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PROXIMAL VORONOI REGIONS, CONVEX POLYGONS, & LEADER
UNFORM TOPOLOGY
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ABSTRACT. This article introduces proximal Voronoi regions. A main result in this
paper is the proof that proximal Voronoi regions are convex polygons. In addition,
it is proved that every collection of proximal Voronoi regions has a Leader uniform

topology.

1. INTRODUCTION

Klee-Phelps convexity [8, 12] and related work [11] are viewed here in terms of
Voronoi regions [13, 14, 15]. A nonempty set A of a space X is a convez set, provided
aA+ (1 —a)A C Afor each o € [0,1] [1, §1.1, p. 4]. A simple convez set is a closed
half plane (all points on or on one side of a line in R?).

Lemma 1.1. [6, §2.1, p. 9] The tntersection of convez sets is convez.

Proof. Let A, B C R? be convex sets and let K = AN B. For every pair points z,y € X,
the line segment Ty connecting z and y belongs to K, since this property holds for all
points in A and B. Hence, K is convex. O

Ficure 1. V, = Intersection of closed half-planes

2010 Mathematics Subject Classification. 65D18, 54E05, 52C20, 52C22.
Key words and phrases. Convex polygon, proximal, Leader uniform topology, Voronoi region.

1



2 J.F. PETERS

Let S C R? be a finite set of n points called sites, p € S. The set S is called the
generating set [7]. Let Hp, be the closed half plane of points at least as close to p as to
g € S\ {p}, defined by

mm:{xeRZWx—M|snz—ﬂ@.
ges

A convez polygon is the intersection of finitely many half-planes [5, §1.1, p. 2]. See, for
example, Fig. 1.

Remark 1.1. The Voronoi region V, depicted as the intersection of finitely many closed
half planes in Fig. 1 is a variation of the representation of a Voronoi region in the mono-
graph by H. Edelsbrunner [6, §2.1, p. 10], where each half plane is defined by its outward
directed normal vector. The rays from p and perpendicular to the sides of ¥, are com-
parable to the lines leading from the center of the convex polygon in G.L. Dirichlet’s
drawing [3, §3, p. 216].

2. PRELIMINARIES

Let S C E, a finite-dimensional normed linear space. Elements of S are called sites to
distinguish them from other points in F [6, §2.2, p. 10]. Let p € S. A Voronot region
of p € S (denoted V) is defined by

vo={oeilo-sl < le-al}.
VgeSs

Remark 2.1. A Voronoi region of a site p € S contains every point in the plane that is
closer to p than to any other site in S [7, §1.1, p. 99]. Let V,, V, be Voronoi polygons. If
Vp NVg is a line, ray or line segment, then it is called a Voronoi edge. If the intersection
of three or more Voronoi regions is a point, that point is called a Voronoi vertez.

Lemma 2.1. A Voronoi region of a point is the intersection of closed half planes
and each region is a convex polygon.

Proof. From the definition of a closed half-plane
Hoy = {z € B o=l < llo - all},
ges

V) is the intersection of closed half-planes Hpg, for all ¢ € S — {p} [5], forming a polygon.
From Lemma 1.1, V}, is a convex. O

A Voronoi diagram of S (denoted by V) is the set of Voronoi regions, one for each site
p € S, defined by
V=|JV.

pES

Example 2.1. Centroids as Sites in an Image Tessellation.

Let E be a segmentation of a digital tmage and let S C E be a set of sites, where
each site 1s the centroid of a segment in E. In a centroidal approach to the Voronot
tessellation of E, a Voronoi region V, is defined by the intersection of closed half
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plains determined by centroidp € S. The centroidal approach to Voronot tessellation
was ntroduced by Q. Du, V. Faber, M. Gunzburger [4].

3. MAIN RESULTS

Let V,, V. be Voronofi regions of p,z € S, a set of Voronofi sites in a finite-dimensional
normed linear Space E that is topological, clA the closure of a nonempty set A in E.
Vp, V are prozimal (denoted by V, 6 V), provided P = clV, NclV, # 0 [2]. The set P is
called a prozimal Voronot region.

