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VISIBILITY IN PROXIMAL DELAUNAY MESHES AND STRONGLY
NEAR WALLMAN PROXIMITY
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ABSTRACT. This paper introduces a visibility relation v, leading to the strongly visible

m
relation v on proximal Delaunay meshes. Two main results in this paper are that
the visibility relation v is equivalent to Wallman proximity and the strongly near

N
proximity § is a Wallman proximity. In addition, a Delaunay triangulation region
endowed with the visibility relation v has a local Leader uniform topology.

1. INTRODUCTION

Delaunay triangulations, introduced by B.N Delone [Delaunay] [3], represent pieces of
a continuous space. A triangulation is a collection of triangles, which includes the edges

and vertices of the triangles in the collection. t

A 2D Delaunay triangulation of a set of sites (genera- "
tors) S C R? is a triangulation of the points in S. The set r
of vertices (called sites) in a Delaunay triangulation de- p

fine a Delaunay mesh. A Delaunay mesh endowed with
a nonempty set of proximity relations is a prozimal De-

launay mesh. A proximal Delaunay mesh is an example q
of a proximal relator space [20], which is an extension of
a Szaz relator space [21, 22, 23]. FIGURE 1. Visibility

Let S C R? be a set of distinguished points called sites (mesh generating points),
p,q € S, pq a straight line segment in the Euclidean plane. A site p in a straight line
segment pq is vistble to another site ¢ in the same straight line segment, provided there
is no other site between p and ¢. New forms of proximity are found via the geometry of
visibility.
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Example 1.1. Visible Points.

Let p,q,7r,s,t € S, a set of sites. A pair of Delaunay triangles A(pgr), A(rst) are
shown wn Fig. 1. Points r,q are visible from p, since pq and pr are straight line
segments with no other sites in between the endpoints. However, in the stratght line
segment ps, s is not wistble from p, since site r s blocking p’s view of s. Simularly,
points p,r are visible from q but in the straight line segment qt, t is not visible from
g. From r, points p,q, s,t are visible. For more about visibility, see [7].

A straight edge connecting sites p and ¢ is a Delaunay edge if and only if the Voronoi
region of p [6, 18] and Voronoi region of g intersect along a common line segment [5, §I.1,
p. 3]. For example, in Fig. 2, the intersection of Voronoi regions V,, V, is a common edge,
r.e., VNV, = 2y, and p and g are connected by the straight edge pg. Hence, pq is a
Delaunay edge in Fig. 2.

F1GURE 2. Delaunay triangle A(pgr)

A triangle with vertices p,q,r € S is a Delaunay triangle (denoted A(pgr) in Fig. 2),
provided the edges in the triangle are Delaunay edges. This paper introduces proximal
Delaunay triangulation regions derived from the sites of Voronoi regions [18], which are
named after the Ukrainian mathematician Georgy Voronoi [25].

A nonempty set A of a space X is a convez set, provided A+ (1 — a) A C A for each
a € [0,1] [1, §1.1, p. 4] (see, also, [10]). A simple conver set is a closed half plane (all
points on or on one side of a line in R? [6]) The edges in a Delaunay mesh are examples
of convex sets. A closed set S in the Euclidean space E™ is convez if and only if to each
point in E™ there corresponds a unique nearest point in S. In this paper, E denotes a
normed linear space and the set of sites .S is a subset of E. For z € S, a closed set in R”,

s _ {we B lle— 2 :mfna:—yn},
yeS

which is a convezr cone[24].
Lemma 1.1. [6, §2.1, p. 9] The intersection of convez sets is convez.

Proof. Let A,B C R? be convex sets and let X = AN B. For every pair of points
z,y € K, the line segment 7y connecting z and y belongs to K, since this property holds
for all points in A and B. Hence, K is convex. O
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2. PRELIMINARIES

Delaunay triangles are defined on a finite-dimensional normed linear space E that is
topological. For simplicity, F is the Euclidean space R2. The closure of A C E (denoted
clA) is defined by

cl(A) ={z € X : D(z, A) = 0}, where
D(z,A) =wnf{||lz —al|: a € A},

i.e., cl(A) is the set of all points z in X that are close to A (D(z, A) is the Hausdorff
distance [10, §22, p. 128] between z and the set A and ||z — al| is the Euclidean distance
between z and a).

