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THE RHODIUS SPECTRA OF SOME NONLINEAR SUPERPOSITION
OPERATORS IN THE SPACES OF SEQUENCES

SANELA HALILOVIC! AND RAMIZ VUGDALIC

ABSTRACT. In this paper we study the superposition operator F' in I, spaces of se-
quences, generated by the function f (s,u) = a (s) + ¢(u), in case that p(u) = u™ or
¢(u) = Yu. We find out the Rhodius spectrum of this operator F. We also give a
few examples and compare this spectrum with the point spectrum.

1. INTRODUCTION AND PRELIMINARIES

It is well-known a notion of a spectrum for bounded linear operators and its useful
properties. Many various attempts have been made to define and study spectra also for
nonlinear operators. In the beginning, the term spectrum was used for nonlinear operators
just in the sense of point spectrum. Later, from the last sixties it became clear that a
more complete description requires other spectral sets. This led to a number of definitions
of nonlinear spectra which are all different. In this paper we are dealing with the Rhodius
spectra for some nonlinear superposition operators. This spectrum is becoming reduced to
the familiar spectrum in case of linear operator and always contains the eigenvalues of an
operator which keeps zero fixed. The Rhodius spectrum is introduced in [4]. The example
which shows that the Rhodius spectrum may be empty is due to Georg and Martelli in
[5]. Some informations about Rhodius spectrum and other spectra for nonlinear operators
and their comparisons and applications can, for example, also be found in [2], [6],[7],[8]
and [9]. First of all, let us introduce some definitions and facts for nonlinear superposition
operators in space of sequences I,.

Let f = f(s,u) be a function defined on @ x R (or © x C) with the values in R (or
respectively C). Given a function z = z (s), by applying f, we get another function
y =y (s) on Q by:

y(s) = F(s,2(s)).

In this way, the function f generates an operator F :
(1.1) Fz(s) = f(s,z(s)),
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which is usually called superposition operator (or composition operator or Nemytskij
operator), ([3]). We are going to observe the operator of superposition, defined in the
spaces of sequences I, (1 < p < 00), so we have Q =N (i.e. s € N).

Theorem 1.1. ([1]) Let 1 < p,q < 00. Then the following properties are equivalent:

e the operator F' acts from I, to lg;

e there are functions a(s) € l; and constants § > 0,n € N,b > 0, for which
f(sw)l S als)+bluls (s2mful <3);

e for any e > 0 there exists a function a. € l; and constants 6 > 0,n, € N, b >
0, for which |lac (s)|l, <& and

£ (5,u)] < ac (s) + be [ul@ (s> ne, [u] <&).

Theorem 1.2. ([1]) Let 1 < p,g < oo and let the superposition operator (1.1), gen-
erated by the function f(s,u), acts from I, to l;. Then this operator is continuous
if and only if each of the functions is continuous for every s € N.

Definition 1.1. The set of all eigenvalues of the operator F
op(F)={A€K: Fz = Az for somez # 0},
(K 1s the field of real or complex numbers), s called the point spectrum of F.

For the class € (X) of all continuous operators F' on a Banach space X over K (R or
C), Rhodius introduced in 1984. the following definition of its spectrum ([4]).

Definition 1.2. ([2]) For the continuous operator F : X — X the set
pr(F)={A€K: Al — Fisbijectiveand (\] — F) ' € €(X)}
1s called Rhodius resolvent set, and the set
or (F) = K\pg (F)
1s called Rhodius spectrum.

Remark 1.1. A point A € K belongs to pg (F) tf and only if \I — F is a homeomor-
phism on X.

If F0 = 0, then the problem of investigating injectivity of nonlinear operator AI — F,
could sometimes be replaced by finding if the equation (A/ — F)z = 0 has any non-
trivial solution. If there are some nontrivial solutions of the equation (Al — F)z = 0,
then operator AT — F' is not injective. Generally this is not true if F0 # 0. More
precisely, if F' is nonlinear operator with F'0 = 0, then o, (F) C &; C or(F). (&; =
{A € K: Al — Fisnotinjective }).
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2. MAIN RESULTS

Lemma 2.1. Let the superposition operator F be generated by the function f (s,u) =
a(s) + u™, where n is an even number and a(s) is a sequence from the space I,
(1 <p < o). Then the Rhodius spectrum of F' is og (F) =R or (or (F) = C).

