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A NEW POINT OF VIEW ON (1 + 3) THREADING OF SPACETIME

AUREL BEJANCU

Abstract. We present a new method for the study of the (1+3) threading of a
spacetime (M; g). The new approach is based on the theory of horizontal tensor �elds
and on the Riemannian horizontal connection. We obtain, in a covariant form, the
fully general 3D equations of motion in (M; g). We de�ne and study a 3D force and
obtain a new identity satis�ed by geodesics on (M; g). Finally, we apply the method
developed in the paper to the study of motions in a Friedmann-Robertson-Walker
universe and in a Kerr black hole.

1. Introduction

The decomposition of spacetime into "space plus time" ((3+1) slicing), or into "time

plus space" ((1+3) threading) lead to the splitting of spacetime tensors and of basic

equations into some counterparts, which of course are more familiar to our Newtonian

thinking. As it is well known, the (3+1) slicing of spacetime is based on the existence of

a foliation by spacelike hypersurfaces, and it was used for solving initial value problems

of general relativity (cf. Misner, Thorne and Wheeler [16], p.484, Wald [22], p.252). On

the other hand, the (1+3) threading of spacetime is based on the existence of a foliation

by timelike curves, and has been applied to: the parametrization- dependent de�nition

of spatial gravitational forces (cf. Møller [17]), the splitting of Einstein equations (cf.

Zel'manov [23]), the discussion of gyroscope precession (cf. Massa and Zordan [15]), the

study of gravitoelectromagnetism (cf. Mashhoon, McClune and Quevedo [14], Jantzen,

Carini and Bini [11]), etc. We should stress that the (3+1) slicing of spacetime exists only

under suitable conditions on the geometry of spacetimes, while the (1+3) threading exists

on any spacetime, and therefore the latter can be applied to any cosmological model.

The present paper is the �rst in a series of papers we would like to devote to a new

approach of (1+3) threading of spacetime. The motivation of our work comes from a

somehow cumbersome presentation of (1+3) threading, compared with the (3+1) slicing.

This justi�es the small amount of research on (1+3) threading of spacetime. We simply

start with the foliation of curves (congruence of curves), and develop the study in the

framework of coordinate systems that are naturally induced by this foliation. Then we
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consider the horizontal distribution that is orthogonal to this foliation and introduce some

basic horizontal tensor �elds. Also, we construct the Riemannian horizontal connection,

which is a metric connection on the horizontal distribution. These geometric objects

enable us to obtain simple covariant expressions for the 3D equations of motion and to

de�ne the 3D force in a spacetime. The 3D force identity stated along any geodesic seems

to have a great impact on the dynamics in a spacetime. This can be already seen from

its role in the short study we present on the motions in a Friedmann-Robertson-Walker

(FRW) universe and in the spacetime of a Kerr black hole.

Now, we outline the content of the paper. In Section 2, by using the special coordinate

systems introduced by threading of the spacetime (M; g) we construct the threading frame

and coframe �elds. Then, in Section 3 we introduce the concept of horizontal tensor �eld

on (M; g) and construct the horizontal tensor �elds which have an important role in the

study. The Riemannian horizontal connection is constructed in Section 4, and together

with the horizontal tensor �elds enables us to decompose the Levi-Civita connection on

(M; g) (see (4.11)). These geometric objects lead us to simple forms of the 3D equations of

motion (cf.(5.5a)) and to geometric characterizations of two classes of geodesics in (M; g).

In Section 6, by using the Riemannian horizontal connection we de�ne the 3D force in

(M; g) and show that it is orthogonal to the 3D velocity. Also, we derive the 3D force

identity and show that all the 3D forces along a geodesic induce the same identity (6.10).

In Sections 7 and 8 we apply the new method of study to the dynamics in a FRW universe

and in a Kerr black hole, respectively. We �nd the explicit equations of null geodesics in

a FRW universe (M(k, f), g) and, in particular, we show that a geodesic which is tangent

at one point to a slice of this spacetime should leave that slice at the later times. The

Kerr black hole is an example of spacetime with non integrable horizontal distribution.

The Kerr metric has a very simple form with respect to a threading coframe �led (see

(8.4)). Contrary to the case of FRW model, we show that if a geodesic in the Kerr black

hole is tangent to the horizontal distribution at one point, then it remains tangent to it

at all later times. Finally, we obtain geometric characterizations of geodesics in a Kerr

black hole whose geometric conserved energy is positive, negative or equal to zero.

2. Threading (1+3) decomposition of spacetime

Let (M; g) be a 4D spacetime, where M is a time-oriented connected 4-dimensional

smooth manifold and g is a Lorentz metric on M of signature (+, +, +, -). Then there

exists a timelike vector �eld � that is globally de�ned on M (cf. O'Neill [18], p.149).

Denote by VM the line distribution spanned by �, and by HM the complementary

orthogonal distribution to VM in the tangent bundle TM of M . Hence we have the

Whitney orthogonal decomposition

(2.1) TM = HM � VM :

We call HM and VM the horizontal distribution and the vertical distribution, respec-

tively. According to the signature of g and taking into account that VM is a timelike

distribution, we conclude that HM is a spacelike distribution. Note that HM is not

necessarily an integrable distribution.
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Throughout the paper we use the ranges of indices: �; �; 
; ::: 2 f1; 2; 3g and i; j; k; ::: 2

f0; 1; 2; 3g. Also, for any vector bundle E over M denote by �(E) the F(M)-module of

smooth sections of E, where F(M) is the algebra of smooth functions on M .

