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UNLIMITED MOMENTS OF SWITCHING FOR DIFFERENTIAL

EQUATIONS WITH VARIABLE STRUCTURE AND IMPULSES

KATYA G. DISHLIEVA1 AND ANGEL A. DISHLIEV

Abstract. Systems of homogeneous di�erential equations with variable structure
(i.e. variable right hand side) and impulsive e�ects are the main object of study in
this paper. The switching moments (in which the structure changes and the e�ects
are realized) are determined by the switching functions which are de�ned in the phase
space of the system. These switching moments are speci�c to the solution of each
initial problem. They coincide with the moments at which the trajectory of initial
problem cancels successively each one of the switching functions. Su�cient conditions
for unlimited moments of switching are found for the indicated systems.

1. Introduction

The applications of di�erential equations with variable structure (without impulsive

e�ects) are mostly in the control theory: [4], [8], [11], [12], [13] and [19].

The impulsive equations (with �xed structure) are mainly used in the description and

study of dynamic processes, subjected to the discrete external in�uences: [1], [2], [3], [10],

[14], [15], [17], [18], [20], [21] and [22]. The di�erential equations with variable structure

and impulses are introduced in [16]. Some properties of their solutions are studied in [5],

[7] and [9].

The solutions of such class di�erential equations are continuous piecewise functions.

The moments of discontinuity of solutions coincide with the moments when the trajectory

successively cancels any one of the switching functions. At these moments, the right hand

side of the system is changing and the impulsive e�ect takes place. These moments are

called switching. If the switching moments have a compression point, then the solution

is not continuable at the right hand side of this point. Therefore, in this case, a number

of important properties of the solutions can not be studied. Moreover, they cannot be

de�ned properly. The above mentioned qualities include: stability, monotony, oscillation,

periodicity equivalence, etc. The su�cient conditions which ensure that the switching

points do not have a compression point have been found in the paper.

1corresponding author

2010 Mathematics Subject Classi�cation. 34A37.
Key words and phrases. Variable structure, impulses, variable switching moments, switching

functions.

11



12 K. DISHLIEVA AND A. DISHLIEV

Finally, we point out the articles [5], [6] and [7] where the discontinuous dynamic

processes from practice are investigated using the above-described class of equations.

This fact con�rms the need to research deeper the systems di�erential equations with

variable structure and impulses.

2. The preliminary results and notes

Further, we denote the Euclidean norm and scalar product in Rn by k:k and h:; :i,

respectively. For the points x = (x1; x2; :::; xn) and y = (y1; y2; :::; yn) in Rn, we have:

hx; yi = x1y1 + x2y2 + :::+ xnyn ;

kxk =
�
hx; yi

� 1
2 =

��
x1
�2

+
�
x2
�2

+ :::+
�
xn
�2� 1

2

:

The Euclidean distance between non-empty sets X;Y � Rn is:

�(X;Y ) = inf
�
kx� yk;x 2 X; y 2 Y

	
:

The main object of investigation in this paper is the following initial problem for

systems di�erential equations with variable structure and impulses:

dx

dt
= fi(x); 'i

�
x(t)

�
6= 0; i:e: ti�1 < t < ti;(2.1)

x(ti + 0) = Ji
�
x(ti)

�
; 'i

�
x(ti)

�
= 0; i = 1; 2; :::;(2.2)

x(0) = x0;(2.3)

where:

� phase space G of system considered (2.1), (2.2) is a non-empty domain in Rn;

� the functions fi : G! Rn;

� the functions 'i : G! R;

� the functions Ji : G! G;

� an initial point x0 2 G.

The sets �i = fx 2 G; 'i(x) = 0g; i = 1; 2; :::, are named switching. The solution of

problem (2.1), (2.2), (2.3) is denoted by x(t;x0). It is ful�lled:

1.1. For 0 = t0 � t < t1, the solution of the studied problem coincides with the

solution x1(t;x0) of problem

dx

dt
= f1(x); x(t0) = x0 = x+0 ;

1.2. For t0 � t < t1, it is satis�ed '1
�
x(t;x0)

�
= '1

�
x1(t;x

+
0 )
�
> 0;

1.3. For t = t1, we have '1
�
x(t1;x0)

�
= '1

�
x1(t1;x

+
0 )
�
= 0. We denote x1 = x(t1;x0);

1.4. The equality x(t1 + 0;x0) = J1
�
x(t1;x0)

�
= J1(x1) = x+1 is valid;

