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Abstract. This article introduces proximal Voronoï regions. A main result in this
paper is the proof that proximal Voronoï regions are convex polygons. In addition,
it is proved that every collection of proximal Voronoï regions has a Leader uniform
topology.

1. Introduction

Klee-Phelps convexity [8, 12] and related work [11] are viewed here in terms of
Voronoï regions [13, 14, 15]. A nonempty set A of a space X is a convex set, provided
�A + (1 � �)A � A for each � 2 [0; 1] [1, �1.1, p. 4]. A simple convex set is a closed
half plane (all points on or on one side of a line in R2).

Lemma 1.1. [6, �2.1, p. 9] The intersection of convex sets is convex.

Proof. Let A;B � R
2 be convex sets and let K = A\B. For every pair points x; y 2 K,

the line segment xy connecting x and y belongs to K, since this property holds for all
points in A and B. Hence, K is convex. �

Figure 1. Vp = Intersection of closed half-planes
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Let S � R
2 be a �nite set of n points called sites, p 2 S. The set S is called the

generating set [7]. Let Hpq be the closed half plane of points at least as close to p as to
q 2 S n fpg, de�ned by

Hpq =

�
x 2 R2 : kx� pk �

q2S

kx� qk

�
:

A convex polygon is the intersection of �nitely many half-planes [5, �I.1, p. 2]. See, for
example, Fig. 1.

Remark 1.1. The Voronoï region Vp depicted as the intersection of �nitely many closed
half planes in Fig. 1 is a variation of the representation of a Voronoï region in the mono-
graph by H. Edelsbrunner [6, �2.1, p. 10], where each half plane is de�ned by its outward
directed normal vector. The rays from p and perpendicular to the sides of Vp are com-
parable to the lines leading from the center of the convex polygon in G.L. Dirichlet's
drawing [3, �3, p. 216].

2. Preliminaries

Let S � E, a �nite-dimensional normed linear space. Elements of S are called sites to
distinguish them from other points in E [6, �2.2, p. 10]. Let p 2 S. A Voronoï region

of p 2 S (denoted Vp) is de�ned by

Vp =

�
x 2 E : kx� pk �

8q2S

kx� qk

�
:

Remark 2.1. A Voronoï region of a site p 2 S contains every point in the plane that is
closer to p than to any other site in S [7, �1.1, p. 99]. Let Vp; Vq be Voronoï polygons. If
Vp \ Vq is a line, ray or line segment, then it is called a Voronoï edge. If the intersection
of three or more Voronoï regions is a point, that point is called a Voronoï vertex.

Lemma 2.1. A Voronoï region of a point is the intersection of closed half planes

and each region is a convex polygon.

Proof. From the de�nition of a closed half-plane

Hpq =

�
x 2 R2 : kx� pk �

q2S

kx� qk

�
;

Vp is the intersection of closed half-planes Hpq, for all q 2 S�fpg [5], forming a polygon.
From Lemma 1.1, Vp is a convex. �

A Voronoi diagram of S (denoted by V) is the set of Voronoi regions, one for each site
p 2 S, de�ned by

V =
[
p2S

Vp:

Example 2.1. Centroids as Sites in an Image Tessellation.
Let E be a segmentation of a digital image and let S � E be a set of sites, where

each site is the centroid of a segment in E. In a centroidal approach to the Voronoï

tessellation of E, a Voronoï region Vp is de�ned by the intersection of closed half
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plains determined by centroid p 2 S. The centroidal approach to Voronoi tessellation

was introduced by Q. Du, V. Faber, M. Gunzburger [4].

3. Main Results

Let Vp; Vz be Voronoï regions of p; z 2 S, a set of Voronoï sites in a �nite-dimensional
normed linear Space E that is topological, clA the closure of a nonempty set A in E.
Vp; Vz are proximal (denoted by Vp � Vz), provided P = clVp \ clVz 6= ; [2]. The set P is
called a proximal Voronoï region.

Theorem 3.1. Proximal Voronoï regions are convex polygons.