Next, we consider the foliation by curves of M (congruence of curves) determined by

the integrable distribution VM . Then, around each point of M there exists a coordinate

system (xi), such that � = @=@x0. Moreover, if (~xi) is a another coordinate system

induced by this foliation, we have:

ex� = ex�(x1; x2; x3); ex0 = ex0(x0; x1; x2; x3):
By using these transformations, we deduce that

@

@x0
=

@~x0

@x0
@

@~x0
:

As @=@x0 and @=@~x0 represent the same vector �eld �, we must have @~x0=@x0 = 1: Hence

the above transformations should have the special form:

(2.2) ex� = ex�(x1; x2; x3); ex0 = x0 + f(x1; x2; x3):

Thus, the natural frame and coframe �elds onM obey the following transformations with

respect to (2.2):

(2.3) (a)
@

@x�
=

@~x


@x�
@

@~x

+

@f

@x�
@

@~x0
; (b)

@

@x0
=

@

@~x0
;

and

(2.4) (a) d~x
 =
@~x


@x�
dx�; (b) d~x0 =

@f

@x�
dx� + dx0;

respectively.

According to the decomposition (2.1), for each @=@x� there exist a unique �=�x� 2

�(HM) and a unique function A�, such that

(2.5)
�

�x�
=

@

@x�
� A�

@

@x0
:

This enables us to consider the local frame �eld f�=�x�; @=@x0g on M , which we call

the threading frame �eld on M . This name comes from the threading point of view

on splitting of spacetime, which was �rst introduced by Landau and Lifshitz [13]. Also,

fdx�; �x0g is called a threading coframe �eld on M , where we put

(2.6) �x0 = dx0 + A�dx
�:

Now, by direct calculations using (2.3)-(2.6), we obtain the transformations:

(2.7) (a)
�

�x�
=

@ex

@x�

�

�~x

; (b) �~x0 = �x0; (c) A� = eA


@ex

@x�

+
@f

@x�
;

with respect to (2.2). From (2.7) we see that f�=�x�g are transformed exactly as f@=@x�g

on a 3-dimensional manifold with local coordinates x�. On the contrary, by using (2.7)

we conclude that, in general, fA�g do not satisfy some 3D tensorial transformations.

However, in the whole literature published so far, fA�g have been considered as local

components of the so called "shift 1-form".
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At this point we should mention that Zel'manov [24] has considered the so called

"chronometric transformations":

~x� = x�; ~x0 = ~x0(xi):

By (2.7) we see that f�=�x�g are invariant with respect to these transformations, that

is, they are chronometric invariant vector �elds on M . Moreover, if we consider the

chronometric transformations deduced from (2.2), then (2.7) becomes:

(2.8) A� = eA� +
@f

@x�
:

Due to (2.8) we are entitled to call A� 2 f1; 2; 3g, as 3D gauge potentials on M .

Next, suppose that the line element of the Lorentz metric g is given by

(2.9) ds2 = g��dx
�dx� + 2g�0dx

�dx0 � �2(dx0)2;

where we put

(2.10)
(a) g�� = g

�
@

@x� ;
@

@x�

�
; (b) g�0 = g

�
@

@x� ;
@
@x0

�
;

(c) g
�

@
@x0 ;

@
@x0

�
= ��2; � 6= 0;

Then, by using (2.5), (2.10b) and (2.10c) and taking into account that

(2.11) g(
�

�x�
;
@

@x0
) = 0;

we deduce that

(2.12) A� = ���2g�0:

Now, denote by �g the Riemannian metric induced by g on HM , and put

(2.13) �g�� = �g

�
�

�x�
;
�

�x�

�
= g

�
�

�x�
;
�

�x�

�
:

Then, by using (2.13), (2.5), (2.10) and (2.12), we obtain

(2.14) �g�� = g�� +�2A�A� :

Thus the line element (2.9) is expressed in terms of the threading coframe fdx�; �x0g as

follows

(2.15) ds2 = �g��dx
�dx� � �2(�x0)2:

It is noteworthy that �g�� and the entries �g�� of the inverse of the matrix [�g�� ] are

transformed exactly like 3D tensor �elds, that is, we have

(2.16) (a) �g�� = e�g�� @ex�@x�
@ex�
@x�

; (b) e�g�� = �g��
@ex�
@x�

@ex�
@x�

;

with respect to (2.2).

The con�guration of the spacetime presented here by using the foliation determined

by timelike curves,is known in literature as (1+3) threading of spacetime (cf. Zel'manov

[24], Ehlers [6], Møller [17], Ellis [7], Ellis and Bruni [9], Jantzen and Carini [10], Boersma

and Dray [4], Bini, Chicone and Mashhoon [3]). This is dual to the (3+1) slicing of

spacetime (or to the so called "ADM formalism"), which is based on the existence of a

foliation of spacetime by spacelike hypersurfaces (cf. Misner, Thorne and Wheeler, [16],

p.506).
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Remark 2.1. There is an important di�erence between the above two splittings of

spacetime.This is because any spacetime admits a (1+3)-threading, while the (3+1)

slicing exists only on spacetimes for which the horizontal distribution is integrable

(example:Robertson-Walker spacetime).

Our approach on threading of spacetime is totally di�erent from what is known in

literature. This is because our threading frame and coframe �elds are directly constructed

from special coordinate systems introduced by the threading of M . Also, the horizontal

tensor �elds and the Riemannian horizontal connection, which we construct in the next

two sections, will have an important role in our study. More precisely, by using these

geometric objects, we obtain for the �rst time in literature, the fully general 3D equations

of motion inM , classify the motions of (M; g), and discover a 3D extra force that is acting

along the geodesics of spacetime. Also , by using the 3D extra force , we obtain what we

call the 3D force identity.

