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THE RHODIUS SPECTRA OF SOME NONLINEAR SUPERPOSITION

OPERATORS IN THE SPACES OF SEQUENCES

SANELA HALILOVI�1 AND RAMIZ VUGDALI�

Abstract. In this paper we study the superposition operator F in lp spaces of se-
quences, generated by the function f (s; u) = a (s) + '(u), in case that '(u) = un or
'(u) = n

p
u. We �nd out the Rhodius spectrum of this operator F . We also give a

few examples and compare this spectrum with the point spectrum.

1. Introduction and Preliminaries

It is well-known a notion of a spectrum for bounded linear operators and its useful

properties. Many various attempts have been made to de�ne and study spectra also for

nonlinear operators. In the beginning, the term spectrum was used for nonlinear operators

just in the sense of point spectrum. Later, from the last sixties it became clear that a

more complete description requires other spectral sets. This led to a number of de�nitions

of nonlinear spectra which are all di�erent. In this paper we are dealing with the Rhodius

spectra for some nonlinear superposition operators. This spectrum is becoming reduced to

the familiar spectrum in case of linear operator and always contains the eigenvalues of an

operator which keeps zero �xed. The Rhodius spectrum is introduced in [4]. The example

which shows that the Rhodius spectrum may be empty is due to Georg and Martelli in

[5]. Some informations about Rhodius spectrum and other spectra for nonlinear operators

and their comparisons and applications can, for example, also be found in [2], [6],[7],[8]

and [9]. First of all, let us introduce some de�nitions and facts for nonlinear superposition

operators in space of sequences lp.

Let f = f (s; u) be a function de�ned on 
 � R (or 
 � C) with the values in R (or

respectively C). Given a function x = x (s), by applying f , we get another function

y = y (s) on 
 by:

y (s) = f (s; x (s)) :

In this way, the function f generates an operator F :

(1.1) Fx (s) = f(s; x(s));
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which is usually called superposition operator (or composition operator or Nemytskij

operator), ([3]). We are going to observe the operator of superposition, de�ned in the

spaces of sequences lp (1 � p � 1), so we have 
 = N (i.e. s 2 N):

Theorem 1.1. ([1]) Let 1 � p; q <1. Then the following properties are equivalent:

� the operator F acts from lp to lq;

� there are functions a (s) 2 lq and constants � > 0; n 2 N; b � 0; for which

jf (s; u)j � a (s) + b juj pq (s � n; juj < �) ;

� for any " > 0 there exists a function a" 2 lq and constants �" > 0; n" 2 N; b" �
0, for which ka" (s)kq < " and

jf (s; u)j � a" (s) + b" juj
p

q (s � n"; juj � �") :

Theorem 1.2. ([1]) Let 1 � p; q < 1 and let the superposition operator (1.1), gen-

erated by the function f (s; u), acts from lp to lq. Then this operator is continuous

if and only if each of the functions is continuous for every s 2 N:

De�nition 1.1. The set of all eigenvalues of the operator F

�p (F ) = f� 2 K : Fx = �x for some x 6= 0g ;

(K is the �eld of real or complex numbers), is called the point spectrum of F .

For the class C (X) of all continuous operators F on a Banach space X over K (R or

C), Rhodius introduced in 1984. the following de�nition of its spectrum ([4]).

De�nition 1.2. ([2]) For the continuous operator F : X ! X the set

�R (F ) =
�
� 2 K : �I � F is bijective and (�I � F )�1 2 C (X)

	
is called Rhodius resolvent set, and the set

�R (F ) = Kn�R (F )

is called Rhodius spectrum.

Remark 1.1. A point � 2 K belongs to �R (F ) if and only if �I �F is a homeomor-

phism on X.

If F0 = 0, then the problem of investigating injectivity of nonlinear operator �I �F ,

could sometimes be replaced by �nding if the equation (�I � F )x = 0 has any non-

trivial solution. If there are some nontrivial solutions of the equation (�I � F )x = 0,

then operator �I � F is not injective. Generally this is not true if F0 6= 0. More

precisely, if F is nonlinear operator with F0 = 0, then �p (F ) � �i � �R (F ). (�i =

f� 2 K : �I � F is not injective g).
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2. Main Results

Lemma 2.1. Let the superposition operator F be generated by the function f (s; u) =

a (s) + un; where n is an even number and a (s) is a sequence from the space lp
(1 � p � 1): Then the Rhodius spectrum of F is �R (F ) = R or (�R (F ) = C).