Proof. Since a(s) € I, we can see that operator F' can act from lo, to I or according to
the Theorem 1.1. F can act from I, to {, (or from {; to I;). Denote a = (a1, a2,...) € Ip.
For z = (z1,z2,...) we have

Fr=F(z1,23,...) = (a1 + 27,02 + 2%,...).
Find out if AT — F' is an injective operator, for any real A\. Suppose that
(M — F)z = (A — F)y,
for some z,y € ;. Then
(2.1) (Azy—a1—z7, Az —ax—z5,...) = (Ay1 — a1 — YT, AY2 — a2 — y3,...)
For A = 0 we get
(—a1 —2t,—as —23,...)=(—a1 —yT',—a2 —y5,...) =
(VieN)—a;, —z] =—a;, —y =
(Ve e N) 2z =y
Number n is an even number, so it doesn‘t have to follow z; = y;,(V: € N). This is not
injective (nor bijective) mapping so 0 € og (F). If A # 0 then from equality (2.1) we get
(Vi e N):
AT —a; — 2 =AY — ai — Y
Az; — 2l = Ay — P = Az —y) =2f —yP
e —y) = (2 —v) (2] "+ 2l Pyt +zyl Tyl =
(z; = y;) V (x?_l +2 Py by Ay A = 0).
Hence we get the equation of an odd degree n — 1, there are always at least one real
(nontrivial) solution and AI — F is not injective mapping. We proved that A — F' is not
bijective mapping for any real A, so the Rhodius spectrum of this superposition operator

Fis: ogp(F) =R. In case that sequences were defined in C we would get the Rhodius
spectrum og (F) = C. O

Lemma 2.2. Let the superposition operator F be generated by the function f (s,u) =
a(s) + u™, where n is an even number and a(s) s a sequence from the space I,
(1<p< o) Ifa(s) =0, Vs € N, then the point spectrum is o, (F) = R\ {0}; +f

a(s) <0, Vse N and (3s € N)a(s) <0, then o, (F) =R. Ifsupa(s) >0 and n = 2
seN
then the point spectrum of F 1s

(2.2) op(F) = <—oo,—2 supa (s)] U l2 supa (s),oo) .

seN seN
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Proof. Find out has the equation (Al — F)z = 0 any nontirivial solution. For A = 0 we
have
—Fz= (—a; —27,—ax —z3,...)=(0,0,...) =

(2.3) —a; —z7} =0, Vi eN.

If a; =0, Vi € N, then from (2.3) it follows that there is only a trivial solution z; =

0,Vi e N (ie. z=(0,0,...)) and 0 ¢ o, (F). Ifa; <0, Vi € N, and (I € N)a; <0, then

from (2.3) it follows that ' = —a; > 0, V2 € N so there are nontrivial solutions with

z; ==+ —a; (z = ({/—a1, {/—az,...) ) and it means that 0 € o, (F). If supa(s) > 0
sCN

then there exists a positive number a; and for such ¢« equation (2.3) has no real solutions.
It follows 0 ¢ o, (F'). Let's see if the equation (AJ — F')z = 0, for A # 0, has some solution
away from zero

(M = F)(z1,23,...) = (Azy —ay — 2T, \z0 —ax —25,...) =(0,0,...) =

(2:4) z} —Az;+a;=0,Vi €N
If a; =0, Vi € N, then from (2.4) it follows that
zi(z7' -2 =0,VieN = (z;=0) V (xz _ n,\l/x).

2

There are nontrivial solutions (for example z = (" v/},0,...)) so A € 0, (F). If a; <0,
Vi € N, and (3¢ € N)a; < 0, then from (2.4) it follows:

(2.5) z} = Az; —a;, Vi €N

It is clear that for a; = 0 there are two solutions z;; = 0 and z;, = "vA. When
a; < 0 we can see that graph of the function y = Az — a; intersects the graph of the
function y = z". It means that there is a (nontrivial) solution of the equation (2.5).

