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Abstract. The Laplace equation in three variables can be reduced to three ODEs by
means of the Fourier method. For the cases when the exact solution of the obtained
ODEs does not exist, or it is complicated, we apply the wavelet-Galerkin method. We
use suitable wavelets or scaling functions that allow �nding the numerical solutions
of the three equations, which will form the solution of the Laplace equation.

1. Introduction

Wavelets are well localized, oscillatory functions which provide a basis of L2(R) and

can be modi�ed to a basis of L2([a; b]); where [a; b] is a bounded domain. Their well

localization allows local variations of the problem to be analyzed at various levels of reso-

lution. The concepts of wavelet theory were provided by Meyer, Mallat, Daubechies and

many others, [4, 5, 10]. Wavelets have several properties that are especially useful for rep-

resenting solutions of di�erential equations, such as orthogonality, compact support and

exact representation of polynomials of a certain degree. Multiresolution analysis using

orthogonal and compactly supported wavelets has been successfully applied in numerical

simulation. So, the use of wavelet-based numerical schemes has become increasingly pop-

ular in the last two decades. The wavelet-Galerkin method has emerged as an accurate

and e�cient means of approximating the solution of the ordinary and the partial di�er-

ential equations. It is an improvement over the standard Galerkin methods by using a

compactly supported orthogonal functional basis, [1, 2, 6, 9, 11, 12, 14].

The aim of this paper is to �nd a numerical solution for the Laplace PDE. After

reducing it to three ODEs by means of the Fourier method, we apply the wavelet-Galerkin

method to the obtained ODEs. We use suitable wavelets or scaling functions that allow
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�nding the numerical solutions of the three equations, which will form the solution of the

Laplace equation.

The outline of this paper is as follows: In Section 2 we summarize some basics of the

wavelet analysis. In Section 3 we describe the wavelet-Galerkin method for the ODE at

arbitrary level. The transformation of the Laplace PDE in three variables to the three

ODEs by means of the Fourier method is illustrated in Section 4. And, in the last section,

the wavelet-Galerkin method is applied to the three ODEs obtained in Section 4.

2. Wavelet preliminaries

An oscilatory function  2 L2(R) with zero mean, i.e.Z
<

 (t)dt = 0;

is called a wavelet (mother wavelet) if it has the following desirable properties:

1. Smoothness:  is n�times di�erentiable and their derivatives are continuous;

2. It satis�es the admissibility condition:

Z 1

�1

��� ̂(!)���2
j!j d! <1;

3. Localization:  is well localized both in time and frequency domains, i.e.  and its

derivatives must decay very rapidly.

The goal of the multiresolution analysis (MRA) is to develop representations of a

function f(x) at various levels of resolution. This can be achieved by expanding the

given function in terms of basis functions which can be scaled to give multiple resolutions

of the original function. In order to develope a multilevel representation of a function in

L2(R), we require sequence of embedded closed subspases fVjg such that

f0g � � � � � V�1 � V0 � V1 � V2 � � � � � L2(R)

with the following properties:

1. [j2ZVj is dense in L2(R);

2. \j2ZVj = f0g;
3. The embedded subspaces are related by the scaling law,

f(t) 2 Vj , f(2t) 2 Vj+1;

4. Each subspace is spanned by integer translates of a single function f(x) such that

f(t) 2 Vj , f(t� k) 2 Vj ;8k 2 Z;
5. There exists a function � (called scaling function or father wavelet) such that

�j;k(t) = 2�j=2�(2�jt�k), k 2 Z, constitute orthonormal basis for corresponding subspace

Vj .

The scaling functions often have signi�cant properties which make them more useful

then some other functions:

1. Compact support;
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2. The area under the scaling function is unity,Z 1

�1

�(t)dt = 1;

3. Their translations are orthogonal,Z 1

�1

�(t� n)�(t� k)dt = �k;n;

where �n;k is the Kronecker delta de�ned by

�n;k =

�
0; n 6= k

1; n = k
;

4. They satisfy a dilation equation

(2.1) �(t) =
X
k2Z

ak�(2t� k);

where ak are real coe�cients and ak 6= 0 for only �nitely many k 2 Z (the number of

nonzero coe�cients ak in the series (2.1) is denoted by L).