Proof. Since a (s) 2 lp, we can see that operator F can act from l1 to l1 or according to

the Theorem 1.1. F can act from lp to lp (or from l1 to lp). Denote a = (a1; a2; : : :) 2 lp:

For x = (x1; x2; : : :) we have

Fx = F (x1; x2; : : :) = (a1 + xn1 ; a2 + xn2 ; : : :) :

Find out if �I � F is an injective operator, for any real �. Suppose that

(�I � F )x = (�I � F )y;

for some x; y 2 lp: Then

(2.1) (�x1 � a1 � xn1 ; �x2 � a2 � xn2 ; : : :) = (�y1 � a1 � yn1 ; �y2 � a2 � yn2 ; : : :)

For � = 0 we get

(�a1 � xn1 ;�a2 � xn2 ; : : :) = (�a1 � yn1 ;�a2 � yn2 ; : : :) =)
(8i 2 N)� ai � xni = �ai � yni =)
(8i 2 N) xni = yni :

Number n is an even number, so it doesn`t have to follow xi = yi; (8i 2 N). This is not
injective (nor bijective) mapping so 0 2 �R (F ). If � 6= 0 then from equality (2.1) we get

(8i 2 N) :
�xi � ai � xni = �yi � ai � yni

�xi � xni = �yi � yni () � (xi � yi) = xni � yni

� (xi � yi) = (xi � yi)
�
xn�1i + xn�2i yi + : : :+ xiy

n�2
i + yn�1i

�
=)

(xi = yi) _
�
xn�1i + xn�2i yi + : : :+ xiy

n�2
i + yn�1i � � = 0

�
:

Hence we get the equation of an odd degree n � 1, there are always at least one real

(nontrivial) solution and �I�F is not injective mapping. We proved that �I�F is not

bijective mapping for any real �, so the Rhodius spectrum of this superposition operator

F is : �R (F ) = R. In case that sequences were de�ned in C we would get the Rhodius

spectrum �R (F ) = C. �

Lemma 2.2. Let the superposition operator F be generated by the function f (s; u) =

a (s) + un, where n is an even number and a (s) is a sequence from the space lp
(1 � p � 1). If a (s) = 0, 8s 2 N, then the point spectrum is �p (F ) = Rn f0g; if

a (s) � 0, 8s 2 N and (9s 2 N)a (s) < 0, then �p (F ) = R. If sup
s2N

a (s) > 0 and n = 2

then the point spectrum of F is

(2.2) �p (F ) =

 
�1;�2

r
sup
s2N

a (s)

#
[
"
2
r

sup
s2N

a (s);1
!
:
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Proof. Find out has the equation (�I � F )x = 0 any nontirivial solution. For � = 0 we

have

�Fx = (�a1 � xn1 ;�a2 � xn2 ; : : :) = (0; 0; : : :) =)
(2.3) �ai � xni = 0; 8i 2 N:
If ai = 0, 8i 2 N, then from (2.3) it follows that there is only a trivial solution xi =

0;8i 2 N ( i.e. x = (0; 0; : : :)) and 0 =2 �p (F ). If ai � 0, 8i 2 N, and (9i 2 N)ai < 0, then

from (2.3) it follows that xni = �ai � 0; 8i 2 N so there are nontrivial solutions with

xi = � n
p�ai ( x = ( n

p�a1; n
p�a2; : : :) ) and it means that 0 2 �p (F ) : If sup

s2N

a (s) > 0

then there exists a positive number ai and for such i equation (2.3) has no real solutions.

It follows 0 =2 �p (F ). Let`s see if the equation (�I�F )x = 0, for � 6= 0, has some solution

away from zero

(�I � F ) (x1; x2; : : :) = (�x1 � a1 � xn1 ; �x2 � a2 � xn2 ; : : :) = (0; 0; : : :) =)

(2.4) xni � �xi + ai = 0; 8i 2 N
If ai = 0, 8i 2 N, then from (2.4) it follows that

xi
�
xn�1i � �

�
= 0;8i 2 N =) (xi = 0) _

�
xi =

n�1
p
�
�
:

There are nontrivial solutions (for example x = ( n�1
p
�; 0; : : :)) so � 2 �p (F ). If ai � 0,

8i 2 N, and (9i 2 N)ai < 0, then from (2.4) it follows:

(2.5) xni = �xi � ai; 8i 2 N
It is clear that for ai = 0 there are two solutions xi;1 = 0 and xi;2 = n�1

p
�. When

ai < 0 we can see that graph of the function y = �x � ai intersects the graph of the

function y = xn. It means that there is a (nontrivial) solution of the equation (2.5).

Hence � 2 �p (F ). Since a 2 lp, sequence a is bounded so sup
s2N

a (s) < 1: If sup
s2N

a (s) > 0

and n = 2 the equations (2.4) become

(2.6) x2i � �xi + ai = 0; 8i 2 N:
For any i 2 N the equation (2.6) has real solutions if its discriminant is nonnegative, i.e.