Hence A € o, (F). Since a € I, sequence a is bounded so supa (s) < oco. If supa (s) > 0
seN sEN
and n = 2 the equations (2.4) become

(2.6) z? — Az; +a; =0, Vi € N.

For any ¢ € N the equation (2.6) has real solutions if its discriminant is nonnegative, i.e.
A2 —4a; > 0. So equations (2.6) has real solutions if A2 > 4a;,Vi € N, which gives us the

condition A? > 4supa (s) > 0. Now we get that for
seN

A€ <—oo,—2~ ilelga (s)] U l2~ /ilelga (s),oo) =J

the equation (A — F')z = 0 has (nontrivial) solutions, so the point spectrum is
op(F)=J.
d

Example 2.1. Let the function f (s,u) = ﬁ—i—zﬂ generate a superposition operator
F ll — ll.

1 1
F((El,mg,...): <+$%,23+l’§,>
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It s not hard to find out for which A € R, the equation (A — F)z = 0 has nontrivial
solutions, so we get the point spectrum of F':

op(F) = (—oo,—\@] U [\/5,—1—00) .

We can see that sups(slTU = % and 2 [supa(s) = 2- \/g = /2, so we really get the
seN sEN

point spectrum (2.2) from Lemma 2.2. The operator AI — F' is not injective for any
A € R, so the Rhodius spectrum of F 1is:

O'R(F):R.

Lemma 2.3. Let the superposition operator F be generated by the function f (s,u) =
a(s) + {/|u|, where n is an even number and a(s) s a sequence from the space I,
(1 <p< o). Then the Rhodius spectrum of F' is og (F) =R (or cg (F) = C).

Proof. Denote a = (a1, a2,...) € l,. For = (21, 2,,...) we have

Fr=F(z1,2,,...) = (al—l— Y|z, a2 + \"/|a:2|,...>.

Consider the operator (Al — F')(zy, z2,...) = ()\acl —a; — Y|z1|, Az2 — a2 — 22, .. )
For A = 0, it becomes —F(z1, z2,...) = (—al — ¥|z1], —az — Y|z2 ,) Suppose that
—Fz = —Fy,

for some z,y € 1,. Then

<_a1 - lz1l, —a2 — ¥/ |$2|,) = (_al = Yyl —a2 = ¥ |y2|,) ==
—a; — x| = —a; — Yy, i €N =
|$i| = |yi|7 1 € N.
This is not injective mapping since it doesn‘t have to follow =z = y. Hence,
(2.7) 0€ogr(F).

Now let A # 0 and consider the equation (Al — F)z = (A — F)y for z,y € [,. We are
interested in does it have to follow: z = y.

(Awl—al— m,)\xQ_GQ_ {1/|:n72,) = ()\yl—al— {‘/@,)\yg—ag— {‘/@,)
AT, —a; — ’{/@:)\yi—ai— {l/m,ViEN =
Mai = i) = Vel = Vlwil, vieN.
There are following possibilities: a) z; = y;; b) (z; > 0,y; > 0) then

(a0 + (a0 Y+ ()] - 5 =0

c) (z; < 0,y; <0) then

(V2™ + (a7 v+ + ()Y + 5 =0
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d) z; - y; < 0. then

n
(V)" + (V)" = £2 (Vi - VTl
The equation in d) isn’t always solvable in R and anyway then it holds z # y. The
equations b) and c¢) have at least one real solution z; for fixed y; (if we denote p =
Yzil, ¢ = \"/m they become an odd-degree polynomial equations) and we have that
z; # yi. So from (Al — F)z = (A] — F))y it doesn’t have to follow that z = y. We have
proved that operator Al — F' is not injective for any A # 0 and that‘s why

(2.8) R\ {0} C or (F)
From (2.7) and (2.8) it follows that the Rhodius spectrum of this operator F' is og (F) =

R. In case that sequences were defined in C we would get the Rhodius spectrum oy (F) =

C.