3. Horizontal tensor fields on a spacetime

First, we de�ne some F(M)-multi linear operators which have an important role in

our study. To this end, we denote by h and v the projection morphisms of TM on HM

and VM , respectively. Then, we de�ne the F(M)-bilinear mapping

A : �(HM)� �(HM)! �(VM);

(3.1) A(hX; hY ) = �v[hX; hY ]; 8 X;Y 2 �(TM);

where [; ] stands for the Lie bracket of vector �elds. As HM is integrable distribution if

and only if A = 0, we call A the integrability tensor �eld of HM . Also, we de�ne the

F(M)-3-linear mapping

H : �(HM)2 � �(VM)! F(M);

(3.2)
H(hX; hY; vZ) = 1

2 fvZ�g(hX; hY )� �g(h[vZ; hX]; hY )

��g(h[vZ; hY ]; hX)g ; 8X;Y; Z 2 �(TM):

The Riemannian metric �g on HM enables us to de�ne an F(M)-bilinear mapping, still

denoted by H, but given by

H : �(HM)� �(VM)! �(HM);

(3.3) �g(hX;H(hY; vZ)) = H(hX; hY; vZ):

Now, as our purpose is to apply the above operators to physics, we need to express

them by their local component. We must stress that throughout the paper, all the local

components of the geometric objects involved in the study, will be considered only

with respect to the threading frame and coframe �elds. First, by direct calculations

using (2.5), we obtain

(3.4) (a)

�
�

�x�
;
�

�x�

�
= A��

@

@x0
; (b)

�
�

�x�
;
@

@x0

�
= B�

@

@x0
;
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where we put

(3.5)
(a) A�� =

�A�

�x� �
�A�

�x�
=

@A�

@x� �
@A�

@x�
� A�B� + A�B�;

(b) B� = @A�

@x0 :

Then, by using (3.1) and (3.4a), we deduce that

(3.6) A

�
�

�x�
;
�

�x�

�
= A��

@

@x0
;

that is, A�� given by (3.5a) are the local components of A with respect to the threading

�eld f�=�x�; @=@x0g. Next, we put:

(3.7) (a) H

�
�

�x�
;
�

�x�
;
@

@x0

�
= H�� ; (b) H

�
�

�x�
;
@

@x0

�
= H



�

�

�x

:

Then, by using (3.7), (3.2), (2.13), (3.4a) and (3.3), we infer that

(3.8) (a) H�� =
1

2

@�g��
@x0

; (b) H


� = �g
�H�� =

1

2
�g
�

@�g��
@x0

:

Also, we de�ne locally the functions

(3.9) C� = ��1 ��

�x�
:

Now, by using (3.6), (3.7), (2.7a) and (2.3b) , we obtain the following:

(3.10)
(a) A�� = eA��

@~x�

@x�
@~x�

@x�
; (b) H�� = eH��

@~x�

@x�
@~x�

@x�
;

(c) H


�
@~x�

@x
 = eH�
�
@~x�

@x� ;

with respect to the coordinate transformations (2.2). Also, taking derivative with respect

to x0 in (2.7c), and using (2.7a) into (3.9) we deduce that

(3.11) (a) B� = eB

@~x


@x�
; (b) C� = eC


@~x


@x�
;

with respect to (2.2).

Next, inspired by (2.16), (3.10) and (3.11), we suppose that on each coordinate neigh-

borhood in M , there exist 3p+q functions T

1���
p
�1����q (x

i) satisfying

T

1���
p
�1����q

@~x�1

@x
1
� � �

@~x�p

@x
p
= ~T

�1����p
�1����q

@~x�1

@x�1
� � �

@~x�q

@x�q
;

with respect to the transformations (2.2). Then we say that these functions are the

local components of a horizontal tensor �eld T of type (p; q) on M . Thus, by (2.16),

(3.10) and (3.11) we conclude that f�g�� ; A�� ; H��g; f�g
��g; fH



�g and fB�; C�g de�ne

horizontal tensor �elds of types (0,2), (2,0), (1,1) and (0,1) respectively. Throughout

the paper we use �g�� and �g�� for lowering and raising greek indices, as in the following

examples:

(a) A


� = �g
�A�� ; (b) B
 = �g
�B�; (c) C
 = �g
�C�:

Finally, we should note that in the previous studies of (1+3) threading of spacetime

(cf. Ehlers [6], Ellis [8], van Elst and Uggla [21], Bini, Carini and Jantzen [2]) there

have been used projections of tensor �elds in M on both HM and VM . Moreover,

the local components of such projections were considered with respect to the natural

�eld of frames f@=@xig on M . Our approach is based on the horizontal tensor �elds
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which behave exactly as tensor �elds on a 3-dimensional manifold. However, their local

components with respect to treading frame and coframe �elds are de�ned on coordinate

neighbourhoods in M , and therefore they depend , in general, on all four coordinates in

M .

4. The Riemannian horizontal connection

The purpose of this section is to construct a metric connection �r on the horizontal

distribution, and to show that the Levi-Civita connection on the spacetime (M; g) is

completely determined by �r, the horizontal tensor �elds de�ned in the previous section,

and the function

(4.1) 	 = ��1 @�

@x0
:

Also, in the next sections we shall see that �r enables us to express in a covariant form

the 3D equations of motion, and to de�ne and study a 3D force which leads us to the

3D force identity. First, denote by r the Levi-Civita connection on (M; g) given by

(cf.O'Neill [18], p.61)

(4.2)
2g(rXY; Z) = X(g(Y;Z)) + Y (g(Z;X))� Z(g(X;Y ))

+g([X;Y ]; Z)� g([Y;Z]; X) + g([Z;X]; Y );

for all X;Y; Z 2 �(TM). Then it is easy to check that �r given by

(4.3) (a) �rhXhY = hrhXhY; (b) �rvXhY = h[vX; hY ] +H(hY; vX);

is a metric connection on HM , that is, we have

(4.4) ( �rX�g)(hY; hZ) = 0; 8X;Y; Z 2 �(TM):

We call �r the Riemannian horizontal connection on M . In order to �nd the local

coe�cients of �r with respect to the threading frame �eld f�=�x�; @=@x0g we put:

(4.5) (a) �r �

�x�

�

�x�
= ��



� �

�

�x

; (b) �r @

@x0

�

�x�
= ��



� 0

�

�x

:

Then, we take X = �=�x� ; Y = �=�x�; Z = �=�x� in (4.2), and using (4.3a), (4.5a) (2.13),

(2.11) and (3.4a), we obtain

(4.6) ��



� � =
1

2
�g
�

�
��g��
�x�

+
��g��
�x�

�
��g��
�x�

�
:

Also, by direct calculations, using (4.5b), (4.3b), (3.4b) and (3.7b), we deduce that

(4.7) ��



� 0 = H

�:

Next, we consider a horizontal tensor �eld T of type (p; q). Then it is important to note

that the covariant derivatives �rhXT and �rvXT de�ne horizontal tensor of type (p; q+1)

and (p; q) respectively. This can be seen more clearly if we consider the local components

T


� of a horizontal tensor �eld of type (1,1). In this case the above covariant derivatives

are given by

(4.8) T


�j�

=
�T



�

�x�
+ T�

�
��



� � � T 


�
��

�
� � ;
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and

(4.9) T


�j0

=
@T



�

@x0
+ T�

�H


� � T 


�H
�
� ;

respectively. The formulas (4.8) and (4.9) can be easy extended to any type of horizontal

tensor �eld. As �=�x� (resp. @=@x0) is spacelike (resp.timelike) vector �eld, we call the

(4.8) (resp. (4.9)) the spacelike (resp. timelike) covariant derivative of T . In particular,

since �r is a metric connection on HM , we have

(4.10) (a) �g��j
 = 0; (b) �g
��

j

= 0; (c) �g��j0 = 0; (d) �g

��
j0
= 0:

Finally, by direct calculations using (4.2) and the geometric objects introduced in Sections

3 and 4, we deduce that the Levi-Civita connectionr on the spacetime (M; g) is expressed

as follows:

(4.11)

(a) r �

�x�

�
�x� = ��



� �

�
�x
 +

�
��2H�� + 1

2A��

�
@
@x0 ;

(b) r @

@x0

�
�x� =

�
H



� + 1

2�
2A



�

�
�

�x
 + (C� �B�)
@
@x0 ;

(c) r �
�x�

@
@x0 =

�
H



� + 1

2�
2A



�

�
�

�x
 + C�
@
@x0 ;

(d) r @

@x0

@
@x0 = �2 (C
 �B
) �

�x
 +	 @
@x0 :

Remark 4.1. From (4.11) we deduce that any physical theory based on the Levi-

Civita connection of the 4D spacetime can be equivalently developed in terms of the

Riemannian horizontal connection and the horizontal tensor �elds introduced in the

previous section.

5. 3D Equations of motion in a 4D spacetime

In this section we apply the new approach we developed on the (1+3) threading of

(M; g) to the study of equations of motion. More precisely, we obtain in a covariant form,

the fully general 3D equations of motion induced by the equations of motion in (M; g).

The geometric con�guration we introduce on (M; g) enables us to study the motions in

(M; g) with respect to the geometry of the horizontal distribution. In particular, we

show that the geodesics of (M; g) which are tangent to HM , must be autoparallels of the

Riemannian horizontal connection constructed in Sect.4.

Let C be a smooth curve in M given by parametric equations

(5.1)
(a) x� = x�(t); (b) x0 = x0(t);

t 2 [a; b]; � 2 f1; 2; 3g;

where (x�; x0) are the local coordinates introduced by the (1+3) threading of (M; g).

Note that t does not necessarily represent the time in (M; g). Taking into account the

decomposition (2.1) and using (2.5),we deduce that the tangent vector �eld d=dt to C is

expressed as follows

(5.2)
d

dt
=

dx�

dt

�

�x�
+
�x0

�t

@

@x0
;
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where we put
�x0

�t
=

dx0

dt
+ A�

dx�

dt
:

Next, by direct calculations, using (4.11) and (5.2), we deduce that

(5.3)

(a) r d
dt

�
�x� =

n
��



� �

dx�

dt + �x0

�t

�
H



� + 1

2�
2A



�

�o
�

�x


+
n�

��2H�� + 1
2A��

�
dx�

dt + �x0

�t (C� �B�)
o

@
@x0 ;

(b) r d
dt

@
@x0 =

n�
H



� + 1

2�
2A



�

�
dx�

dt +�2 �x0

�t (C
 �B
)
o

�
�x


+
n
C�

dx�

dt +	 �x0

�t

o
@
@x0 :

Then, by using (5.2) and (5.3), and taking into account that A = (A��) is a skew-

symmetric horizontal tensor �eld, we obtain

(5.4)

�r d
dt

d
dt =

n
d2x


dt2 + ��



� �
dx�

dt
dx�

dt + 2 �x
0

�t H


�
dx�

dt +�2 �x0

�t A


�
dx�

dt

+�2
�
�x0

�t

�2
(C
 �B
)

�
�

�x
 +
n

d
dt (

�x0

�t ) + ��2H��
dx�

dt
dx�

dt

+ �x0

�t (2C� �B�)
dx�

dt + ( �x
0

�t )
2	
o

@
@x0 :

Taking into account that motions in (M; g) are curves of acceleration zero, and using

(5.4), we deduce that the fully general equations of motion are expressed by the following

two groups of equations:

(5.5)

(a) d2x


dt2 + ��



� �
dx�

dt
dx�

dt + �x0

�t

�
2H



� +�2A



�

�
dx�

dt

+�2
�
�x0

�t

�2
(C
 �B
) = 0;

(b) d
dt (

�x0

�t ) + ��2H��
dx�

dt
dx�

dt

+ �x0

�t (2C� �B�)
dx�

dt +	( �x
0

�t )
2 = 0;

where t is an a�ne parameter on the geodesics of (M; g). It is noteworthy that equations

(5.5a) are invariant with respect to the coordinate transformations (2.2). We call (5.5a)

the 3D equations of motion in the 4D spacetime (M; g).