�2 � 4ai � 0. So equations (2.6) has real solutions if �2 � 4ai;8i 2 N, which gives us the

condition �2 � 4sup
s2N

a (s) > 0. Now we get that for

� 2
 
�1;�2 �

r
sup
s2N

a (s)

#
[
"
2 �
r

sup
s2N

a (s);1
!
� J

the equation (�I � F )x = 0 has (nontrivial) solutions, so the point spectrum is

�p (F ) = J:

�

Example 2.1. Let the function f (s; u) = 1
s(s+1)+u2 generate a superposition operator

F : l1 ! l1.

F (x1; x2; : : :) =

�
1

1 � 2 + x21;
1

2 � 3 + x22; : : :

�
:
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It is not hard to �nd out for which � 2 R, the equation (�I � F )x = 0 has nontrivial

solutions, so we get the point spectrum of F :

�p (F ) =
�
�1;�

p
2
i
[
hp

2;+1
�
:

We can see that sup
s2N

1
s(s+1) = 1

2 and 2
r

sup
s2N

a (s) = 2 �
q

1
2 =

p
2, so we really get the

point spectrum (2.2) from Lemma 2.2. The operator �I �F is not injective for any

� 2 R, so the Rhodius spectrum of F is:

�R (F ) = R:

Lemma 2.3. Let the superposition operator F be generated by the function f (s; u) =

a (s) + n
pjuj, where n is an even number and a (s) is a sequence from the space lp

(1 � p � 1): Then the Rhodius spectrum of F is �R (F ) = R (or �R (F ) = C):

Proof. Denote a = (a1; a2; : : :) 2 lp: For x = (x1; x2; : : :) we have

Fx = F (x1; x2; : : :) =
�
a1 +

n
p
jx1j; a2 + n

p
jx2j; : : :

�
:

Consider the operator (�I�F )(x1; x2; : : :) =
�
�x1 � a1 � n

pjx1j; �x2 � a2 � n
pjx2j; : : :�.

For � = 0, it becomes �F (x1; x2; : : :) =
�
�a1 � n

pjx1j;�a2 � n
pjx2j; : : :�. Suppose that

�Fx = �Fy;
for some x; y 2 lp: Then�

�a1 � n
p
jx1j;�a2 � n

p
jx2j; : : :

�
=
�
�a1 � n

p
jy1j;�a2 � n

p
jy2j; : : :

�
=)

�ai � n
p
jxij = �ai � n

p
jyij; 8i 2 N =)

jxij = jyij ; i 2 N:
This is not injective mapping since it doesn`t have to follow x = y: Hence,

(2.7) 0 2 �R (F ) :

Now let � 6= 0 and consider the equation (�I � F )x = (�I � F ) y for x; y 2 lp. We are

interested in does it have to follow: x = y:�
�x1 � a1 � n

p
jx1j; �x2 � a2 � n

p
jx2j; : : :

�
=
�
�y1 � a1 � n

p
jy1j; �y2 � a2 � n

p
jy2j; : : :

�
�xi � ai � n

p
jxij = �yi � ai � n

p
jyij; 8i 2 N =)

� (xi � yi) =
n
p
jxij � n

p
jyij; 8i 2 N:

There are following possibilities: a) xi = yi; b) (xi � 0; yi � 0) thenh
( n
p
xi)

n�1
+ ( n

p
xi)

n�2
n
p
yi + : : :+ ( n

p
yi)

n�1
i
� 1

�
= 0;

c) (xi < 0; yi < 0) thenh
( n
p
xi)

n�1
+ ( n

p
xi)

n�2
n
p
yi + : : :+ ( n

p
yi)

n�1
i
+

1

�
= 0;



88 S. HALILOVI� AND R. VUGDALI�

d) xi � yi < 0: then �
n
p
jxij
�n

+
�

n
p
jyij
�n

= � 1

�

�
n
p
jxij � n

p
jyij
�
:

The equation in d) isn't always solvable in R and anyway then it holds x 6= y. The

equations b) and c) have at least one real solution xi for �xed yi (if we denote p =
n
pjxij; q = n

pjyij they become an odd-degree polynomial equations) and we have that

xi 6= yi: So from (�I � F )x = (�I � F ) y it doesn't have to follow that x = y. We have

proved that operator �I � F is not injective for any � 6= 0 and that`s why

(2.8) Rn f0g � �R (F )

From (2.7) and (2.8) it follows that the Rhodius spectrum of this operator F is �R (F ) =

R. In case that sequences were de�ned in C we would get the Rhodius spectrum �R (F ) =

C. �

Lemma 2.4. Let the superposition operator F be generated by the function f (s; u) =

a (s) + n
pjuj, where n is an even number and a (s) is a sequence from the space lp

(1 � p � 1): If a (s) = 0; 8s 2 N, then the point spectrum is �p (F ) = Rn f0g; if

a (s) � 0, 8s 2 N and (9s 2 N)a (s) < 0, then �p (F ) = R; if (9s 2 N)a (s) > 0, then