Some of these properties, such like compact support and unit integral, are required for

using the scaling functions family in numerical methods, especially for boundary value

problems. Others, like orthogonality, are desirable but not so necessary.

If � 2 L2(R) is compactly supported scaling function of MRA, one can construct the

wavelet  such that  j;k(t) = 2�j=2 (2�jt�k), j; k 2 Z, constitute an orthonormal basis

for L2(R). A complete wavelet theory can be found in [4, 5, 7, 8, 10].

3. Wavelet-Galerkin method for ordinary differential equations

Since we apply the wavelet-Galerkin method to homogeneous di�erential equations of

second order, in this section, we explain the application of the method to this type of

equation,

(3.1) g(t)u00(t) + h(t)u0(t) + r(t)u(t) = 0; t 2 [a; b];

with the boundary conditions

(3.2) u(a) = c; u(b) = d;

where g(t); h(t) and r(t) are real-valued continuous functions on [a; b]. This method also

can be applied to other type of ODEs on a similar way.

Let the solution u(t) of the equation (3.1) be approximated by its j-th level scaling

function expansion on the interval (a; b),

(3.3) uj(t) =

2jX
k=1�L

ck�j;k(t); k 2 Z;

where � is a scaling function of MRA and ck are unknown coe�cients that should be

determined. It is clear that the larger integer j is used, the more accurate solution is

obtained.

The boundaries of the support of uj(t) given by (3.3) are
1� L
2j

and
L� 1 + 2j

2j
.

Subsequently, the original boundaries a and b are now changed to �ctitious boundaries,
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i.e. the boundaries a and b are extended by an amount a � 1� L
2j

and
L� 1 + 2j

2j
� b,

respectively without a�ecting the solution within [a; b], so the a�ected solution is within

the intervals
h1� L

2j
; a
i
and

h
b;
L� 1 + 2j

2j

i
.

Substituting (3.3) in the di�erential equation (3.1), we get

g(t)
d2

dt2

2jX
k=1�L

ck2
�j=2�(2�jt� k) + h(t)

d

dt

2jX
k=1�L

ck2
�j=2�(2�jt� k) +

+ r(t)

2jX
k=1�L

ck2
�j=2�(2�jt� k) = 0:

To determinate the coe�cients ck, we take inner product with �j;n(t) = 2�j=2�(2�jt�n),
n 2 f1� L; :::; 2jg and obtain

2jX
k=1�L

ck

Z L�1+2j

2j

1�L

2j

g(t)2�j�00(2�jt� k)�(2�jt� n)dt

+

2jX
k=1�L

ck

Z L�1+2j

2j

1�L

2j

h(t)2�j�
0

(2�jt� k)�(2�jt� n)dt

+

2jX
k=1�L

ck

Z L�1+2j

2j

1�L

2j

r(t)2�j�(2�jt� k)�(2�jt� n)dt = 0;

i.e.

(3.4)

2jX
k=1�L

cktn;k = 0;

where

tn;k = 
n�k + an;k + sn;k;


n�k =

Z L�1+2j

2j

1�L

2j

2�jg(t)�
00

(2�jt� k)�(2�jt� n)dt;

an;k =

Z L�1+2j

2j

1�L

2j

2�jh(t)�
0

(2�jt� k)�(2�jt� n)dt;

sn;k =

Z L�1+2j

2j

1�L

2j

2�jr(t)�(2�jt� k)�(2�jt� n)dt:

Using the boundary conditions (3.2), we obtain these two equations

(3.5) uj(a) =

2jX
k=1�L

ck�j;k(a) = c;

and

(3.6) uj(b) =

2jX
k=1�L

ck�j;k(b) = d:
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The equations (3.5) and (3.6) give the relation between the coe�cients ck, k 2 f1 �
L; :::; 2jg. Now, we eliminate the �rst and the last equation of the system (3.4) and we

put the equations (3.5) and (3.6) on their places. So, we get the following matrix equation

TC = B;

where

T =

2
66666666664

�j;1�L(a) �j;2�L(a) �j;3�L(a) : : : �j;2j (a)

t2�L;1�L t2�L;2�L t2�L;3�L : : : t2�L;2j

t3�L;1�L t3�L;2�L t3�L;3�L : : : t3�L;2j
...

t2j�1;1�L t2j�1;2�L t2j�1;3�L : : : t2j�1;2j

�j;1�L(b) �j;2�L(b) �j;3�L(b) : : : �j;2j (b)

3
77777777775

and

C = [c1�L c2�L : : : c2j ]
T
; B = [c 0 : : : 0 d]

T
:

By Gaussian elimination algorithm we get the coe�cients ck, k 2 f1� L; � � � ; 2jg and
the approximate solution uj given by (3.3).