O

Lemma 2.4. Let the superposition operator F be generated by the function f (s,u) =
a(s) + {/|u|, where n is an even number and a(s) is a sequence from the space
(1<p< o). Ifa(s) =0, Vs € N, then the point spectrum is g, (F) = R\ {0}, if
a(s) <0, Vs €N and (3s € N)a(s) < 0, then o, (F) = R; if (3s € N)a(s) > 0, then
op (F) = R\{0}.

Proof. Find out has the equation (Al — F)z = 0 any nontirivial solution. For A = 0 we

have
—Fz = (—al — /|e1], —as — c/|m2|,...) =(0,0,...) =
(2.9) a; + |z =0, Ve € N.

If a; = 0, Vi € N, then from (2.9) it follows that there is only a trivial solution z; =
0,Vi €N (i.e. z=(0,0,...)) and 0 ¢ o, (F). If a; <0, Vi € N, and (37 € N)a,; < 0, then
from (2.9) it follows that W = —a; > 0, Vi € N so there are nontrivial solutions
with z;, , = +(—a;)" and it means that 0 € o, (F). If Ja; > 0 then equation (2.9) has
no solutions. Let‘s see if the equation (AJ — F)z = 0, for A # 0, has any solution away
from zero

(M — F) (z1,20,...) = ()\xl — a1 — V]e1], Aes —as — % |:1:2|,...) = (0,0,...)

(2.10) Y/ |:13z| —Az;+a;=0,VieEN
If a; =0, Vi € N, then from (2.10) it follows that
2, =0) V (2, = A"77), forA>0
(2:=0) ( ' ) (Vi € N).
(z; =0) V (mi:—A_ﬁ), for A <0.

There are nontrivial solutions so A € o, (F/). Denote now:
(2.11) Y (z:) = Vo] — Azi + ag,

If a; < 0 we can see that y(0) = a; < 0 and y (%) = {
y is continuous, from the Intermediate ValueTheorem, it follows that there exists z; # 0
such that y(z;) = 0 (z; € (0,%), ifA<0 and z; € (%,0), if A > 0). It means that

Since the function
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there is a (nontrivial) solution of the equations (2.11) and the point spectrum of F (in
the case a(s) < 0,Vs € Nand (3s € N)a(s) < 0) isop,(F)=R.Ifa; >0andn =2
then equation (2.10) becomes:

(212) \/ |Q?z| = }\xi — Q.

It is not hard to see that this equation is solvable in R for every A # 0 (if A > 0 then
z; > 0; if A < 0 then z; < 0). Denote this solution with z; = p € R, and consider the
equation \"/@ = Az; — a;, where n is an even number and n > 2. Since p is a solution
of the equation (2.12) we have /[p| = Ap — a;. From (2.11) we get y (0) = a; > 0 and

y(p)zm—kp+aizm (Ap —ai) = ¥/Ipl = VIpl.

If |p| > 1 then y(p) = ¥/Ip| — +/Ip| < 0 and from the Intermediate Value Theorem it
follows that there is some z; such that vy (z;) {‘/|$T Az; +a; =0 (z; € (0,p) if
p>1 orz € (p0)if p < —1). If 0 < p < 1then A > 0 and since the function

z;) = +/|zi| — Az; + a; is continuous (and has the only one solution p) and g (0) > 0
then it has to be

g(1)=1—X+a; <0.

Now we have that y (1) = /|1 - A+a; =1-A+a; <0 and since y(0) = a; > 0
and y is a continuous function, it follows that (3z; € (0,1)) y(z;) = 0. If -1 < p <0
then A < 0 and since the function g is continuous (and has the only one solution p) and
g(0) > 0, it has to be g(—1) = /|-1| + A+ a; =1+ A+ a; < 0. Now we have that
y(-1)= /|-l +A+a;, =1+ Xr+a; <0 and since y (0) = a; > 0 and y is a continuous
function, it follows that (3z; € (—1,0)) y (z;) = 0. So we proved that if 3a; > 0 then the
point spectrum of F is o, (F)) = R\ {0}. O

Lemma 2.5. Let the superposition operator F be generated by the function f (s,u) =
a(s) +u™, where n 1s an odd number, n > 3 and a(s) is a sequence from the space
I, (1 <p< o). Then the Rhodius spectrum of F' is o (F) = (0,00) (or og (F) = C).