2.1. For t1 < t < t2, the solution of problem (2.1), (2.2), (2.3) coincides with the

solution x2(t;x
+
1 ) of problem

dx

dt
= f2(x); x(t1) = x0 = x+1 ;

2.2. For t1 < t < t2, it is ful�lled '2
�
x(t;x0)

�
= '2

�
x2(t;x

+
1 )
�
> 0;

2.3. For t = t2, we have '2
�
x(t2;x0)

�
= '2

�
x2(t2;x

+
1 )
�
= 0;
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2.4. For t = t2, the impulsive equality x(t2 + 0;x0) = J2
�
x(t2;x0)

�
= J2(x2) = x+2 is

valid, etc.

Time constants ti; i = 1; 2; :::; are named switching moments. We introduce the

notations xi = x(ti;x0) and x+i = Ji(xi); i = 1; 2; :::.

In the arbitrary interval of continuity (ti�1; ti), the solution of problem (2.1), (2.2),

(2.3) starts at the point x+i�1 2 G. In this interval, the right hand side of the system

coincides with the function fi(x). At the moment ti, the solution of considered system

reaches the switching set �i. At the same moment ti, the solution is subjected to the

impulsive e�ect. It means that the function x(t;x0) has a �nite jump, i.e. �rst type

discontinuity at the point ti. Furthermore, just then, the right hand side of the system

is changed. The right hand side of system coincides with function fi+1(x) in the next

interval of continuity of the solution.

We introduce the following conditions:

H1. The functions fi 2 C[G;Rn]; i = 1; 2; :::.

H2. There exist constants Cfi > 0 such that

(8x 2 G)) kfi(x)k � Cfi ; i = 1; 2; ::::

H3. For any point x0 2 G and for each i = 1; 2; :::; the solution xi(t;x0) of the initial

problem
dx

dt
= fi(x); x(0) = x0

exists and is unique for t � 0.

H4. There exist constants CLip'i
> 0 such that

(8x0; x00 2 G)) j'i(x
0)� 'i(x

00)j � CLip'i
kx0 � x00k; i = 1; 2; ::::

H5. There exist constants CJi > 0 such that

(8x 2 �i))
��'i+1�Ji(x)��� � CJi ; i = 1; 2; ::::

3. Main results

Theorem 3.1. Let the conditions H1-H5 be satis�ed. If the series
1X
i=1

CJi

Cfi+1CLip'i+1

is divergent, then the switching moments for system (2.1), (2.2) have no compres-

sion point.

Proof. If the switching moments are �nite number, then the statement of the theorem is

trivial. Let the switching moments t1; t2; ::: be in�nitely many. We will evaluate below

the di�erence ti+1 � ti for each i = 1; 2; :::. By condition H2, we have:

x(ti+1;x0)� x(ti + 0;x0)


 =



xi+1(ti+1;x+i )� xi+1(ti;x
+
i )


(3.1)

�

Z ti+1

ti




fi+1�xi+1(� ;x+i )�



d�

�Cfi+1(ti+1 � ti) :
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From the assessment above, using the conditions H4 and H5 successively, we obtain:

ti+1 � ti �
1

Cfi+1



x(ti+1;x0)� x(ti + 0;x0)


(3.2)

�
1

Cfi+1CLip'i+1

���'i+1�x(ti+1;x0)�� 'i+1
�
x(ti + 0;x0)

����
�

1

Cfi+1CLip'i+1

���'i+1�x(ti + 0;x0)
����

=
1

Cfi+1CLip'i+1

���'i+1
�
Ji
�
x(ti;x0)

�����
�

CJi

Cfi+1CLip'i+1

:

It is ful�lled:

lim
i!1

ti = lim
i!1

�
(ti � ti�1) + (ti�1 � ti�2) + :::+ (t2 � t1) + (t1 � t0)

�
+ t0(3.3)

� lim
i!1

�
CJ1

Cf2CLip'2

+
CJ2

Cf3CLip'3

+ :::+
CJi�1

CfiCLip'i

�
+ t0

=

1X
i=1

CJi

Cfi+1CLip'i+1

+ t0 =1 :

Therefore, the switching moments do not have a compression point. The theorem is

proved. �

In the next theorem, we change condition H4 by the following:

H6. There exist constants C'i
> 0 such that

(8x 2 G))
��'i(x)�� � C'i

�(x;�i); i = 1; 2; ::::

Theorem 3.2. Let the conditions H1, H2, H3, H5 and H6 be ful�lled. If the series
1X
i=1

CJi

CfiC'i

is divergent, then the switching moments for system (2.1), (2.2) have no compres-

sion point.

