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A NOTE ON WEAK ODD EDGE-COLORINGS OF GRAPHS

MIRKO PETRUSEVSKI

ABSTRACT. An edge-coloring of a graph G is said to be a weak-odd edge-coloring
if each non-isolated vertex of G uses at least one color odd number of times on its
incident edges. The weak-odd chromatic index x4 (G) is the minimum number of
colors needed for a weak-odd edge-coloring of G. In this paper, we prove that any
graph without trivial nonempty components admits a weak-odd edge-coloring, and
characterize connected graphs according to the value of their weak-odd chromatic
index.

1. INTRODUCTION

Throughout the article we mainly follow terminology and notation used in [2]. A graph
G is always regarded as being finite (i.e. having finite nonempty set of vertices V(G),
and finite set of edges F(G)) with loops and multiple edges allowed. A loopless graph
without multiple edges is referred to as a stmple graph. The parameters n(G) = |V(G)]
and m(G) = |E(G)| are called order and size of G, respectively. Whenever n(G) = 1 we
say G is trivial, and whenever m(G) = 0 we say G is empty. For X C V(G) U E(G), the
subgraph of G obtained by removing the vertices and edges of X is denoted by G — X.
If X = {z} is a singleton, we write G — z rather than G — {z}. Given a cut vertex v of
G, let Vi,..., Vi be the vertex sets of the components of G — v, and H; = G[V; U {v}],
for 2 =1,...,k. Bach such H; is called a v-lobe of G.

We refer to each vertex v of even (resp. odd) degree dg(v) as an even (resp. odd)
vertex of G. In particular, a vertex of degree equal to 0 (resp. 1) is an zsolated (resp.
pendant) vertex. A graph is called even (resp. odd) whenever all its vertices are even
(resp. odd).

Given a (not necessarily proper) edge-coloring ¢ of a graph G and a color ¢, we denote
the fiber p~1(c) by E., and the spanning subgraph of G with edge set F. by G.. For a
vertex v € V(G), we say that ¢ appears at v if dg_(v) > 0. Moreover, we say that c is odd
at v whenever dg_(v) is odd. The edge-coloring ¢ is weak-odd at v whenever at least one
color is odd at v. And if this holds for every non-isolated vertex v of G, then we speak
of a weak-odd edge-coloring of G. Thus, we say that ¢ is a weak-odd edge-coloring of
G if each non-isolated vertex appears as an odd vertex in at least one of the subgraphs
induced by the different color classes.
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A weak-odd edge-coloring of G which uses at most k colors is referred to as a weak-
odd k-edge-coloring, and we then say that G is weak-odd k-edge-colorable. Whenever
G admits a weak-odd edge-coloring, the weak-odd chromatic inder xi,,(G) is defined
to be the least integer k for which G is weak-odd k-edge-colorable.

Since each loop at a vertex v colored with ¢ contributes 2 to the count of appearances
of ¢ at v, it is obvious that a necessary and sufficient condition for the existence of a
weak-odd edge-coloring of G is the absence of vertices incident only to loops. Apart from
this, the presence of loops does not influence the existence nor changes the value of the
index X, (G).

A similar notion of odd edge-coloring of a graph G was introduced by Pyber in his
survey on graph coverings [7] as an edge decomposition of G into (edge disjoint) odd
subgraphs. Equivalently, it is an edge-coloring of G such that at each non-isolated vertex
every appearing color is odd. In his work, Pyber considered simple graphs and proved
the following result.

Theorem 1.1 (Pyber, 1991). Every simple graph admits an odd edge-coloring with
at most 4 colors.

In [6], the authors considered the same notion for loopless graphs and proved an analogous
result.

Theorem 1.2 (Luzar et al., 2013). Every loopless graph admaits an odd edge-coloring
with at most 6 colors.

Furthermore, a characterization of the loopless graphs needing the maximum 6 colors is
given in [6].

In the next section, we consider the related notion of weak-odd edge-coloring of graphs
in more detail. We provide a tight upper bound for the weak-odd chromatic index and
characterize graphs G according to the value of x4, (G).

2. WEAK-ODD EDGE-COLORING

We have already determined which graphs G are weak-odd edge-colorable. It is a
simple matter to characterize those having x%,,(G) < 1. Namely, x4o(G) = 0 holds
exclusively for the empty graphs G, while x%,.(G) = 1 if and only if G is nonempty and
the subgraph induced by the non-isolated vertices is odd.