According to the decomposition (2.1), the geometry of motions in (M; g) is strongly

dependent on their positions with respect toHM and VM . Here, we develop a local study

of the motions in (M; g), that is, we refer to the behaviour of geodesics in a coordinate

neighbourhood U ofM . First, we say that a curve C given by (5.1) is a horizontal curve,

if one of the following conditions is satis�ed:

(5.6) (a)
�x0

�t
= 0; or (b)

d

dt
=

dx�

dt

�

�x�
:

Similarly, we say that C is a vertical curve, if one of the following conditions is satis�ed:

(5.7) (a) x� = c�; � 2 f1; 2; 3g; or (b)
d

dt
=

dx0

dt

@

@x0
;
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where c� are constants. Thus, by using (5.5) and (5.6a) we deduce that C is a horizontal

geodesic of (M; g), if and only if, (5.6a) and the following equations are satis�ed:

(5.8)
(a) d2x


dt2 + ��


� �

dx�

dt
dx�

dt = 0;

(b) H��
dx�

dt
dx�

dt = 0:

Also, by using (5.5) (5.7a), (3.5) and (3.9), we infer that C is a vertical geodesic, if and

only if, we have

x� = c�; � 2 f1; 2; 3g; dx0

dt = 1

c+
R
	(c�;x0)dt

;

@�
@x� = @

@x0 (�A�);

where c is a constant.

It is important to note that the system (5.8) is tightly related to the geometry of the

horizontal distribution. To emphasize this we give some de�nitions. First, we say that a

curve C in M is an autoparallel for the Riemannian horizontal connection �r, if it is a

horizontal curve satisfying

(5.9) �r d
dt

d

dt
= 0;

where d=dt is given by (5.6b). Then by using (5.6b) and (4.5a) into (5.9) we deduce that

C is an autoparallel for �r, if and only if, (5.6a) and (5.8a) are satis�ed. Next, from

(4.11a) we deduce that

(5.10) K�� = ��2H�� +
1

2
A�� ;

can be thought as second fundamental form of HM . Then we say that a curve C in M

is an asymptotic line for HM , if it is a horizontal curve satisfying

(5.11) K��
dx�

dt

dx�

dt
= 0:

Taking into account that A�� de�ne a skew-symmetric horizontal tensor �eld and using

(5.10) into (5.11) we infer that C is an asymptotic line for HM , if and only if, (5.6a)

and (5.8b) are satis�ed. Summing up these results, we conclude that a curve C is a

horizontal geodesic, if and only if, the following conditions are satis�ed:

(i) C is an autoparallel for the Riemannian horizontal connection.

(ii) C is an asymptotic line for the horizontal distribution.

6. 3D Force identity along a geodesic in a 4D spacetime

The Riemannian horizontal connection introduced in Section 4 enables us to de�ne a

3D force along a geodesic in (M; g). It is important to note that this force is orthogonal

to the 3D velocity along a geodesic in (M; g), and thus it brings into the study a new

identity which we call the 3D force identity (see (6.10)). Actually, this 3D force is a

consequence of the existence of the fourth dimension (time), and therefore represents one

of the major di�erences between Newtonian gravity and Einsten's general relativity.
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First, we consider a geodesic C in (M; g) satisfying the system (5.5), and denote by

U(t) the projection of its tangent �eld d=dt on HM . Then by (5.2) we have

(6.1) U(t) = U�(t)
�

�x�
=

dx�

dt

�

�x�
:

We call U(t) the 3D velocity along C. By using U(t) and the Riemannian metric �g on

HM , we de�ne the 3D arc length parameter �s on C by

�s =

Z t

a

�g(U(t); U(t))1=2dt =

Z t

a

�
�g��(x

i(t))
dx�

dt

dx�

dt

�1=2

dt;

and obtain

(6.2) d�s2 = �g��dx
�dx� :

Thus we have

(6.3) �g(U(�s); U(�s)) = 1;

where we put

(6.4) U(�s) =
dx�

d�s

�

�x�
:

We call U(�s) the unit 3D velocity along the geodesic C. Note that d�s=dt is positive,

and therefore �s de�nes a new parametrization on C. However, �s is not necessarily an

a�ne parameter on the geodesic C. As we shall see later in this section, this happens

for horizontal geodesics.

Next, we consider �s as parameter on the geodesic C and de�ne the 3D force along C

as the horizontal vector �eld F (�s) given by

(6.5) F (�s) = �r d
d�s
U(�s);

where �r is the Riemannian horizontal connection on HM , and d=d�s is the tangent vector

�eld to C expressed as follows

(6.6)
d

d�s
=

dx�

d�s

�

�x�
+
�x0

��s

@

@x0
:

If s? is another 3D arc length parameter on C then we have s? = �s + c, and therefore

F (s?) = F (�s). Moreover, by using (4.4), (6.3) and (6.5), we deduce that F (�s) is orthogonal

to U(�s). As U(t) and U(�s) are parallel horizontal vector �elds, we conclude that the 3D

force F (�s(t)) is orthogonal to the 3D velocity U(t) too.

Now, we put

F (�s) = F 
(�s)
�

�x

;

and by using (6.5), (6.4), (6.6), (4.5) and (4.7) we obtain

(6.7) F 
(�s) =
d2x


d�s2
+ ��



� �

dx�

d�s

dx�

d�s
+
�x0

��s
H

�

dx�

d�s
:

By using the a�ne parameter t on the geodesic C and taking into account that

d2t

d�s2
= �

d2�s

dt2

�
d�s

dt

��3

;
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from (6.7) we deduce that

(6.8)

F 
(t) = F 
(�s(t)) =
n
d2x


dt2 + ��



� �
dx�

dt
dx�

dt + �x0

�t H


�
dx�

dt

�(d�sdt )
�1 d2�s

dt2
dx


dt

o�
d�s
dt

��2
:

Finally, by using the 3D equations of motion (5.5a) into (6.8) we �nd

(6.9)

F 
(t) =

�
� �x0

�t

�
H



� +�2A



�

�
dx�

dt +�2
�
�x0

�t

�2
(B
 � C
)

�(d�sdt )
�1 d2�s

dt2
dx


dt

o�
d�s
dt

��2
:

Taking into account that F (t) and U(t) are orthogonal horizontal vector �elds, and using

(6.9), (6.1) and (6.2) we obtain the identity

(6.10)
�x0

�t
H��

dx�

dt

dx�

dt
+�2

�
�x0

�t

�2

(C� �B�)
dx�

dt
+
d�s

dt

d2�s

dt2
= 0:

Remark 6.1. The identity (6.10) must be satis�ed along any geodesic in the 4D

spacetime. Therefore, it can be used for a study of motions in (M; g), and even for

solving the equations of motion in (M; g).