Proof. Let the superposition operator F' : I, — I, be generated by the function f(s,u) =
a(s) +u", (n is an odd number, a € I,)

Fr =F(z1,22,...) = (a1 + 27,22 + 23,...).
Consider the operator
(A — F)(z1,22,...) = (Azy —a; —zf,Azo —ax — 275,...).

For A = 0, the operator —F' is injective, because from
—Fz=-Fy < (—ay—z¥,—ay—2§,...) =(—a1 — y},—az — ¥%,...), we get

—a;,—z} =—a;—y; ,VieN = 2 =y, Vie N = z=y.

The operator —F is surjective because for arbitrary y € I, there are some = € I, such
that —Fz = y. Really:

—Fz=(-a1 —z7,—as —z3,...) = (y1,92,...) =

r=(/—a1 —y1, ¥V—az —y2,...).
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Let now A #0 :

()\I—F)((El,mg,...): ()\I—F)(y]_,yQ,)

2.13
( ) (Azy —a; — 2P, Az —ax —28,...) = (Qy1 —a1 — Yy, Ay —ax — y%,...)

Az, —a; —z} =Ay; —a; —y,Vi €N

2.14 ;
( ) zr — Az =y — Ay, Ve €N

(2.15)

= (af —y7) = A(zi —yi), Vi €N
From (2.15) we get (z; = y;) or

(2.16) A VT SR TR VR VA S VAR Y=

If A <0 thenfor (z; >0 Ay; >0),0or (z; <0A y; <0), we have that
e 2P Py bz v Pt >0 and
T S S e A W1}
IfA<0and (z; >0 A y; <0) then: a) for z; > —y; we have
ot > 2l (—y)

T N TN

- —2
ziy > e ()"
From these inequalities by summarizing we get

e el Ry iy > ey e -y =
e el Py el 2 el R Ry P ey P >0
By adding two members y?f1 >0 and —A > 0, to the left side, we get

n

A T SR T A VAR N VAR S

b) For z; < —y;, we have

Yt > (—y)"

g2y % > 2f (—y)"

From these inequalities by summerizing we get

Y eyt el YR > eyt L 2y, =

Tl ey el el R ) Py > 0

By adding two members x;‘_l >0 and —A > 0, to the left side, we get

1 n

T R TR/ S VAR W )
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If A< 0and (z; <0 Ay, >0) we can analogously get the same inequality. So any way,
from (2.13) it follows that ¢ = y and A — F' is an injective operator (for A < 0). We
can see from the equations (2.14) that this operator Al — F' is injective if the operator
Al — G (where G is operator generated by the function g (s,u) = u”, (n is odd number))
is injective. Let‘s find out if the equation (Al — G)z = 0 has any nontrivial solutions for
A>0.

(2.17) (Al - G) (z1,22,...) =(0,0,...)
(Azy — 27, Az — 27,...) = (0,0,...)
Az; —z} =0,V €N
zi(A—2}7') =0,Vi eN
(z; =0V 2l ' =1),Vie N.
If A < 0 then there is only trivial solution z = (0,0,...). If A > 0, then it is possible
that z; = + "V/X for some ¢ € N, so the equation (2.17) has nontrivial solutions also,
such as (”7\15,0,0, .. ) This implies (since GO = 0) for A > 0, that operator A\I — G
is not injective and also A — F' is not injective. It means that positive numbers A do
not belong to the Rhodius resolvent set, so they belong to the Rhodius spectrum, i.e.
(0,00) C og (F). Let us see for A # 0 and arbitrary y € {; , whether exists z € [, such
that (A — Flz = y.
(Azy —ay —zT, Az —as — 22,...) = (y1,¥2,...) =
Az; —a; —z; =y;, Vi €N
T —Azi+a; +y; =0,Vi € N.
These odd-degree polynomial equations have at least one real solutions z; for every y; € R
. It means that operator A\ — F' is onto for A # 0. For A < 0 operator AI — F is bijective
and now we need to research if (AJ — F)71 is a continuous operator. For A = 0 we have
(—F)_l (z1,22,...) = (¥V—a1 — 1, /—ap — 22,...)
and this is continuous mapping. It follows from the Theorem 1.2., because f (z,u) =
/—a; — u are continuous functions Vi € N. For A < 0:

()\I—F) ($1,£L‘2,...) = (’yl,yg,...)