�p (F ) = Rn f0g :
Proof. Find out has the equation (�I � F )x = 0 any nontirivial solution. For � = 0 we

have

�Fx =
�
�a1 � n

p
jx1j;�a2 � n

p
jx2j; : : :

�
= (0; 0; : : :) =)

(2.9) ai +
n
p
jxij = 0; 8i 2 N:

If ai = 0, 8i 2 N, then from (2.9) it follows that there is only a trivial solution xi =

0;8i 2 N (i.e. x = (0; 0; : : :)) and 0 =2 �p (F ). If ai � 0, 8i 2 N, and (9i 2 N)ai < 0, then

from (2.9) it follows that n
pjxij = �ai � 0; 8i 2 N so there are nontrivial solutions

with xi1;2 = � (�ai)n and it means that 0 2 �p (F ). If 9ai > 0 then equation (2.9) has

no solutions. Let`s see if the equation (�I � F )x = 0, for � 6= 0, has any solution away

from zero

(�I � F ) (x1; x2; : : :) =
�
�x1 � a1 � n

p
jx1j; �x2 � a2 � n

p
jx2j; : : :

�
= (0; 0; : : :)

(2.10) n
p
jxij � �xi + ai = 0; 8i 2 N

If ai = 0, 8i 2 N, then from (2.10) it follows that8<
:

(xi = 0) _
�
xi = ��

n
n�1

�
; for � > 0

(xi = 0) _
�
xi = ��� n

n�1

�
; for � < 0:

(8i 2 N) :

There are nontrivial solutions so � 2 �p (F ). Denote now:

(2.11) y (xi) =
n
p
jxij � �xi + ai;

If ai < 0 we can see that y (0) = ai < 0 and y
�
ai
�

�
= n

q��ai
�

�� > 0. Since the function

y is continuous, from the Intermediate ValueTheorem, it follows that there exists xi 6= 0

such that y (xi) = 0 (xi 2
�
0; ai

�

�
, if � < 0 and xi 2

�
ai
�
; 0
�
, if � > 0). It means that
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there is a (nontrivial) solution of the equations (2.11) and the point spectrum of F (in

the case a (s) � 0, 8s 2 N and (9s 2 N)a (s) < 0) is �p (F ) = R: If ai > 0 and n = 2

then equation (2.10) becomes:

(2.12)
p
jxij = �xi � ai:

It is not hard to see that this equation is solvable in R for every � 6= 0 (if � > 0 then

xi > 0; if � < 0 then xi < 0). Denote this solution with xi = p 2 R, and consider the

equation n
pjxij = �xi � ai, where n is an even number and n > 2. Since p is a solution

of the equation (2.12) we have
pjpj = �p� ai. From (2.11) we get y (0) = ai > 0 and

y (p) = n
p
jpj � �p+ ai =

n
p
jpj � (�p� ai) =

n
p
jpj �

p
jpj:

If jpj > 1 then y (p) = n
pjpj �pjpj < 0 and from the Intermediate Value Theorem it

follows that there is some xi such that y (xi) = n
pjxij � �xi + ai = 0 (xi 2 (0; p) if

p > 1 or xi 2 (p; 0) if p < �1). If 0 < p < 1 then � > 0 and since the function

g (xi) =
pjxij � �xi + ai is continuous (and has the only one solution p) and g (0) > 0

then it has to be

g (1) = 1� �+ ai < 0:

Now we have that y (1) = n
pj1j � � + ai = 1 � � + ai < 0 and since y (0) = ai > 0

and y is a continuous function, it follows that (9xi 2 (0; 1)) y (xi) = 0. If �1 < p < 0

then � < 0 and since the function g is continuous (and has the only one solution p) and

g (0) > 0, it has to be g (�1) =
pj�1j + � + ai = 1 + � + ai < 0. Now we have that

y (�1) = n
pj�1j+�+ ai = 1+�+ ai < 0 and since y (0) = ai > 0 and y is a continuous

function, it follows that (9xi 2 (�1; 0)) y (xi) = 0. So we proved that if 9ai > 0 then the

point spectrum of F is �p (F ) = Rn f0g. �

Lemma 2.5. Let the superposition operator F be generated by the function f (s; u) =

a (s) + un, where n is an odd number, n � 3 and a (s) is a sequence from the space

lp (1 � p � 1): Then the Rhodius spectrum of F is �R (F ) = (0;1) (or �R (F ) = C):

Proof. Let the superposition operator F : lp ! lp, be generated by the function f(s; u) =

a (s) + un, (n is an odd number, a 2 lp)

Fx = F (x1; x2; : : :) = (a1 + xn1 ; a2 + xn2 ; : : :) :