Next, we need to discuss the uniqueness of the identity (6.10). As we have seen, the

3D force F was de�ned by using the Riemannian horizontal connection �r on HM . Then

by using the orthogonality between F and U we obtain the identity (6.10). Taking into

account that there are some other metric connections on HM (an example being the

projection of Levi-Civita connection r on HM), it is natural to raise the question: Do

the 3D forces constructed by means of all metric connections on HM induce the

same identity (6.10)? It is noteworthy that the answer is in the a�rmative, as we

show in what follows.

Let ~r be another metric connection on HM given by

~r �

�x�

�

�x�
= ~�



� �

�

�x

; and ~r @

@x0

�

�x�
= ~H


�

�

�x

;

and put:

(6.11) ��



� � �
~�



� � = D



� � ; H


� � ~H

� = D


�:

Then by using (4.10a) and (4.10c) for both metric connection �r and ~r, and taking into

account (6.11), we obtain

(6.12) D��
 +D��
 = 0; D�� +D�� = 0;

where we put D��
 = �g��D
�

� 
 and D�� = �g��D
�
�. Now, by using (6.11) into (6.8) we

deduce that the 3D forces ~F and F de�ned by ~r and �r are related by

(6.13) F 
(t) = ~F 
(t) +

�
D



� �

dx�

dt

dx�

dt
+
�x0

�t
D

�

dx�

dt

��
d�s

dt

��2

:

Finally, by using (6.13) and (6.12), and taking into account that both 3D forces F (t) and
~F (t) are orthogonal to the 3D velocity U(t), we infer that

�g
�F

(t)

dx�

dt
= �g
� ~F 
(t)

dx�

dt
= 0:
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As a conclusion, we proved that all the 3D forces along a geodesic in a 4D spacetime

induce the same identity (6.10). For this reason we call (6.10) the 3D force identity. As

we shall see in the next two sections, (6.10) together with (5.5) bring a lot of information

on the FRW universes and on Kerr black holes.

7. 3D Force identity for a FRW universe

Let S be a connected 3-dimensional manifold endowed with a Riemannian metric

h = (h��), of constant curvature k = �1; 0; or 1. Also, suppose that f is a positive

smooth function on an open interval I in R. Then, a Robertson-Walker (RW) spacetime

is a pair (M(k; f); g), where M(k; f) is the warped product I �f S and g is a Lorentz

metric with line element given by

(7.1) ds2 = �(dx0)2 + f2(x0)h��(x
�)dx�dx� :

Comparing (7.1) with (2.9) and using (2.12), (3.5), (3.9) and (4.1), we obtain

(7.2) � = 1; A� = 0; A�� = 0; B� = 0; C� = 0;	 = 0:

Hence the horizontal distribution is integrable, and its induced metric �g is given by (cf.

(2.14))

(7.3) �g�� = f2(x0)h��(x
�):

Also, we have

(7.4)
�x0

�t
=

dx0

dt
:

Note that �=�x� = @=@x�, and therefore, in this section the local components of all

geometric objects are expressed with respect to the natural frame �eld f@=@x�; @=@x0g,

where @=@x� 2 �(HM(k; f)) and @=@x0 2 �(VM(k; f)).

Now, by using (3.8) and taking into account (7.3) we deduce that

(7.5) (a) H�� = f
df

dx0
h�� ; H



� = H�



� ;

where H is the Hubble parameter given by

(7.6) H(x0) =
1

f(x0)

df

dx0
:

Finally, the local coe�cients ��



� � of the Riemannian horizontal connection �r are equal

to the local coe�cients of the Levi-Civita connection on S given by

(7.7) �



� � =
1

2
h
�

�
@h��
@x�

+
@h��
@x�

�
@h��
@x�

�
:

Next, by using (7.2)-(7.5), (7.7) and (6.2) into (5.5) and (6.10), we deduce that in a RW

spacetime (M(k; f); g) the equations of motion and the 3D force identity are given by

(7.8)
(a) d2x


dt2 + �


� �

dx�

dt
dx�

dt + 2H dx0

dt
dx


dt = 0;

(b) d2x0

dt2 +H
�
d�s
dt

�2
= 0;
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and

(7.9) H
d�s

dt

dx0

dt
+
d2�s

dt2
= 0;

respectively. Integrate (7.9) and infer that the 3D force identity is given by

(7.10) f(x0(t))
d�s

dt
= k;

where k is a positive constant. Suppose that the slices S(x0) of HM(k; f) are expanding,

that is H > 0 along each geodesic. Then from (7.8b) we deduce that the time coordinate

x0 on M(k; f) can not be an a�ne parameter on a geodesic. In particular, from

(7.8b) we see that do not exist (even locally) horizontal geodesics. This means that a

geodesic of (M(k; f); g) which is tangent to a slice S(x0) at the point P can not lie

in a neighbourhood of P in S(x0). Thus, from now on we may suppose, without loss

of generality, that dx0=dt > 0 along any geodesic. Now, by using (7.10) and (7.6) into

(7.8b) we obtain

(7.11)
d2x0

dt2
+

k2

f3(x0)

df

dx0
= 0:

Multiplying (7.11) by dx0=dt and then integrating, we infer that

(7.12) f(x0(t))

 �
dx0

dt

�2

+ c

!1=2

= k;

where c is a constant. Two cases have to be studied.

Case 1. c = 0. In this case (7.12) becomes

(7.13)
dx0

dt
=

k

f
;

and the geodesic is a photon, that is, a future-pointing null geodesic. This follows from

(7.14)

�
ds

dt

�2

=

������
�
dx0

dt

�2

+

�
d�s

dt

�2
����� ;

by using (7.10) and (7.13). We have to note that (7.13) has an important role in a

relativistic explanation for the cosmological redshift for a Robertson-Walker spacetime.

