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Abstract. This paper introduces a visibility relation v, leading to the strongly visible

relation
^̂

v on proximal Delaunay meshes. Two main results in this paper are that
the visibility relation v is equivalent to Wallman proximity and the strongly near

proximity
^̂

� is a Wallman proximity. In addition, a Delaunay triangulation region
endowed with the visibility relation v has a local Leader uniform topology.

1. Introduction

Delaunay triangulations, introduced by B.N Delone [Delaunay] [3], represent pieces of

a continuous space. A triangulation is a collection of triangles, which includes the edges

and vertices of the triangles in the collection.

A 2D Delaunay triangulation of a set of sites (genera-

tors) S � R2 is a triangulation of the points in S. The set

of vertices (called sites) in a Delaunay triangulation de-

�ne a Delaunay mesh. A Delaunay mesh endowed with

a nonempty set of proximity relations is a proximal De-

launay mesh. A proximal Delaunay mesh is an example

of a proximal relator space [20], which is an extension of

a Száz relator space [21, 22, 23].
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Figure 1. Visibility

Let S � R
2 be a set of distinguished points called sites (mesh generating points),

p; q 2 S, pq a straight line segment in the Euclidean plane. A site p in a straight line

segment pq is visible to another site q in the same straight line segment, provided there

is no other site between p and q. New forms of proximity are found via the geometry of

visibility.
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Example 1.1. Visible Points.

Let p; q; r; s; t 2 S, a set of sites. A pair of Delaunay triangles 4(pqr);4(rst) are

shown in Fig. 1. Points r; q are visible from p, since pq and pr are straight line

segments with no other sites in between the endpoints. However, in the straight line

segment ps, s is not visible from p, since site r is blocking p's view of s. Similarly,

points p; r are visible from q but in the straight line segment qt, t is not visible from

q. From r, points p; q; s; t are visible. For more about visibility, see [7].

A straight edge connecting sites p and q is a Delaunay edge if and only if the Voronoï

region of p [6, 18] and Voronoï region of q intersect along a common line segment [5, �I.1,

p. 3]. For example, in Fig. 2, the intersection of Voronoï regions Vp; Vq is a common edge,

i.e., Vp \ Vq = xy, and p and q are connected by the straight edge pq. Hence, pq is a

Delaunay edge in Fig. 2.
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Figure 2. Delaunay triangle 4(pqr)

A triangle with vertices p; q; r 2 S is a Delaunay triangle (denoted 4(pqr) in Fig. 2),

provided the edges in the triangle are Delaunay edges. This paper introduces proximal

Delaunay triangulation regions derived from the sites of Voronoï regions [18], which are

named after the Ukrainian mathematician Georgy Voronoï [25].

A nonempty set A of a space X is a convex set, provided �A+(1� �)A � A for each

� 2 [0; 1] [1, �1.1, p. 4] (see, also, [10]). A simple convex set is a closed half plane (all

points on or on one side of a line in R2 [6]) The edges in a Delaunay mesh are examples

of convex sets. A closed set S in the Euclidean space En is convex if and only if to each

point in En there corresponds a unique nearest point in S. In this paper, E denotes a

normed linear space and the set of sites S is a subset of E. For z 2 S, a closed set in Rn,

Sz =

�
x 2 E : kx� zk = inf

y2S

kx� yk

�
;

which is a convex cone [24].

Lemma 1.1. [6, �2.1, p. 9] The intersection of convex sets is convex.

Proof. Let A;B � R
2 be convex sets and let K = A \ B. For every pair of points

x; y 2 K, the line segment xy connecting x and y belongs to K, since this property holds

for all points in A and B. Hence, K is convex. �
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2. Preliminaries

Delaunay triangles are de�ned on a �nite-dimensional normed linear space E that is

topological. For simplicity, E is the Euclidean space R2. The closure of A � E (denoted

clA) is de�ned by

cl(A) = fx 2 X : D(x;A) = 0g ; where

D(x;A) = inf fkx� ak : a 2 Ag ;

i.e., cl(A) is the set of all points x in X that are close to A (D(x;A) is the Hausdor�

distance [10, �22, p. 128] between x and the set A and kx� ak is the Euclidean distance

between x and a).

Let Ac denote the complement of A (all points of E

not in A). The boundary of A (denoted bdyA) is the

set of all points that are near A and near Ac [14, �2.7, p.