(Azy —ay — 27, A2z —az —y3,--.) = (¥1,¥2,--) -
The function f: R — R, f(i,u) = Au — a; — u™ is bijective and decreasing (for A < 0)
and continuous, Vi € N, so there exists its inverse f~!(s,u) (which is also bijective,
decreasing and continuous function) Vi € N. Now from the Theorem 1.2 follows that
operator (Al — F)fl, generated by f!(7,u), is continuous operator. We proved that
for A < 0 the operator (A — F) is bijective and (A] — F)" ' is continuous operator,

so the Rhodius resolvent set is pg (F) = (—o0,0] and the Rhodius spectrum of F' is
or(F)=1(0,00). O

Lemma 2.6. Let the superposition operator F be generated by the function f (s,u) =
a(s) 4+ u™, where n 1s an odd number, n > 3 and a(s) s a sequence from the space
I, (1 <p < o0). Then the point spectrum of F is o, (F) = (0,00) if a(s) =0,Vs € N
and o, (F) =R if (3s € N) a(s) # 0.
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Proof. Find out has the equation (Al — F)z = 0 any nontirivial solution. For A = 0 we
have

—F(zy,22,...) =(—a; — z7,—a2 — 27,...) =(0,0,...)
— zl+a;=0,V2€N
If a; = 0 then z; = 0; if a; # 0 then z; = {¥—a; € R. Hence for a(s) = 0,Vs € N it

values 0 ¢ o, (F) and if (3s € N) a(s) # 0 then 0 € g, (F). Let now A # 0 and see if the
following equation has only trivial solution:

(2.18) (M = F)(z1,22,...) = (Azy — a1 — 27, Az —az — z5,...) = (0,0,...)
' = :E?—)\CEZ'-I-LZZ':O,V’I;€N

If a; = 0 then

zi (2} " -2 =0 & (z;=0Vv 2} '=1)),

2

so for A < 0 (as n — 1 is an even number), there is only a trivial solution z; = 0 and for
A > 0 there is a nontrivial solution also,

z; =+ "V
(3: = ( "V,0,0,.. ) is one of nontrivial solutions of the equation (A — F)z = 0) )

If a; # 0 then equation (2.18) has at least one real (nontrivial) solution z; because it
is an odd-degree polynomial equation. So if a(s) = 0,Vs € N then o, (F) = (0,00). If
(3s € N) a(s) # 0 then the point spectrum of F' is o, (F') = R. O

Lemma 2.7. Let the superposition operator F' be generated by the function f (s,u) =
a(s) + /u, where n s an odd number, n > 3 and a(s) is a sequence from the space
I, (1 <p < o0). Then the Rhodius spectrum of F' is o (F') = (0,00) (or or (F)=C).

Proof. Let the superposition operator F, be generated by the function f(s,u) = a(s) +
{/u, (n is an odd number, a € {,)

Fz = F (z1,22,...) = (a1 + Yz1,02 + ¥2a,...).
Consider the operator
(M = F)(z1,22,...) = (Az1 — a1 — Y21, 20 —az — Yzo,...).
For A =0, from
—Fz=—-Fy < (—a1— ¥r1,—az — ¥Yz3,...) = (—a1 — ¥Yy1,—a2 — Yya,...)
we get
—a; — Yz, =—a;, — Yy, V1 eEN = Yr; = Yy ,VieN = z=y.

Hence, the operator —F is injective.
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For A # 0 we have
(AM—-F)z = (AM[-F)y
(Azy — a1 — Y21, zp —ax — Yza,...) = (Az1— a1 — Yy1, Az —az — yz2,-...)
Az, —a; — Yz, = Ayi—a;— Yy,VieEN =
(2.19) Az, — Yz, = Ay — Yy, Vi eN
AMzi—vi) = (Yzi— {y:),VieN.