Consider the operator

(�I � F ) (x1; x2; : : :) = (�x1 � a1 � xn1 ; �x2 � a2 � xn2 ; : : :) :

For � = 0; the operator �F is injective, because from

�Fx = �Fy () (�a1 � xn1 ;�a2 � xn2 ; : : :) = (�a1 � yn1 ;�a2 � yn2 ; : : :), we get

�ai � xni = �ai � yni ;8i 2 N =) xni = yni ;8i 2 N =) x = y:

The operator �F is surjective because for arbitrary y 2 lq there are some x 2 lp such

that �Fx = y. Really:

�Fx =(�a1 � xn1 ;�a2 � xn2 ; : : :) = (y1; y2; : : :) ()
x =( n

p�a1 � y1;
n
p�a2 � y2; : : :):
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Let now � 6= 0 :

(2.13)
(�I � F ) (x1; x2; : : :) = (�I � F ) (y1; y2; : : :)

(�x1 � a1 � xn1 ; �x2 � a2 � xn2 ; : : :) = (�y1 � a1 � yn1 ; �y2 � a2 � yn2 ; : : :)

(2.14)
�xi � ai � xni = �yi � ai � yni ;8i 2 N

xni � �xi = yni � �yi;8i 2 N:

(2.15) () (xni � yni ) = � (xi � yi) ;8i 2 N:
From (2.15) we get (xi = yi) or

(2.16) xn�1i + xn�2i yi + : : :+ xi yn�2i + yn�1i � � = 0:

If � < 0 then for (xi � 0 ^ yi � 0), or (xi � 0 ^ yi � 0), we have that

xn�1i + xn�2i yi + : : :+ xi yn�1i + yn�1i � 0 and

xn�1i + xn�2i yi + : : :+ xi yn�1i + yn�1i � � > 0:

If � < 0 and (xi � 0 ^ yi � 0) then: a) for xi � �yi we have

xn�1i � xn�2i (�yi)
xn�3i y2i � xn�4i (�yi)3

...

x2i y
n�3
i � xi (�yi)n�2 :

From these inequalities by summarizing we get

xn�1i + xn�3i y2i + : : :+ x2i y
n�3
i � �xn�2i yi � xn�4i y3i � : : :� xiy

n�2
i =)

xn�1i + xn�2i yi + xn�3i y2i + xn�4i y3i + : : : x2i y
n�3
i + xiy

n�2
i � 0 :

By adding two members yn�1i � 0 and �� > 0; to the left side, we get

xn�1i + xn�2i yi + : : :+ xi yn�2i + yn�1i � � > 0 :

b) For xi � �yi, we have

yn�1i � xi (�yi)n�2

x2i y
n�3
i � x3i (�yi)n�4

...

xn�3i y2i � xn�2i (�yi) :
From these inequalities by summerizing we get

yn�1i + x2i y
n�3
i + : : :+ xn�3i y2i � �xiyn�2i � x3i y

n�4 � : : :� xn�2i yi =)
yn�1i + xiy

n�2
i + x2i y

n�3
i + x3i y

n�4 + : : :+ xn�3i y2i + xn�2i yi � 0 :

By adding two members xn�1i � 0 and �� > 0; to the left side, we get

xn�1i + xn�2i yi + : : :+ xi yn�2i + yn�1i � � > 0:
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If � < 0 and (xi � 0 ^ yi � 0) we can analogously get the same inequality. So any way,

from (2.13) it follows that x = y and �I � F is an injective operator (for � < 0). We

can see from the equations (2.14) that this operator �I � F is injective if the operator

�I �G (where G is operator generated by the function g (s; u) = un; (n is odd number))

is injective. Let`s �nd out if the equation (�I �G)x = 0 has any nontrivial solutions for

� > 0:

(2.17) (�I �G) (x1; x2; : : :) = (0; 0; : : :)

(�x1 � xn1 ; �x2 � xn2 ; : : :) = (0; 0; : : :)

�xi � xni = 0;8i 2 N
xi
�
�� xn�1i

�
= 0;8i 2 N

(xi = 0 _ xn�1i = �);8i 2 N:
If � < 0 then there is only trivial solution x = (0; 0; : : :). If � > 0, then it is possible

that xi = � n�1
p
� for some i 2 N, so the equation (2.17) has nontrivial solutions also,

such as
�

n�1
p
�; 0; 0; : : :

�
. This implies (since G0 = 0) for � > 0; that operator �I � G

is not injective and also �I � F is not injective. It means that positive numbers � do

not belong to the Rhodius resolvent set, so they belong to the Rhodius spectrum, i.e.

(0;1) � �R (F ). Let us see for � 6= 0 and arbitrary y 2 lq , whether exists x 2 lp such

that (�I � F )x = y.

