1

�jf(vj)

1
A ;

which is actually

M (ai; �i) �M (bj ; �j)

because f(ui) =  (ai) and f(vj) =  (bj). �
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All the possibilities in the above theorem are as follows.

Corollary 3.1. Let f =  �'�1 be the composition of functions  and '�1 satisfying

the conditions of Theorem 3.1.

If either f satis�es equations (2.3)-(2.4) and  is increasing or �f satis�es equa-

tions (2.3)-(2.4) and  is decreasing, and if the equality in equation (3.2) is valid,

then the inequality in equation (3.3) holds.

If either f satis�es equations (2.3)-(2.4) and  is decreasing or �f satis�es equa-

tions (2.3)-(2.4) and  is increasing, and if the equality in equation (3.2) is valid,

then the reverse inequality in equation (3.3) holds.

Let
Pn

i=1 �ixi be a convex combination of points xi 2 I. As a special case of the

quasi-arithmetic means in equation (3.1) using the functions 'r(x) = xr for r 6= 0 and

'0(x) = lnx on the interval I = (0;+1), we can observe the discrete power means

Mr(xi; �i) =

8>>>>><
>>>>>:

 
nX
i=1

�i x
r
i

! 1
r

for r 6= 0

exp

 
nX
i=1

�i lnxi

!
for r = 0

:

Note that

M1(xi; �i) =

nX
i=1

�ixi:

Corollary 3.2. Let [a; b] � (0;+1) be a closed interval with endpoints a < b. LetPn

i=1 �iai be a convex combination of points ai 2 [a; b], and let
Pm

j=1 �jbj be a convex

combination of points bj 2 (0;+1) n (a; b).

If the above convex combinations have the common center

M1(ai; �i) =M1(bj ; �j);

then

Mr(ai; �i) �Mr(bj ; �j) for r � 1;

and

Mr(ai; �i) �Mr(bj ; �j) for r � 1:

Proof. The proof follows from Theorem 3.1 and Corollary 3.1 by using convex and concave

functions such as '(x) = x,  (x) = xr for r 6= 0, and  (x) = lnx for r = 0. �

4. Applications to Integrals

The aim of the �nal section is just to indicate how the above results can be transferred

to integrals. Something similar was done in [8], but in the reverse direction.

The integral analogy of the concept of convex combination is the concept of barycenter.

Let � be a positive measure on Rp, and let A � Rp be a �-measurable set with �(A) > 0.



INEQUALITIES ON CONVEX COMBINATIONS. . . 81

Given the positive integer n, let A = [ni=1Ani be the partition of pairwise disjoint �-

measurable sets Ani. Taking points Ani 2 Ani we determine the convex combination

An =

nX
i=1

�(Ani)

�(A)
Ani

whose center An belongs to convA. If the sequence (An)n converges, then the �-

barycenter of the set A can be de�ned by the point

M(A; �) = lim
n!1

 
nX
i=1

�(Ani)

�(A)
Ani

!
=

1

�(A)

�Z
A

x1 d�; : : : ;

Z
A

xr d�

�
:

Let C � R
p be a convex set, and let S � C be a p-simplex. To apply the results of

Section 2 to integrals, one can use �-measurable sets A and B such that A � S and

B � C n So, and that have the common �-barycenter

M(A; �) =M(B; �):
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