Now it follows z; = y; or

n— n— n— 1
(2:20) ()" + (V)" Yo+ ()T S =0
Denote {/z; = k; and {/y; = I; then (2.20) becomes
1
(2:21) BT AR T R T - S=0,

which is equivalent to the equation (2.16). We have already shown in the proof of the
Lemma 2.5 that for A < 0 the equation (2.21) is not true for any k; and I;. Hence it must
be z; = y;,Vn € N and A] — F is injective for A < 0. We can see from the equations
(2.20) that this operator AI — F' is injective if the operator A — G (where G is operator
generated by the function g (s,u) = /u, (n is odd number)) is injective. Let’s find out
if the equation (A — G)z = 0 has any nontrivial solutions for A > 0.

(M = G) (z1,2s,...) = (0,0,...)
(Azy — /a1, \zs — z3,...) = (0,0,...)

= Az; — Yz, =0,VieN — c/a:ﬁ-()\\"/a:?‘l—1> =0,vzeN

1 n
— <x¢:0Vm?1:<)\> ),VieN.

If A < O then there is only trivial solution z = (0,0,...). If A > 0, then it is possible
that 2; = £\~ 71 | so there are nontrivial solutions also, such as ()\_ﬁ,o, 0,.. ) This

implies (since GO = 0) for A > 0, that operator AJ — G is not injective and also AJ — F' is
not injective. It means that positive numbers A do not belong to the Rhodius resolvent
set, so they belong to the Rhodius spectrum, i.e.(0,00) C og (F'). We are interested now
is the operator (A — F') surjective. For A = 0 and given y € {; we have:

(=F)(z1,22,...) = (y1,Y2,---)
(—a1 — ¥Yz1,—az — Yz2,...) = (Y1, ¥2,...) —
—a; — Yz, =y, Vi €N
z; = (—a; —y;)", Vi € N.
We get that for every y thereis z = ((—al —y1,)", (—az —y2,)", .. ) such that (—F)z =
y. For A # 0 and given y € I; we have:
(A — F) (z1,22,...) = (¥1,¥2,-.-)
(A1 — a1 — Yz1, Az —ax — Yzg,...) = (Y1,Y2,...) =
Az; —a; — Yz, =y, Ve € N.
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Consider this equation (for z € N) :
Yo, =Az; —a; — Yy —
z; = (Az; — (a; +9:)"

n

Ti=) (:) Az)" " (= (i + )"

k=0
Az — A" (a; + ;) x?_l +...+ ()\n (a; + yi)n_l — 1) z; — (a; +y;)" = 0.
This equation has real solution z; (since this is an odd-degree polynomial equation), so

(M — F) is surjective operator for every A € R. For A < 0 operator A/ — F' is bijective
and now we need to research if (AJ — F)_1 is a continuous operator. For A = 0 we have

(=F) (21, 22,...) = ((—a1 — 21)™, (—az — z2)", .. .)

and this is continuous mapping. It follows from the Theorem 1.2., because f (,u) =
(—a; —y;)" are continuous functions Vi € N. For A < 0:

(Al = F)(z1,22,---) = (Y1, Y2, - )

()\(El —a; — w"/:lfl,)\l’g —Qay — /T, .. ) = (yl,yg, .. ) .
The function f : R — R, f(¢,u) = Az; —a; — {/z; is bijective and decreasing (for A < 0)
and continuous, V2 € N, so there exists its inverse f~!(7,u) (which is also bijective,
decreasing and continuous function) Vi € N . Now from the Theorem 1.2. follows that
operator (Al — F)_l, generated by f~! (¢,u), is a continuous operator. We proved that
for A < 0 the operator (AI — F) is bijective and (Al — F)fl is a continuous operator,

so the Rhodius resolvent set is pg (F) = (—00,0] and the Rhodius spectrum of F is
or (F) = (0,00). O

Lemma 2.8. Let the superposition operator F' be generated by the function f (s,u) =
a(s)+ ¥/u, where n is an odd number, n > 3, and a(s) is a sequence from the space
I, (1 <p < o0). Then the point spectrum of F is o, (F) = (0,00) ifa(s) =0,Vs € N
and o, (F) =R ¢f (s € N) a(s) #0.