4. Trasformation of the Laplace equation by Fourier method

The famous Laplace equation

4u � @2u

@x2
+
@2u

@y2
+
@2u

@z2
= 0

transformed in polar coordinates using the substitutions

x = r sin � cos'; y = r sin � sin'; z = r cos �;

has the form

(4.1) 4u � @

@r

�
r2
@u

@r

�
+

1

sin �

@

@�

�
sin �

@u

@�

�
+

1

sin2 �

@2u

@'2
= 0:

A Fourier method, which subsumes that the unknown function u = u(r; �; ') can be

represented as a product of three functions of one variable, u(r; '; �) = R(r)�(')�(�),

can be used for reducing the last equation on three ODEs. Assuming that the functions

R(r);�(') and �(�) are twice di�erentiable functions, the equation (4.1) takes the form

��
d

dr
(r2R0) +R�

1

sin �

d

d�
(sin ��0) +

1

sin2 �
R�� = 0;

or, after division by R��; the form

1

R
� d
dr

(r2R0) +
1

�
� 1

sin �
� d
d�

(sin � ��0) + 1

sin2 �
� �

00

�
= 0:

If we rearrange it,

1

R
� d
dr

(r2R0) = �
�
1

�
� 1

sin �
� d
d�

(sin � ��0) + 1

sin2 �
� �

00

�

�
;
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we can conclude that both sides of the equation are constant, which might be denoted

by �:

(4.2)
1

R
� d
dr

(r2R0) = �;
1

�
� 1

sin �
� d
d�

(sin � ��0) + 1

sin2 �
� �

00

�
= ��:

After rewriting the second equation of (4.2) in the form

(4.3)
1

�
� sin � � d

d�

�
sin � � d�

d�

�
+ � sin2 � = ��00

�
;

it is obvious that both sides in (4.3) are also constant, let's denote this constant by �;

(4.4) ��00

�
= �;

1

�
� sin � � d

d�

�
sin � � d�

d�

�
+ � sin2 � = �:

The �rst equation from (4.2) and the both equations from (4.4) form a system of three

ODEs, whose solution will form the solution of (4.1), according to Fourier's method.

The �rst ODE is the Cauchy-Euler equation obtained from (4.2),

(4.5) r2R00 + 2rR0 � �R = 0;

whose exact solution is of the form R = r� and according to the literature (see [13]) it

can be obtained for � = n(n+ 1),

R(r) = C1r
n + C2

1

rn+1
:

Note that, often only the function R(r) = C1r
n is taken as a solution, which is the case

when the interval of consideration contains r = 0 (otherwise, the solution will contradict

the condition for twice di�erentiability of R(r)).

The second ODE, obtained from (4.4) is the following homogeneous Sturm-Liouville

equation

(4.6) �00 + �� = 0;

whose nonzero general solution can be obtained in its explicit form,

�(') = A cosm'+B sinm';

for � = m2, where m = 1; 2; : : : ([3]).

The third ODE, obtained from (4.4) is also a homogeneous Sturm-Liouville equation,

(4.7) sin �
d

d�

�
sin �

d�

d�

�
+�

�
� sin2 � � �� = 0;

Taking into consideration that the constants keep the assigned values, � = n(n + 1)

and � = m2, the explicit form of the solution of (4.7) is given with

Pn;m = (1� x2)m2 d
mPn(x)

dxm
=

(1� x2)m2
n!2n

dn+m

dxn+m
[(x2 � 1)n];

where

Pn(x) =
1

n!2n
dn

dxn
[(x2 � 1)n]

are Legendre polynomials, and x = cos � (see [13]).
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5. Numerical results

In this section we give the wavelet-Galerkin solutions of the ODEs in which the Laplace

equation is reduced, for di�erent values of the parameters (for some values the exact

solution exists and for some, it doesn't exist). For a scaling function we use the quadratic

B-spline (5.1) and the sinc function (5.2).