(�x1 � a1 � xn1 ; �x2 � a2 � xn2 ; : : :) = (y1; y2; : : :) =)
�xi � ai � xni = yi;8i 2 N

xni � �xi + ai + yi = 0;8i 2 N:
These odd-degree polynomial equations have at least one real solutions xi for every yi 2 R
. It means that operator �I �F is onto for � 6= 0. For � � 0 operator �I �F is bijective

and now we need to research if (�I � F )
�1

is a continuous operator. For � = 0 we have

(�F )
�1

(x1; x2; : : :) = ( n
p�a1 � x1;

n
p�a2 � x2; : : :)

and this is continuous mapping. It follows from the Theorem 1.2., because f (i; u) =
n
p�ai � u are continuous functions 8i 2 N. For � < 0:

(�I � F ) (x1; x2; : : :) = (y1; y2; : : :)

(�x1 � a1 � xn1 ; �x2 � a2 � yn2 ; : : :) = (y1; y2; : : :) :

The function f : R ! R; f (i; u) = �u � ai � un is bijective and decreasing (for � < 0)

and continuous, 8i 2 N, so there exists its inverse f�1 (i; u) (which is also bijective,

decreasing and continuous function) 8i 2 N: Now from the Theorem 1.2 follows that

operator (�I � F )
�1

, generated by f�1 (i; u), is continuous operator. We proved that

for � � 0 the operator (�I � F ) is bijective and (�I � F )
�1

is continuous operator,

so the Rhodius resolvent set is �R (F ) = (�1; 0] and the Rhodius spectrum of F is

�R (F ) = (0;1) : �

Lemma 2.6. Let the superposition operator F be generated by the function f (s; u) =

a (s) + un, where n is an odd number, n � 3 and a (s) is a sequence from the space

lp (1 � p � 1): Then the point spectrum of F is �p (F ) = (0;1) if a (s) = 0;8s 2 N
and �p (F ) = R if (9s 2 N) a (s) 6= 0.
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Proof. Find out has the equation (�I � F )x = 0 any nontirivial solution. For � = 0 we

have

�F (x1; x2; : : :) = (�a1 � xn1 ;�a2 � xn2 ; : : :) = (0; 0; : : :)

() xni + ai = 0;8i 2 N
If ai = 0 then xi = 0; if ai 6= 0 then xi = n

p�ai 2 R. Hence for a (s) = 0;8s 2 N it

values 0 =2 �p (F ) and if (9s 2 N) a (s) 6= 0 then 0 2 �p (F ). Let now � 6= 0 and see if the

following equation has only trivial solution:

(2.18)
(�I � F ) (x1; x2; : : :) = (�x1 � a1 � xn1 ; �x2 � a2 � xn2 ; : : :) = (0; 0; : : :)

() xni � �xi + ai = 0;8i 2 N
If ai = 0 then

xi
�
xn�1i � �

�
= 0 () �

xi = 0 _ xn�1i = �
�
;

so for � < 0 (as n� 1 is an even number), there is only a trivial solution xi = 0 and for

� > 0 there is a nontrivial solution also,

xi = � n�1
p
��

x =
�

n�1
p
�; 0; 0; : : :

�
is one of nontrivial solutions of the equation (�I � F )x = 0

�
:

If ai 6= 0 then equation (2.18) has at least one real (nontrivial) solution xi because it

is an odd-degree polynomial equation. So if a (s) = 0;8s 2 N then �p (F ) = (0;1). If

(9s 2 N) a (s) 6= 0 then the point spectrum of F is �p (F ) = R. �

Lemma 2.7. Let the superposition operator F be generated by the function f (s; u) =

a (s) + n
p
u, where n is an odd number, n � 3 and a (s) is a sequence from the space

lp (1 � p � 1): Then the Rhodius spectrum of F is �R (F ) = (0;1) (or �R (F ) = C).

Proof. Let the superposition operator F , be generated by the function f(s; u) = a (s) +
n
p
u, (n is an odd number, a 2 lp)

Fx = F (x1; x2; : : :) = (a1 + n
p
x1; a2 + n

p
x2; : : :) :

Consider the operator

(�I � F ) (x1; x2; : : :) = (�x1 � a1 � n
p
x1; �x2 � a2 � n

p
x2; : : :) :

For � = 0 , from

�Fx = �Fy () (�a1 � n
p
x1;�a2 � n

p
x2; : : :) = (�a1 � n

p
y1;�a2 � n

p
y2; : : :)

we get

�ai � n
p
xi = �ai � n

p
yi;8i 2 N =) n

p
xi = n

p
yi;8i 2 N =) x = y:

Hence, the operator �F is injective.
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For � 6= 0 we have

(�I � F )x = (�I � F ) y

(�x1 � a1 � n
p
x1; �x2 � a2 � n

p
x2; : : :) = (�x1 � a1 � n

p
y1; �x2 � a2 � n

p
y2; : : :)