Proof. Consider the equation (A — F)z = 0. For A = 0 we have
—Fz =(—a1 — ¥z1,—ax — Yza,...) =(0,0,...)
—a; — (‘/(1271': 0,V € N.
In the case that a; = 0,V € N, there is only a trivial solution 2 = (0,0,...) and 0 ¢ o, (F).

In the case that 3 7 € N,a; # 0, we have z; = (—a;)" # 0, so there is also nontrivial
solution and 0 € g, (F). For A # 0 we have

(M —-Fyz=(Az1 —a1 — Yz, 22 —ay — Yzo,...) = (0,0,...)
(2.22) Az, —a; — (l/l’i,, = 0,VieN.
In the case that a; = 0,Vz € N, we have

%(1—A{/a?):0 = (a:i:O)v(“m?_l:i).
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If X < 0 the only solution is z; = 0 (since n—1 is even number); if A > 0 there is nontrivial

solution also, z; = + ”‘W. Hence the point spectrum of F, if a(s) = 0,Vs € N, is

op (F) = (0,00). In the case that (32 € N)a; # 0 then from (2.22) we get
T; = ()\(IZ.L — ai)n —

Azl — A" gzl 4+ (Ana? T — 1)z, — al = 0.
There exists always a real (nontrivial) solution z; of this equation since it is an odd-
degree polynomial equation. Hence the point spectrum of F, if (3s € N) a(s) # 0, is
op (F) =R. O
Example 2.2. Consider an operator F : 1, — l; generated by the function f(s,u) =
au? +bu, (a #0). We have that F0 = 0.

(M — F)(z1,22,...) = (Az1 — az} — bz, Az3 — azj — bzs,...)
(Al -F)z=0 < (Az; —az —bz; =0),¥i € N

. A—b .
z;(az; +b—-AN)=0,Vi €N — (mi:OVmi: . >,V’LEN.

If A = b the equation (A\I — F)z =0 has only a trivial solution, hence b ¢ o, (F').

If X # b the equation (AI — F)z = 0 has beside trivial solution, also nontrivial
solutions (such as z = (22,0,0,...)), hence the point spectrum is o, (F) = R\ {b}.
For A € R\ {b} operator \I — F is not injective. Let‘s check it for A =b.

(b — F)z = (b] — F)y = (bz; —az? — bx; = by; — ay? — by;),Vi € N

— —az?=-ay?,VicN=>z, =y;,Vi €N,

Hence operator A\I — F 1s not injective (for instance (1,0,0,...) # (-1,0,0,...) and
(bI — F)(1,0,0,...) =(bI — F)(-1,0,0,...) =(—a,0,0,...)).

Operator AI — F' 1s not surjective for any real number A, because in order to
soluing operator equation (A — F)z =y we come to soluing the square equations

()\a:i - axf —br; = yi) , Vi €N,

and they do not have always real solutions (for arbitrary v, € R).

(In set of complex numbers C, these solutions always exist, i.e. the operator
M — F 15 surjective for every A € C).

Hence, the Rhodius spectrum is og (F) =R (or og (F) =C).

We can summerize Lemma 2.1 and Lemma 2.3 in the following Theorem:

Theorem 2.1. Let the superposition operator F' be generated by the function f (s,u) =
a(s) + |u|(2k)p, where k € N, p € {-1,1} and a(s) s a sequence from the space [,
(1 <p < o0). Then the Rhodius spectrum of F is og (F) =R (or o (F) = C).

We can summerize Lemma 2.5 and Lemma 2.7 in the following Theorem:
Theorem 2.2. Let the superposition operator F' be generated by the function f (s,u) =

a(s) +ul**" where k € N, p € {~1,1} and a(s) is a sequence from the space Iy
(1 <p < o). Then the Rhodius spectrum of F is og (F) = (0,00) (or og (F) = C).
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