Case 2. c 6= 0. In this case, by using (7.10) and (7.12) in (7.14), we deduce that

the geodesic is either spacelike or timelike, and its arc length parameter s is an a�ne

parameter. Taking s as a�ne parameter on the geodesic, we deduce that c = 1 (resp.

c = �1) for a spacelike (resp. timelike) geodesic. Thus (7.12) becomes

(7.15)
dx0

ds
=

�
k2

f2
� 1

�1=2

;

in case of a spacelike geodesic, and

dx0

ds
=

�
k2

f2
+ 1

�1=2

;

in case of a timelike geodesic. From (7.15) we see that the warping function along a

spacelike geodesic of a RW spacetime must be bounded above by k.
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Now, we recall the three FRW cosmological models for dust (p = 0) (cf.[18] p.351):

(A) Einstein-de Sitter cosmological model is the RW spacetime

M(0; (x0)2=3) = R+ �(x0)2=3 R
3.

(B) The RW spacetime M(1; f) = (0; �A)�f(x0) S
3; where A > 0 and

(7.16) (a) f =
1

2
A (1� cos �) ; (b) x0 =

1

2
A (� � sin �) ; � 2 (0; 2�):

(C) The RW spacetime M(�1; f) = R+ �f(x0) H
3, where

(7.17) (a) f =
1

2
A (cosh � � 1) ; (b) x0 =

1

2
A (sinh � � �) :

The method we developed in this paper enables us to write down explicitly the equations

of null geodesics in all the above models. First, taking into account that f(x0) = (x0)2=3

for the model (A), and using (7.13) we obtain

(7.18) x0 =

�
5k

3
t+ a

�3=5

; t > �
3a

5k
; a 2 R:

Then, as �



� � = 0 for all �; �; 
 2 f1; 2; 3g, (7.8a) becomes

(7.19)
d2x


dt2
+ 2f�1 df

dt

dx


dt
= 0:

Integrate (7.19), and deduce that

(7.20) x
 =
3

k

�
5k

3
t+ a

�1=5

c
 + b
 ;

where b
 2 R and c
 6= 0 for any 
 2 f1; 2; 3g. Thus any null geodesic of Einstein-de

Sitter model is given by equations (7.18) and (7.20). In Case (B), by using (7.13) and

(7.16) we infer that the a�ne parameter t on the geodesic and � are related by

(7.21)
d�

dt
=

k

f2
:

Then we consider (7.8a) in the form

d2x


dt2
+ �



� �

dx�

dt

dx�

dt
+

2

f

df

dt

dx


dt
= 0;

which by means of (7.21) becomes

d2x


d�2
+ �



� �

dx�

d�

dx�

d�
= 0:

Thus any null geodesic in case of M(1; f) is given by the pair (x0(�); x
(�)) where x0(�)

is given by (7.16b) and x
(�) represent the equations of a geodesic in S3. In a similar

way we deduce that the null geodesics in M(�1; f) are given by the pair (x0(�); x
(�))

where x0(�) is given by (7.17b) and (x
(�)) are given by the equations of geodesics of

H3.
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8. 3D Force identity for Kerr black hole

The most general stationary black hole solutions of the vacuum Einstein equations are

described by the family of metrics de�ned in 1963 by Kerr [12]. Since then, these solutions

are called Kerr black holes. The geometry of geodesics of Kerr black holes is presented

in detail in the excellent monographs of Chandrasekhar [5] and O'Neill [19]. However, by

using the new method of study developed in the present paper, we �nd new properties

of geodesics of a Kerr black hole. First, we deduce a simple form of the line element (see

(8.4)) and show that a Kerr black hole is an example wherein the horizontal distribution

is not integrable. Then we prove the existence of geodesics in a Kerr black hole that

are tangent to the horizontal distribution at any of their points. Finally, we present

characterizations of geodesics along which the conserved energy is positive, negative or

equal to zero.

The family of Kerr black hole solutions depend on two parameters: the total mass m

and the angular momentum J . The line element of the spacetime (M; g) around a Kerr

black hole is given by

(8.1)
ds2 = �

�
1� 2mr

�

� �
dx0
�2
� 4amr sin2 �

� dx0d'

+
�
r2 + a2 + 2a2mr sin2 �

�

�
sin2 �d'2 + �

�dr
2 +�d�2;

where (x0; r; �; ') are the Boyer-Lindquist coordinates, and we put

� = r2 + a2 cos2 �; � = r2 � 2mr + a2; a =
J

m
:

Comparing (8.1) with (2.9) and using (2.12) we obtain

(8.2) (a) �2 = 1�
2mr

�
; (b) A' =

2amr sin2 �

�� 2mr
; (c) Ar = A� = 0:

Then by using (2.5) and (8.2c) we deduce that the horizontal distribution HM is locally

spanned by
�

�'
=

@

@'
� A'

@

@x0
;

�

�r
=

@

@r
;

�

��
=

@

@�
:

By using (8.2) into (3.5a) we infer that the only non zero local components of the hori-

zontal tensor �eld A (see (3.5)) are the following:

Ar' = 2am(a2 cos2 ��r2) sin2 �
(��2mr)2 ;

A�' = 2amr�sin 2�
(��2mr)2 :

Thus the horizontal distribution on the spacetime of a Kerr black hole is not inte-

grable.