Proof. We will consider the case of innumerable switching moments. From (3.1), similar

to (3.2), we obtain:

ti+1 � ti �
1

Cfi+1



x(ti+1;x0)� x(ti + 0;x0)




�
1

Cfi+1

�
�
x(ti + 0;x0);�i+1

�

�
1

Cfi+1C'i+1

���'i+1�x(ti + 0;x0)
����

=
1

Cfi+1C'i+1

���'i+1��Ji(x(ti;x0)��
���

�
CJi+1

Cfi+1C'i+1

:
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From the inequality above, analogously to (3.3), we obtain limi!1 ti =1. The theorem

is proved. �

Remark 3.1. It should be noted that condition H4 is substantially di�erent from

condition H6. For example, it follows by H4 that the functions 'i; i = 1; 2; :::; are

continuous. On the other hand, it can be shown that condition H6 is satis�ed by

discontinuous functions.

The following conditions will be used in the next theorem.

H7. There exist constants CDi
and domains Di; �i � Di � G; such that

(8x 2 @Di \G))
��'i(x)�� � CDi

; i = 1; 2; ::::

H8. It is satis�ed

(8x 2 �i)) Ji(x) 2 GnDi+1; i = 1; 2; ::::

Theorem 3.3. Let the conditions H1, H2, H3, H6, H7 and H8 be ful�lled. If the

series
1X
i=1

CDi

CfiC'i

is divergent, then the switching moments for system (2.1), (2.2) do not posses a

compression point.

Proof. Once again, we prove the case of innumerable switching moments for system

(2.1), (2.2). The theorem is proven by showing that limi!1 ti = 1: We consider the

point x+i = x(ti+0;x0) = Ji
�
x(ti;x0)

�
= Ji(xi). As xi 2 �i and under condition H8, we

have x+i 2 GnDi+1. We go into the solution xi+1(t;x
+
i ) of initial value problem

dx

dt
= fi+1(x); x(ti) = x+i :

The following inclusions are satis�ed:

xi+1(ti;x
+
i ) = x+i 2 GnDi+1;(3.4)

xi+1(ti+1;x
+
i ) = x(ti+1;x0) = xi+1 2 �i+1 � Di+1 :

Using (3.4) and continuity of the curve xi+1(t;x
+
i ), it follows that

(9 t@Di+1
; ti < t@Di+1

< ti+1) : xi+1(t@Di+1
;x+i ) = x(t@Di+1

;x0) 2 @Di+1 \G :

Then, according to condition H7, we obtain:

���'i+1�x(t@Di+1
;x0)

���� � CDi+1
:

On the other hand, we have:



x(ti+1;x0)� x(t@Di+1
;x0)



 � Cfi+1(ti+1 � t@Di+1
) ;
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i.e.,

ti+1 � t@Di+1
�

1

Cfi+1



x(ti+1;x0)� x(t@Di+1
;x0)





�
1

Cfi+1

�
�
x(t@Di+1

;x0);�i+1

�

�
1

Cfi+1C'i+1

���'i+1�x(t@Di+1
;x0)

����
�

CDi+1

Cfi+1C'i+1

:

From the estimate above, we �nd

ti+1 � ti > ti+1 � t@Di+1
�

CDi+1

Cfi+1C'i+1

; i = 1; 2; ::::

and it follows limi!1 ti =1. The theorem is proved. �

4. Application

A number of isolated populations grow optimally (in a speci�c sense: for example,

their growth is relatively more intensive), if the amount of their biomass is maintained

within certain limits. Typically, these quantitative restrictions are highly dependent upon

food stocks, living environment, intra-competition, etc. In order to maintain the biomass

population in these optimal limits, it is possible to carry out external, discreet e�ects

which consist of the withdrawal or adding the biomass. One option is the duration of

such external impacts to be negligible compared to the total duration of the process of

development of the isolated species. In this variant, the maintenance of the optimal range

of the population biomass, the in�uences are performed instantaneously in the form of

impulses. Di�erential equations with variable structure and impulses are one suitable

mathematical tool for such processes. It is natural to assume that the impulsive e�ects,

consisting in adding or withdrawal of certain biomass amounts are carry out when the

amount of biomass reaches to the �xed in advance limits which restrict the optimum

biomass levels.