Given a graph G, let T be an even-sized subset of V(G). Following [2], a spanning
subgraph H of G is called a T-join if dg(v) is odd for every v € T and even for every
v € V(G)\T. For example, if P is an zy-path in G (i.e. a path having endvertices z
and y), the spanning subgraph of G with edge set E(P) is an {z,y}-join. An obvious
necessary condition for the existence of a T-join is that T intersects every component
of G in an even number of vertices (possibly equal to 0). The following classical result
about T-joins claims that this condition is also sufficient (see e.g. [8]).

Lemma 2.1. Giwen a connected graph G, for every even-sized subset T of V(G)
there exists a T-join in G.

In particular, for a connected graph G of even order, let T' denote the subset of even
vertices. Since T is even-sized, a T-join H can be found in G. By setting K = G — E(H)
we obtain an odd factor of G, i.e. a spanning odd subgraph K. This proves the following
result.
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Lemma 2.2. Every connected graph G of even order has an odd factor K.

While considering edge-colorings, it suffices to restrict attention to connected graphs.
As an immediate consequence of the last lemma, we have the next proposition.

Proposition 2.1. If G is a connected graph of even order, then xi.(G) < 2.

Note that by leaving out the constraint about the order of G, we can do almost as
good, as the following proposition demonstrates.

Proposition 2.2. Gwen a connected graph G and a vertex w € V(G), there exists a
2-edge-coloring of G that 1s weak-odd at each verter distinct from w.

Proof. By Proposition 2.1, we may assume that G is of odd order. Consider first the case
when w is a non-cut vertex of G. Lemma 2.2 implies that G — w has an odd factor K.
Thus, by coloring each member of F(K) with 1 and each member of E(G)\E(K) with 2,
we obtain a 2-edge-coloring of G which is weak-odd at each vertex distinct from w.
Consider now the case when w is a cut vertex of G. Denote by V3,..., Vi the vertex
sets of the components of G — w, and let H;, = G[V; U {w}], e =1,...,k, be the w-lobes
of G. For each 17, since w is a non-cut vertex of H;, there exists an edge-coloring @; of H;
with the color set {1,2}, which is weak-odd at each vertex distinct from w. Then, the
union ¢; U -+ U ¢y satisfies the same for G. O

Corollary 2.1. If a connected graph G has at least one odd vertez, then x4,(G) < 2.

Proof. Let w be an odd vertex of G. Clearly, any edge-coloring of G is weak-odd at w.
By the previous proposition, there exists a 2-edge-coloring ¢ of G which is weak-odd at
every vertex distinct from w. Thus, ¢ is a weak-odd 2-edge-coloring of G. O

Next, we show that three colors suffice for a weak-odd edge-coloring of any connected
nontrivial graph.

Proposition 2.3. For every connected nontrivial graph G it holds that x,.(G) < 3.
Moreover, equality s attained if and only if G is a nontrivial even graph of odd
order.

Proof. We may restrict to even connected graphs of odd order at least 3. Let G be such
and take v to be any non-cut vertex of G (there are at least two such vertices). By
Lemma 2.2, there exists an odd factor K of G — v. Select an arbitrary edge e incident to
v. We obtain a weak-odd 3-edge-coloring of G by coloring E(K) with 1, the edge e with
2, and each of the remaining non-colored edges with 3.

For the second part of the statement, suppose there exists a nontrivial connected even
graph G of odd order that is weak-odd 2-edge-colorable. For such an edge-coloring, each
color class induces an odd factor of G. But this is clearly impossible, for it implies that
any such odd factor is a graph with odd number of odd vertices. This completes the
proof. |

Thus, we are able to characterize the connected graphs according to the value of their
weak-odd chromatic index. Recall from the introduction that a connected graph admits
weak-odd edge-colorings if and only if its edge set does not consist only of loops.
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Theorem 2.1. Given a connected nontrivial graph G, it holds that

if G is odd,

Xuo(G) = if G is even and of odd order,

N W =

otherwise.

3. CONCLUDING REMARKS AND FURTHER WORK

The notion of weak-odd edge-coloring of graphs naturally gives an analogous notion
for digraphs. Namely, a (not necessarily proper) edge-coloring of a digraph D is said to
be weak-odd whenever for each vertex v € V(D) at least one color c satisfies the following
requirement: if d*(v) > 0 then c appears an odd number of times on the outgoing edges
at v; and if d~(v) > 0 then ¢ appears an odd number of times on the ingoing edges at v.
We will address this matter in forthcoming works (for example, in [5]).
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