�xi � ai � n
p
xi = �yi � ai � n

p
yi;8i 2 N =)

�xi � n
p
xi = �yi � n

p
yi;8i 2 N(2.19)

� (xi � yi) = ( n
p
xi � n

p
yi) ;8i 2 N:

Now it follows xi = yi or

(2.20) ( n
p
xi)

n�1
+ ( n

p
xi)

n�2
n
p
yi + : : :+ ( n

p
yi)

n�1 � 1

�
= 0:

Denote n
p
xi = ki and n

p
yi = li then (2.20) becomes

(2.21) kn�1i + kn�2i li + : : : kil
n�2
i + ln�1i � 1

�
= 0;

which is equivalent to the equation (2.16). We have already shown in the proof of the

Lemma 2.5 that for � < 0 the equation (2.21) is not true for any ki and li. Hence it must

be xi = yi,8n 2 N and �I � F is injective for � < 0. We can see from the equations

(2.20) that this operator �I � F is injective if the operator �I �G (where G is operator

generated by the function g (s; u) = n
p
u, (n is odd number)) is injective. Let's �nd out

if the equation (�I �G)x = 0 has any nontrivial solutions for � > 0:

(�I �G) (x1; x2; : : :) = (0; 0; : : :)

(�x1 � n
p
x1; �x2 � n

p
x2; : : :) = (0; 0; : : :)

() �xi � n
p
xi = 0;8i 2 N () n

p
xi

�
�

n

q
xn�1i � 1

�
= 0;8i 2 N

()
�
xi = 0 _ xn�1i =

�
1

�

�n�
;8i 2 N:

If � < 0 then there is only trivial solution x = (0; 0; : : :) : If � > 0, then it is possible

that xi = ��� n
n�1 , so there are nontrivial solutions also, such as

�
��

n
n�1 ; 0; 0; : : :

�
. This

implies (since G0 = 0) for � > 0; that operator �I �G is not injective and also �I�F is

not injective. It means that positive numbers � do not belong to the Rhodius resolvent

set, so they belong to the Rhodius spectrum, i.e.(0;1) � �R (F ) : We are interested now

is the operator (�I � F ) surjective. For � = 0 and given y 2 lq we have:

(�F ) (x1; x2; : : :) = (y1; y2; : : :)

(�a1 � n
p
x1;�a2 � n

p
x2; : : :) = (y1; y2; : : :) =)

�ai � n
p
xi = yi; 8i 2 N
xi = (�ai � yi)

n
; 8i 2 N:

We get that for every y there is x =
�
(�a1 � y1; )

n
; (�a2 � y2; )

n
; : : :

�
such that (�F )x =

y: For � 6= 0 and given y 2 lq we have:

(�I � F ) (x1; x2; : : :) = (y1; y2; : : :)

(�x1 � a1 � n
p
x1; �x2 � a2 � n

p
x2; : : :) = (y1; y2; : : :) =)

�xi � ai � n
p
xi = yi; 8i 2 N:
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Consider this equation (for i 2 N) :
n
p
xi = �xi � ai � yi =)
xi = (�xi � (ai + yi))

n

xi =

nX
k=0

�
n

k

�
(�xi)

n�k � (� (ai + yi))
k

�nxni � n�n�1 (ai + yi)x
n�1
i + : : :+

�
�n (ai + yi)

n�1 � 1
�
xi � (ai + yi)

n
= 0:

This equation has real solution xi (since this is an odd-degree polynomial equation), so

(�I � F ) is surjective operator for every � 2 R. For � � 0 operator �I � F is bijective

and now we need to research if (�I � F )
�1

is a continuous operator. For � = 0 we have

(�F )
�1

(x1; x2; : : :) = ((�a1 � x1)
n
; (�a2 � x2)

n
; : : :)

and this is continuous mapping. It follows from the Theorem 1.2., because f (i; u) =

(�ai � yi)
n

are continuous functions 8i 2 N: For � < 0:

(�I � F ) (x1; x2; : : :) = (y1; y2; : : :)

(�x1 � a1 � n
p
x1; �x2 � a2 � n

p
x2; : : :) = (y1; y2; : : :) :

The function f : R! R; f (i; u) = �xi � ai � n
p
xi is bijective and decreasing (for � < 0)

and continuous, 8i 2 N; so there exists its inverse f�1 (i; u) (which is also bijective,

decreasing and continuous function) 8i 2 N . Now from the Theorem 1.2. follows that

operator (�I � F )
�1

, generated by f�1 (i; u), is a continuous operator. We proved that

for � � 0 the operator (�I � F ) is bijective and (�I � F )
�1

is a continuous operator,

so the Rhodius resolvent set is �R (F ) = (�1; 0] and the Rhodius spectrum of F is

�R (F ) = (0;1). �

Lemma 2.8. Let the superposition operator F be generated by the function f (s; u) =

a (s)+ n
p
u, where n is an odd number, n � 3, and a (s) is a sequence from the space

lp (1 � p � 1): Then the point spectrum of F is �p (F ) = (0;1) if a (s) = 0;8s 2 N
and �p (F ) = R if (9s 2 N) a (s) 6= 0.