Proof. Let P be a proximal Voronoï region. By de�nition, P is the nonempty intersection
of convex sets. From Lemma 1.1, P is convex. Consequently, P is the intersection of
�nitely many closed half planes. Hence, from Lemma 2.1, P is a Voronoï region of a point
and is a convex polygon. �

Corollary 3.1. The intersection of proximal Voronoï regions is either a Voronoï

edge or Voronoï point.

Any two Voronoï regions intersect at least a vertex and at most along their bound-
aries. Together, the set of Voronoï regions V cover the entire plane [5, �2.2, p. 10]. For
a set of sites S � E, a Voronoï diagram D of S is the set of Voronoi regions, one for each
site in S.

Corollary 3.2. A Voronoï diagram D equals V.

The partition of a plane E with a �nite set of n sites into n Voronoï polygons
is known as a Dirichlet tessellation, named after G.L. Dirichlet [16] (see [3]). A cover

(covering) of a space X is a collection U of subsets of X whose union contains X (i.e.,
U � X) [17, �15], [10, �7.1].

Corollary 3.3. A Dirichlet tessellation D of the Euclidean plane E is a covering of

E.

Recall that the Euclidean space E = R2 is a metric space. The topology in a metric
space results from determining which points are close to each set in the space. A point x 2
E is close to A � E, provided the Hausdor� distance d(x;A) = inf fkx� ak : a 2 Ag = 0.
Let X;Y be a pair of metric spaces, f : X �! Y is a function such that for each x 2 X,
there is a unique f(x) 2 Y . A continuous function preserves the closeness (proximity)
between points and sets, i.e., f(x) is close to f(B) whenever x is close to B. In a
proximity space, one set A is near another set B, provided A � B, i.e., the closure of
A has at least one element in common with the closure of B. The set A is close to the
set B, provided the �Cech distance D(A;B) = inf fka� bk : a 2 A; b 2 Bg = 0. In that
case, we write A � B (A and B are proximal). A uniformly continuous mapping is a
function that preserves proximity between sets, i.e., f(A) � f(B) whenever A � B. A
Leader uniform topology is determined by �nding those points that are close to each
given set in E.
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Theorem 3.2. Let S be a set of two or more sites, p 2 S; Vp 2 D in the Euclidean

space R2. Then

1o Vp is near at least one other Voronoï region in D.

2o Let p; y be sites in S. fyg � fpg ) fyg � Vp.

3o Vp is close to Voronoï region Vy if and only if d(x; Vy) = 0 for at least one x 2 Vp.

4o A mapping f : Vp �! Vy is uniformly continuous, provided f(Vp) � f(Vy) when-

ever Vp � Vy.

Proof.

1o: Assume S contains at least 2 sites. Let p 2 S; y 2 S n fyg such that Vp; Vy have at
least one closed half plane in common. Then Vp � Vy.
2o: If fyg � fpg, then ky � pk = 0, since y 2 fyg \ fpg. Consequently, fyg \ cl(Vp) 6= ;.
Hence, fyg � cl(Vp).
3o: Vp � Vy , exists x 2 cl(Vp) \ cl(Vy), d(x; Vy) = 0.
4o: Let f(Vp) � f(Vy) whenever Vp � Vy. Then, by de�nition, f : Vp �! Vy is uniformly
continuous. �

Theorem 3.3. Every collection of proximal Voronoï regions has a Leader uniform

topology (application of [9]).

Proof. Assume D has more than one Voronoï region. For each Vp 2 D, �nd all Vy 2 D
that are close to Vp. For each Vp, this procedure determines a family of Voronoï regions
that are near Vp. Let � be a collection of families of proximal Voronoï regions. Let
A;B 2 � . A \ B 2 � , since either A \ B = ; or, from Theorem 3.2.lo, there is at least
one Voronoï region Vp 2 A \ B, i.e., Vp � A and Vp � B. Hence, A \ B 2 � . Similarly,
A [B 2 � , since Vp � A or Vp � B for each Vp 2 A [B. Also, D; ; are in � . Then, � is a
Leader uniform topology in D. �
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