62]. An important structure is the interior of A (denoted

intA), de�ned by intA = clA � bdyA. For example, the

interior of a Delaunay edge pq are all of the points in the

segment, except the endpoints p and q. Notice that the

interior of a Delaunay triangle is empty.

In general, a relator is a nonvoid family of relations R

on a nonempty set X. The pair (X;R) is called a relator

space. Let E be endowed with the relator R� de�ned by
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Figure 3. Far

R� =

�
�;
^̂

� ; 6 �; 6
^̂

�

�
;

called a proximal relator (cf. [20]), containing the the proximities �;
^̂

� ; 6 �; 6
^̂

� . The Delau-

nay tessellated space E endowed with the proximal relator R� (brie�y, R) is a Delaunay

proximal relator space.

The proximity relations � (near),
^̂

� (strongly near) and their counterparts 6 � (far)

and 6
^̂

� (strongly far) facilitate the description of properties of Delaunay edges, triangles,

triangulations and regions. The strongly near proximity
^̂

� was introduced in [17].

Remark 2.1. The notation 6
^̂

� for the strongly far proximity was suggested by C.

Guadagni [9]. For the use of 6� in local proximity spaces, see [8, �2.2, p. 7]. The

notation for the far proximity 6� is commonly used (see, e.g., [4, 12]). The variant

notation � for the far proximity is also used [14]. For various forms of proximity,

see [4, 8, 15, 12, 13, 14, 16].

Let A;B � E. The set A is near B (denoted A � B), provided clA\clB 6= ; [4] (closure

axiom). The Wallman proximity � (named after H. Wallman [26]) satis�es the closure

axiom as well as the four �Cech proximity axioms [2, �2.5, p. 439] and is central in near

set theory [14, 15]. Sets A;B are far apart (denoted A 6 � B), provided clA \ clB = ;.

For example, Delaunay edges pq � qr are near, since the edges have a common point, i.e.,

q 2 pq \ qr (see, e.g., pq � qr in Fig. 2). By contrast, edges pr; xy have no points in

common in Fig. 2, i.e., pr 6 � xy.
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Voronoï regions Vp; Vq are strongly near (denoted Vp
^̂

� Vq) if and only if the regions

have a common edge.

Example 2.1. Near and Strongly Near Sets.

In the Delaunay mesh in Fig. 3, let C;G;H be mesh triangles. H � C, since each

these pairs of triangles have a common vertex. H
^̂

� G and G
^̂

� C (the triangles

are strongly near), since these triangles have a common edge. Similarly, in Fig. 2,

Vp
^̂

� Vq. In general, strongly near Delaunay triangles have a common edge. De-

launay triangles 4(pqr) and 4(qrt) are strongly near in Fig. 4, since edge qr is

common to both triangles. In that case, we write 4(pqr)
^̂

� 4(qrt).

Nonempty sets A 6
^̂

v C are strongly far apart (denoted A;C), provided C � int(clB)

and A 6 � B.

Example 2.2. Far and Strongly Far Sets.

In the Delaunay mesh in Fig. 3, sets A and B have no points in common. Hence,

A 6 � B (A is far from B). Also in Fig. 3, let C = f4(pqu)g. Consequently,

C � int(clB), such that triangle 4(pqu) lies in the interior of the closure of B.

Hence, A 6
^̂

� C.
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Figure 4. Strongly Visible Sets A
^̂

v B

Let A;B be subsets in a Delaunay mesh, 4(pqr) 2 B;4(qrt) 2 A. Subsets A;B in a

Delaunay mesh are visible to each other (denoted AvB), provided at least one triangle

vertex x 2 clA \ clB. That is, if there is at least one site in A visible to at least one site

in B, then AvB. A;B are strongly visible to each other (denoted A
^̂

v B), provided at

least one triangle edge is common to A and B.

Example 2.3. Visibility in Delaunay Meshes.

In the Delaunay mesh in Fig. 3, A v D, since A and D have one triangle vertex is

common, namely, vertex r. Sets B and D in Fig. 3 are strongly visible (i.e., B
^̂

v D),

since edge wx is common to B and D. In Fig. 3, let C = f4(pqu)g. Then C
^̂

v B,

since C � B. In Fig. 4, edge qr is common to A and B. qr is visible from p 2 B

and from t 2 A. Hence, A
^̂

v B :

Subsets A;B in a Delaunay mesh are invisible to each other (denoted A 6v B), provided

clA \ clB = ;, i.e., A and B have no triangle vertices in common. A;B are strongly
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invisible to each other (denoted A 6
^̂

v B), provided C 6 v A for all sets of mesh triangles

C � B.