Proof. Consider the equation (�I � F )x = 0. For � = 0 we have

�Fx = (�a1 � n
p
x1;�a2 � n

p
x2; : : :) = (0; 0; : : :)

�ai � n
p
xi = 0;8i 2 N:

In the case that ai = 0;8i 2 N; there is only a trivial solution x = (0; 0; : : :) and 0 =2 �p (F ).

In the case that 9 i 2 N; ai 6= 0, we have xi = (�ai)n 6= 0, so there is also nontrivial

solution and 0 2 �p (F ). For � 6= 0 we have

(�I � F )x = (�x1 � a1 � n
p
x1; �x2 � a2 � n

p
x2; : : :) = (0; 0; : : :)

�xi � ai � n
p
xi = 0;8i 2 N:(2.22)

In the case that ai = 0;8i 2 N; we have

n
p
xi

�
1� �

n

q
xn�1i

�
= 0 =) (xi = 0) _

�
n

q
xn�1i =

1

�

�
:
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If � < 0 the only solution is xi = 0 (since n�1 is even number); if � > 0 there is nontrivial

solution also, xi = � n�1

q�
1
�

�n
. Hence the point spectrum of F , if a (s) = 0;8s 2 N, is

�p (F ) = (0;1). In the case that (9i 2 N)ai 6= 0 then from (2.22) we get

xi = (�xi � ai)
n

=)
�nxni � n�n�1aix

n�1
i + : : :+

�
�nan�1i � 1

�
xi � ani = 0:

There exists always a real (nontrivial) solution xi of this equation since it is an odd-

degree polynomial equation. Hence the point spectrum of F , if (9s 2 N) a (s) 6= 0, is

�p (F ) = R. �

Example 2.2. Consider an operator F : lp ! lq generated by the function f(s; u) =

au2 + bu, (a 6= 0): We have that F0 = 0.

(�I � F )(x1; x2; : : :) =
�
�x1 � ax21 � bx1; �x2 � ax22 � bx2; : : :

�
(�I � F )x = 0 () �

�xi � ax2i � bxi = 0
�
;8i 2 N

xi (axi + b� �) = 0;8i 2 N ()
�
xi = 0 _ xi =

�� b

a

�
;8i 2 N:

If � = b the equation (�I � F )x = 0 has only a trivial solution, hence b =2 �p (F ) :

If � 6= b the equation (�I � F )x = 0 has beside trivial solution, also nontrivial

solutions (such as x =
�
��b
a
; 0; 0; : : :

�
); hence the point spectrum is �p (F ) = Rn fbg :

For � 2 Rn fbg operator �I � F is not injective. Let`s check it for � = b.

(bI � F )x = (bI � F )y =) (bxi � ax2i � bxi = byi � ay2i � byi);8i 2 N
=) �ax2i = �ay2i ;8i 2 N) xi = yi;8i 2 N:

Hence operator �I � F is not injective (for instance (1; 0; 0; : : :) 6= (�1; 0; 0; : : :) and

(bI � F )(1; 0; 0; : : :) = (bI � F )(�1; 0; 0; : : :) = (�a; 0; 0; : : :)):
Operator �I � F is not surjective for any real number �, because in order to

solving operator equation (�I � F )x = y we come to solving the square equations�
�xi � ax2i � bxi = yi

�
;8i 2 N;

and they do not have always real solutions (for arbitrary yi 2 R).
(In set of complex numbers C, these solutions always exist, i.e. the operator

�I � F is surjective for every � 2 C):
Hence, the Rhodius spectrum is �R (F ) = R (or �R (F ) = C).

We can summerize Lemma 2.1 and Lemma 2.3 in the following Theorem:

Theorem 2.1. Let the superposition operator F be generated by the function f (s; u) =

a (s) + juj(2k)p , where k 2 N; p 2 f�1; 1g and a (s) is a sequence from the space lp
(1 � p � 1): Then the Rhodius spectrum of F is �R (F ) = R (or �R (F ) = C):

We can summerize Lemma 2.5 and Lemma 2.7 in the following Theorem:

Theorem 2.2. Let the superposition operator F be generated by the function f (s; u) =

a (s) + u(2k+1)
p

, where k 2 N; p 2 f�1; 1g and a (s) is a sequence from the space lp
(1 � p � 1): Then the Rhodius spectrum of F is �R (F ) = (0;1) (or �R (F ) = C):
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