Let A€ denote the complement of A (all points of
not in A). The boundary of A (denoted bdyA) is the
set of all points that are near A and near A° [14, §2.7, p.
62]. An important structure is the intertor of A (denoted
intA), defined by intA = clA — bdyA. For example, the
interior of a Delaunay edge pq are all of the points in the
segment, except the endpoints p and ¢q. Notice that the
interior of a Delaunay triangle is empty.

In general, a relator is a nonvoid family of relations R T
on a nonempty set X. The pair (X, R) is called a relator
space. Let E be endowed with the relator Rs defined by FiGURE 3. Far

R5 = {5y/§y dv/)é'\}y

anm
called a prozimal relator (cf. [20]), containing the the proximities 6, §, 4, §. The Delau-
nay tessellated space F endowed with the proximal relator Rs (briefly, R) is a Delaunay
proximal relator space.

m

The proximity relations § (near), § (strongly near) and their counterparts § (far)
m

and § (strongly far) facilitate the description of properties of Delaunay edges, triangles,

)
triangulations and regions. The strongly near proximity § was introduced in [17].

Remark 2.1. The notation ? for the strongly far proxrimity was suggested by C.
Guadagns [9]. For the use of § in local prozimity spaces, see [8, §2.2, p. 7|. The
notation for the far prozimity § is commonly used (see, e.g., [4, 12]). The variant
notation § for the far prozimity ts also used [14]. For vartous forms of prozimity,
see [4, 8, 15, 12, 13, 14, 16].

Let A,B C E. The set Ais near B (denoted A § B), provided clANclB # @ [4] (closure
axiom). The Wallman proximity § (named after H. Wallman [26]) satisfies the closure
axiom as well as the four Cech proximity axioms [2, §2.5, p. 439] and is central in near
set theory [14, 15]. Sets A, B are far apart (denoted A g B), provided clANclB = 0.
For example, Delaunay edges pq 6 gr are near, since the edges have a common point, z.e.,
g € pgNgr (see, e.g., pq 6 gr in Fig. 2). By contrast, edges pr,zy have no points in
common in Fig. 2, t.e., pr § Tvy.
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"
Voronoi regions V,, V, are strongly near (denoted V,, § V;) if and only if the regions
have a common edge.

Example 2.1. Near and Strongly Near Sets.
In the Delaunay mesh in Fig. 3, let C,G,H be mesh triangles. H 6 C, since each

A m

these pairs of triangles have a common vertez. H § G and G § C (the triangles

are strongly near), since these triangles have a common edge. Stmilarly, in Fig. 2,
"

Vo § V4. In general, strongly near Delaunay triangles have a common edge. De-

launay triangles A(pgr) and A(grt) are strongly near in Fig. 4, since edge qr is

A
common to both triangles. In that case, we write A(pgr) § A(grt).

Nonempty sets A 9 C are strongly far apart (denoted A, C), provided C C int(clB)
and A § B.

Example 2.2. Far and Strongly Far Sets.

In the Delaunay mesh in Fig. 3, sets A and B have no points in common. Hence,
A g B (A s far from B). Also in Fig. 3, let C = {A(pqu)}. Consegquently,
C C wnit(clB), such that triangle A(pqu) lies in the interior of the closure of B.

Py
Hence, A§C.

FIGURE 4. Strongly Visible Sets A v B

Let A, B be subsets in a Delaunay mesh, A(pgr) € B, A(grt) € A. Subsets A,B in a
Delaunay mesh are visible to each other (denoted AvB), provided at least one triangle
vertex € clANclB. That is, if there is at least one site in A visible to at least one site

in B, then AvB. A, B are strongly visible to each other (denoted A%(\B), provided at
least one triangle edge is common to A and B.

Example 2.3. Visibility in Delaunay Meshes.

In the Delaunay mesh in Fig. 3, A v D, since A and D have one triangle vertez is
common, namely, vertez r. Sets B and D wn Fig. 3 are strongly visible (i.e., B%(\D),
since edge wz 1s common to B and D. In Fig. 3, let C = {A(pgqu)}. Then C%(\B,
since C C B. In Fig. 4, edge qr is common to A and B. gr s wisitble from p € B
and fromt € A. Hence, AV B.