Example 2.4. Invisible and Strongly Invisible Subsets in a Delaunay Mesh.

In the Delaunay mesh in Fig. 3, A and B are not visible to each other, since

clA \ clB = ;, i.e., A and B have no triangle vertices in common. In Fig. 3, let

C = f4(pqu)g. Then A 6
^̂

v B (A and B are strongly invisible to each other), since

C 6v A for all sets of mesh triangles C � B.

3. Main Results

The Delaunay visibility relation v is equivalent to the proximity �.

Lemma 3.1. Let A;B be subsets in a Delaunay mesh. A � B if and only if A v B.

Proof. A � B , clA\ clB 6= ; , A and B have a triangle vertex in common if and only

if A v B. �

Theorem 3.1. The visibility relation v is a Wallman proximity.

Proof. Immediate from Lemma 3.1. �

Lemma 3.2. Let A;B be subsets in a Delaunay mesh. A
^̂

v B if and only if A v B.

Proof. A
^̂

v B , pq for some triangle edge common to A and B , AvB, since pq is visible

from a vertex in A and from a vertex in B and A and B have vertices in common. �

Theorem 3.2. The strong visibility relation
^̂

v is a Wallman proximity.

Proof. Immediate from Theorem 3.1 and Lemma 3.2. �

Theorem 3.3.
^̂

� is a Wallman proximity.

Proof. Immediate from Lemma 3.1, Lemma 3.2 and Theorem 3.2. �

Remark 3.1. From Theorem 3.3,
^̂

� is a strongly near Wallman proximity.

Theorem 3.4. Let A;B be subsets in a Delaunay mesh. Then

1o A 6
^̂

v B implies A 6v B.

2o A 6
^̂

v B if and only if A 6
^̂

� B.

Proof.

1o: Given A 6
^̂

v B, then A and B have no triangle vertices in common. Hence, A 6v B.

2o: A 6
^̂

v B if and only if A and B have no triangles in common if and only if A 6
^̂

� B. �

Theorem 3.5 is an extension of Theorem 3.1 in [19], which results from Theorem 3.1.

Theorem 3.5. The following statements are equivalent.

1o 4(pqr) is a Delaunay triangle.

2o Circumcircle 
(pqr) has center u = clVp \ clVq \ clVr.
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3o Vp
^̂

v Vq
^̂

v Vr.

4o 4(pqr) is the union of convex sets.

Let P be a polygon. Two points p; q 2 P are visible, provided the line segment pq is

in intP [7]. Let p; q 2 S, L a �nite set of straight line segments and let pq 2 L. Points

p; q are visible from each other, which implies that pq contains no point of S � fp; qg in

its interior and pq shares no interior point with a constraining line segment in L � pq.

That is, intpq \ S = ; and pq \ xy = ; for all xy 2 L [5, �II, p. 32].

Theorem 3.6. If points in int pq are visible from p; q, then int pq v S � fp; qg and

pq v xy 2 L� pq for all x; y 2 S � fp; qg.

Proof. Symmetric with the proof of Theorem 3.2 [19]. �

A Delaunay triangulation region D is a collection of Delaunay triangles such that

every pair triangles in the collection is strongly near. That is, every Delaunay triangula-

tion region is a triangulation of a �nite set of sites and the triangles in each region are

pairwise strongly near. Proximal Delaunay triangulation regions have at least one ver-

tex in common. From Lemma 1.1 and the de�nition of a Delaunay triangulation region,

observe

Lemma 3.3. [19] A Delaunay triangulation region is a convex polygon.

Theorem 3.7. [19] Proximal Delaunay triangulation regions are convex polygons.

A local Leader uniform topology [11] on a set in the plane is determined by �nding

those sets that are close to each given set.

Theorem 3.8. [19] Every Delaunay triangulation region has a local Leader uniform

topology (application of [11]).

Theorem 3.9. [19] A Delaunay triangulation region endowed with the visibility re-

lation v has a local Leader uniform topology.

Proof. Let D be a Delaunay triangulation region. From Theorem 3.1 and Theorem 3.8,

determine all subsets of D that are visible from each given subset of D. For each A � D,

this procedure determines a family of Delaunay triangles that are visible from (near) each

A. By de�nition, this procedure induces a local Leader uniform topology on D. �
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