The impulsive equation of Gompertz is an adequate mathematical model of such pro-

cesses. The corresponding initial problem has the form:

dm

dt
= m(r � 
 lnm); 'i

�
m(t)

�
= mmaxi �m(t) > 0; ti�1 < t < ti;(4.1)

m(ti + 0) = m(ti) + Ii
�
m(ti)

�
= Ji

�
m(ti)

�
; 'i

�
m(ti

��
= mmaxi �m(ti) = 0;(4.2)

m(0) = m0;(4.3)

where:

� m = m(t) is the amount of biomass at the moment t � 0; m(t) 2
�
0; exp

�
r



��
;

� the right hand side of the equation does not change at the various intervals of

continuity of the solution of problem (4.1), (4.2), (4.3). We have fi(m) = f(m) =

m(r � 
 lnm); f : G! R for i = 1; 2; :::;

� r = const > 0 is the reproductive potential of the species;
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� 
 = const > 0 is a coe�cient of intra speci�c competition;

� mmaxi > 0; i = 1; 2; :::; are the upper barrier constants which determine optimal

upper limit of the biomass amount. These constants are speci�c to each interval

of the continuity of solution and it is ful�lled 0 < mmaxi < exp
�
r



�
; i = 1; 2; :::;

� the switching functions 'i(m) = mmaxi �m; 'i : G! R; i = 1; 2; :::;

� each one of the switching sets consists of one point. We have �i = fmmaxig; i =

1; 2; :::;

� the functions Ii : G! (�mmaxi; 0); i = 1; 2; :::; re�ect the sizes of the impulsive

withdrawals from the biomass upon reaching the upper barrier constant;

� m0 is the amount of biomass at the initial moment t = 0. The inequalities

0 < m0 < mmaxi are valid.

We assume that the biomass m = m(t) of the isolated species whose development is

described by impulsive problem (4.1), (4.2), (4.3) is optimal, if the following restrictions

0 < m(t) < mmaxi are satis�ed for ti�1 < t < ti. We pay attention to the fact that

the constants 0 and exp
�
r



�
are zeros on the right hand side of equation (4.2) (the �rst

of these zeros in the boundary form). Therefore, they are speci�c points and they are

unattainable, if the initial point m0 is between them.

In the model above, the discrete e�ects are realized when the biomass of the isolated

population becomes equal to the upper barrier constant. The moments of impulsive e�ects

are denoted by t1; t2; ::: and the following inequalities are valid 0 = t0 < t1 < t2 < :::.

If m(ti) = mmaxi is ful�lled at moment ti, then the impulsive withdrawal of biomass is

carried out with size Ii
�
m(ti)

�
= Ii(mmaxi) < 0; i = 1; 2; :::. As we said, the purpose

of these discreet interventions is the biomass to be maintained within the optimal limits.

We will pay attention to the following fact. Since the right hand side of equation (4.1)

is positive for 0 < m < exp
�
r



�
, then the amount of biomass increases between two

neighboring impulsive moments in the model of Gompertz.

We will demonstrate that this model satis�es the conditions of Theorem 3.1. Indeed,

the conditions H1 and H3 are valid. Furthermore, since f 2 C[G;R]; G =
�
0; exp

�
r



��
and

lim
m!0

f(m) = lim
m!0

m(r � 
 lnm) = 0;

lim
m!exp( r



)
f(m) = lim

m!exp( r


)
m(r � 
 lnm) = 0;

it follows that f is bounded in the domain (open interval) G. Therefore, condition H2 is

satis�ed. Through concrete computations, we obtain constant

Cfi = Cf = 
 exp
�r � 





�
> 0:

Lipschitz constants for condition H4 is

CLip'i
= CLip' = 1:

Finally, for de�niteness, we assume that

Ii(m) =
1

2
mmax(i+1) �mmaxi; i = 1; 2; ::::
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Then

(8m 2 �i , m = mmaxi))
��'i+1�Ji(m)

��� = 1

2
mmax(i+1) = CJi ; i = 1; 2; ::::

Thereby, it is shown that condition H5 is valid.

From Theorem 3.1, it follows that if the series
P
1

i=1mmaxi is divergent then the switch-

ing points for system (4.1), (4.2) do not have a point of compression, i.e. limi!1 ti =1.
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