Subsets A, B in a Delaunay mesh are tnvisible to each other (denoted A ¥ B), provided
clAnclB = 0, z.e., A and B have no triangle vertices in common. A, B are strongly
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tnvistble to each other (denoted A ;? B), provided C ¢ A for all sets of mesh triangles
CCB.

Example 2.4. Invisible and Strongly Invisible Subsets in a Delaunay Mesh.
In the Delaunay mesh in Fig. 3, A and B are not uvistble to each other, since
clAnclB =0, i.e., A and B have no triangle vertices in common. In Fig. 3, let

C = {A(pqu)}. Then A /7? B (A and B are strongly invisible to each other), since
C ¢ A for all sets of mesh triangles C C B.

3. MaIN RESULTS
The Delaunay visibility relation v is equivalent to the proximity é.
Lemma 3.1. Let A, B be subsets in a Delaunay mesh. A § B if and only if A v B.

Proof. A§ B & clANclB # (0 & A and B have a triangle vertex in common if and only
if Av B. O

Theorem 3.1. The visibility relation v s a Wallman prozimaty.

Proof. Immediate from Lemma 3.1. a
Lemma 3.2. Let A, B be subsets in a Delaunay mesh. AV B if and only if A v B.

Proof. A VB o Ppq for some triangle edge common to A and B < AvB, since pq is visible
from a vertex in A and from a vertex in B and A and B have vertices in common. O

Theorem 3.2. The strong vistbility relation ¥ s a Wallman proximaty.

Proof. Immediate from Theorem 3.1 and Lemma 3.2. |

M
Theorem 3.3. § s a Wallman prozimaty.

Proof. Immediate from Lemma 3.1, Lemma 3.2 and Theorem 3.2. |

A
Remark 3.1. From Theorem 8.3, § 1s a strongly near Wallman prozimaty.

Theorem 3.4. Let A, B be subsets in a Delaunay mesh. Then
1° A Y B implies A ¢ B.
2° A% Bifand onlyif A § B.
Proof.
1°: Given A ;9 B, then A and B have no triangle vertices in common. Hence, A ¥ B.
200 A ? B if and only if A and B have no triangles in common if and only if A /ZJS\ B. O

Theorem 3.5 is an extension of Theorem 3.1 in [19], which results from Theorem 3.1.

Theorem 3.5. The following statements are equivalent.

1° A(pgr) is a Delaunay triangle.
2° Circumcircle Q(pgr) has center u = clVp N clVg N clV;.
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2V, 0V, v V.
4° A(pgr) is the union of convezx sets.

Let P be a polygon. Two points p,q € P are wisible, provided the line segment pq is
in intP [7]. Let p,q € S, L a finite set of straight line segments and let pg € L. Points
p, q are visible from each other, which implies that pg contains no point of § — {p, ¢} in
its interior and pq shares no interior point with a constraining line segment in L — pg.
That is, intpg NS = 0 and pgNzy = 0 for all zy € L [5, §II, p. 32].

Theorem 3.6. If points in int pq are vistble from p,q, then int pg v S — {p,q} and
pquzy € L—pq for allz,y € S —{p,q}.

Proof. Symmetric with the proof of Theorem 3.2 [19]. O

A Delaunay triangulation region D is a collection of Delaunay triangles such that
every pair triangles in the collection is strongly near. That is, every Delaunay triangula-
tion region is a triangulation of a finite set of sites and the triangles in each region are
pairwise strongly near. Proximal Delaunay triangulation regions have at least one ver-
tex in common. From Lemma 1.1 and the definition of a Delaunay triangulation region,
observe

Lemma 3.3. [19] A Delaunay triangulation region is a convez polygon.
Theorem 3.7. [19] Prozimal Delaunay triangulation regions are convez polygons.

A local Leader uniform topology [11] on a set in the plane is determined by finding
those sets that are close to each given set.

Theorem 3.8. [19] Every Delaunay triangulation region has a local Leader uniform
topology (application of [11]).

Theorem 3.9. [19] A Delaunay triangulation region endowed with the visibility re-
latiton v has a local Leader uniform topology.

Proof. Let D be a Delaunay triangulation region. From Theorem 3.1 and Theorem 3.8,
determine all subsets of D that are visible from each given subset of D. For each A C D,
this procedure determines a family of Delaunay triangles that are visible from (near) each
A. By definition, this procedure induces a local Leader uniform topology on D. O
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