Next, by using (2.14), (8.1) and (8.2), we deduce that the only non zero entries of the

matrix [�g�� ] are given by

(8.3) �g'' =
�sin2 �

�2
; �grr =

�

�
; �g�� = �:

Hence the metric of a Kerr black hole is simply expressed as follows:

(8.4) ds2 = ��2(�x0)2 +
�sin2 �

�2
d'2 +

�

�
dr2 +�d�2;
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where we put

�x0 = dx0 + A'd':

Now, from (3.5b), (3.8) and (4.1), we obtain

(8.5) (a) B� = 0; (b) H�� = 0; (c) H

� = 0; (d) 	 = 0;

via (8.2) and (8.3). Also, by using (8.5d) into (3.9), we infer that

(8.6) C�
dx�

dt
= ��1 d�

dt
;

along a geodesic C in the Kerr spacetime (M; g). Due to (8.5) and (8.6), the equation of

motion (5.5b) and the 3D force identity (6.10) become

(8.7)
d

dt

�
�x0

�t

�
+ 2��1 d�

dt

�x0

dt
= 0;

and

(8.8)

�
�x0

�t

�2

�
d�

dt
+
d�s

dt

d2�s

dt2
= 0;

respectively. Finally, by using (2.15) and (6.2), we obtain

(8.9)

�
ds

dt

�2

=

�����
�
d�s

dt

�2

� �2

�
�x0

�t

�2
����� :

In order to study (8.7) and (8.8), we consider the following two cases.

Case 1. Suppose that

(8.10)
�x0

�t
=

dx0

dt
+ A'

d'

dt
= 0;

that is, C is a horizontal geodesic. Then, (8.7) is identically satis�ed and from (8.8)

and (8.9) we deduce that both the 3D arc length parameters �s and the 4D arc length

parameter s are a�ne parameters on C. Hence, taking into account (5.6a) and (5.8)

we can state that C is a horizontal geodesic in the Kerr spacetime (M; g), if and only

if, (8.10) and the following equations are satis�ed:

d2x


dt2
+ ��



� �

dx�

dt

dx�

dt
= 0;

where ��


� � are local coe�cients for the Riemannian horizontal connection �r (see(4.6)).

Since �g�� given by (8.3) do not depend on x0, from (4.6) we infer that ��


� � are given by

similar formulas for the Christo�el symbols of a 3D Riemannian manifold:

��



� � =
1

2
�g
�

�
@�g��
@x�

+
@�g��
@x�

�
@�g��
@x�

�
:

However,since the horizontal distribution is not integrable, ��



� � are not the local coe�-

cients of the Levi-Civita connection on a hypersurface in (M; g).

Next, we remark that due to (8.5b) the Kerr spacetime has bundle-like metric with

respect to the vertical foliation (cf. Reinhart [20], Bejancu-Farran [1], p.111). Thus we

have the following interesting property of geodesics of a Kerr black hole:If a geodesic of

(M; g) is tangent to the horizontal distribution at one point, then it remains tangent

to it at all later times.



38 A. BEJANCU

Case 2. Suppose that �x0=�t is non zero along the geodesic C. Then we integrate

(8.7) and obtain

(8.11) �2

�����x0�t
���� = k1 ;

where k1 is a positive constant. Next, by using (8.11) into the 3D force identity (8.8)

and integrating, we deduce that

(8.12)

�
d�s

dt

�2

= (k1)
2��2 + k2;

where k2 is a real constant. Due to (6.2) and (8.3), (8.12) becomes

(8.13)
�sin2 �

�2

�
d'

dt

�2

+
�

�

�
dr

dt

�2

+�

�
d�

dt

�2

= (k1)
2��2 + k2:

Finally, by using (8.11), (8.5c), (8.5d) and (3.9) into (5.5a), we obtain

(8.14)
d2x


dt2
+ ��



� �

dx�

dt

dx�

dt
+ k1�g


�

�
A��

dx�

dt
+ k1�

�3 @�

@x�

�
= 0:

Thus we may state that any geodesic that is not horizontal, must be a solution of the

system formed by (8.11) and (8.14). The equation (8.13), which represents the 3D force

identity, might have an important role in the dynamics of geodesics in (M; g). By using

(8.13) and (8.11) into (8.9) we obtain

(8.15)

�
ds

dt

�2

= jk2j;

which implies that k2 = 0; k2 > 0 or k2 < 0, according as the geodesic is null, spacelike

or timelike, respectively. Also from (8.15) we deduce that the 4D arc length parameter

s is an a�ne parameter.

We close this section with an interesting characterization of the conserved energy along

a geodesic. To state this, we recall that the energy E per unit rest mass for a geodesic C

with tangent vector d=dt is a constant given by

(8.16) E = �g

�
d

dt
;
@

@x0

�
:

Then, by using (5.2) and (2.10c) into (8.16), we obtain

(8.17) E = �2 �x
0

�t
:

From (8.17) we deduce that the energy for a geodesic C is equal to zero, if and only

if, the geodesic is horizontal. Moreover, from (8.17) we conclude that the energy along

a geodesic C is positive (resp. negative) according as its tangent vector �eld

d

dt
=

dx�

dt

�

�x�
+
�x0

�t

@

@x0
;

has �x0=�t > 0 (resp. �x0=�t < 0):
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9. Conclusions

In the present paper we develop a new method for the study of the (1+3) threading

of spacetime and apply it to the dynamics of a FRW universe and of a Kerr black hole.

The di�erences between this method and the earlier approaches on this matter can be

summarized as follows. So far, the coordinate systems of the spacetime have not been

used in the construction of adapted frame and coframe �elds for the (1+3) threading.

In this way, some of the geometric objects involved in the study might be incorrectly

de�ned. As a �rst example we present the three local functions fA�g from (2.5) which by

(2.7c) do not de�ne a 3D tensor �eld. However, in the whole literature published so far

it is claimed that these functions are the local components of the so called "shift 1-form".

Also, the spatial equations of motion (3D equations of motion in our terminology) are

given by the equations corresponding to the three spatial indices (cf. Zel'manov [24],

p.139). Certainly such equations are not invariant with respect to the transformations of

coordinates of the spacetime, and therefore they can not represent a realistic phenomenon.

Unfortunately, a similar procedure has been applied for spatial Einstein equations.

The method developed in the present paper opens new perspectives in the study of

some other concepts and equations from the geometry and physics of the spacetime. As

example, we only mention the splitting of Einstein equations and the study of gravito-

electromagnetism. By using the same method, these subjects and some others related to

them will be investigated in near future.
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