Theorem 3.1. Proximal Voronoi regions are convez polygons.

Proof. Let P be a proximal Voronol region. By definition, [P is the nonempty intersection
of convex sets. From Lemma 1.1, P is convex. Consequently, P is the intersection of
finitely many closed half planes. Hence, from Lemma 2.1, P is a Voronoi region of a point
and is a convex polygon. |

Corollary 3.1. The intersection of proximal Voronoi regions is either a Voronot
edge or Voronot point.

Any two Voronoi regions intersect at least a vertex and at most along their bound-
aries. Together, the set of Voronoi regions V cover the entire plane [5, §2.2, p. 10]. For
a set of sites S C E, a Voronoi diagram ID of S is the set of Voronoi regions, one for each
site in S.

Corollary 3.2. A Voronoi diagram D equals V.

The partition of a plane F with a finite set of n sites into n Voronoi polygons
is known as a Dirichlet tessellation, named after G.L. Dirichlet [16] (see [3]). A cover
(covering) of a space X is a collection U of subsets of X whose union contains X (z.e.,
U D X) [17, §15], [10, §7.1].

Corollary 3.3. A Dirichlet tessellation D of the Euclidean plane E 1s a covering of
E.

Recall that the Euclidean space E = R? is a metric space. The topology in a metric
space results from determining which points are close to each set in the space. A point z €
E is close to A C E, provided the Hausdorff distance d(z, A) = inf {||lz —a|| : a € A} = 0.
Let X,Y be a pair of metric spaces, f : X — Y is a function such that for each z € X,
there is a unique f(z) € Y. A continuous function preserves the closeness (proximity)
between points and sets, 7.e., f(z) is close to f(B) whenever z is close to B. In a
proximity space, one set A is near another set B, provided A é B, t.e., the closure of
A has at least one element in common with the closure of B. The set A is close to the
set B, provided the Cech distance D(4,B) = inf{|la —b||:a € A,b € B} = 0. In that
case, we write A § B (A and B are proximal). A uniformly continuous mapping is a
function that preserves proximity between sets, ¢.e., f(A) § f(B) whenever A § B. A
Leader uniform topology is determined by finding those points that are close to each
given set in E.
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Theorem 3.2. Let S be a set of two or more sites, p € S,V, € D in the Euclidean

space R?. Then

1° 'V, 1s near at least one other Voronoi region in ID.

2° Letp,y be sites in S. {y} 6 {p} = {y} ¢ V}.

3° Vp 1s close to Voronot region Vy, if and only if d(z, V) = 0 for at least one z € V.

4° A mapping f : V, — Vy 1s uniformly continuous, provided f(V,) 6 f(V,) when-
ever V, 6 V.

Proof.

1°: Assume S contains at least 2 sites. Let p € S,y € S\ {y} such that V},V, have at
least one closed half plane in common. Then V, § V.

2°: If {y} 6 {p}, then ||y — p|| =0, since y € {y} N {p}. Consequently, {y} N cl(V}) # 0.
Hence, {y} ¢ cl(V}).

3% Vp 6 Vy & existsz €cl(Vp) N (V) & d(z,Vy) =0

4°: Let f(Vp) 6 f(Vy) whenever V}, § V. Then, by definition, f :V, — Vj, is uniformly
continuous. O

Theorem 3.3. Every collection of prozimal Voronoi regions has a Leader uniform
topology (application of [9]).

Proof. Assume D) has more than one Voronoi region. For each V, € D, find all V;, € D
that are close to V},. For each V},, this procedure determines a family of Voronoi regions
that are near V. Let 7 be a collection of families of proximal Voronoi regions. Let
A,BerT. AN B € T, since either AN B = @ or, from Theorem 3.2.1°, there is at least
one Voronoi region V, € AN B, i.e.,, V, 6 Aand V, § B. Hence, AN B € 7. Similarly,
AUBeT,sinceV, 6§ Aor V, 6 B for each V,, € AU B. Also, D,0 are in 7. Then, 7 is a
Leader uniform topology in D. |
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