(5.1) �(t) =

8>><
>>:

1
2 t

2; t 2 [0; 1]

�t2 + 3t� 3
2 ; t 2 [1; 2]

1
2 t

2 � 3t+ 9
2 ; t 2 [2; 3]

0; t =2 [0; 3]

;

(5.2) �s(t) =

(
sin(�t)
�t ; t 6= 0

1; t = 0
:

It is known that the sinc function satis�es an in�nite equation of dilatation (2.1), while

the quadratic B-spline function satis�es the following dilatation equation

�(t) =
1

4
�(2t) +

3

4
�(2t� 1) +

3

4
�(2t� 2) +

1

4
�(2t� 3):

Since we want to compare the obtained numerical B-spline and sinc solutions, we take

L = 4 for both of them. It is clear that the more accurate solutions can be obtained using

sinc function, by taking larger integer L.

We consider the equation (4.5) with the boundary conditions R(1) = 1; R(3) = 0. For

� = 0 it has the form

r2R00 + 2rR0 = 0:

Its exact solution and approximate solution using the quadratic B-spline at zero level are

R(r) = �1

2
+

3

2r

and

(5.3) R0(r) =

�
690
431�(r + 1) + 172

431�(r); r 2 [1; 2]
172
431�(r); r 2 [2; 3]

;

respectively, and they are shown on Figure 1.

The numerical solutions of (4.5), for � = 1; 3; 4, obtained using the B-spline function

at zero level, are shown on Figure 2.

Now, we consider the equation (4.6), for � = 4 and the boundary conditions �(0) =

1; �(�4 ) = �1. In this case, its exact solution is

�(') = cos(2')� sin(2'):

Using B-spline function at the zeroth and �rst level, we obtain the following approxi-

mate solutions

(5.4) �0(') = 2:61431�('+ 2)� 0:614306�('+ 1)� 2:10591�('); ' 2 [0;
�

4
];

and

�1(') =
1p
2

�
5:708740�

�'
2
+ 2

�
� 2:8803�

�'
2
+ 1

�
� 4:407829�

�'
2

��
;

' 2 �0; �4 � ; respectively.



216 J. VETA BURALIEVA, E. HADZIEVA AND K. HADZI-VELKOVA SANEVA

If we use the sinc function at zero level, we obtain the solution

�0;s(') = c3�1('+3)+ c2�1('+2)+ c1�1('+1)+ c0�1(')+ c�1�1('� 1); ' 2 [0;
�

4
];

where c3 = �1:061294; c2 = 0:88210; c1 = 0:45482; c0 = �1:08518; c�1 = 1:25899:

Figure 1. Exact and numerical B-spline solution of the equation (4.5),

for � = 0

Figure 2. Numerical B-spline solutions of the equation (4.5), for � = 1; 3; 4
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Figure 3. Exact and numerical B-spline and sinc solutions of the equa-

tion (4.6), for � = 4

Figure 4. Comparison of numerical solutions at zeroth and �rst level

of the equation (4.6), for several values of parameter �

The solutions of the equation (4.6) are shown on Figures 3 and 4. As expected,

the approximate B-spline solution at �rst level is better then the approximate solution

at zeroth level obtained by B-spline or sinc function (see Fig.3). Fig. 4 presents the

numerical B-spline solutions obtained for � = 2; 5; 12, values for which the exact solution

does not exist. We can conclude that the numerical solutions for a di�erent values of
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parameter � at �rst level are closer one to the other then the numerical solutions at zero

level.

Approximate solutions for the equation (4.7) are obtained on a similar way. For the

pairs of parameters: � = 0; � = 2 and � = 1; � = 4, the exact solution does not exists.

We found the numerical B-spline solutions at zero level, presented on Figure 6.

Figure 5. Numerical B-spline solutions for the equation (4.7), for � =

0; � = 2 and � = 1; � = 4

Now, the numerical solution of the Laplace equation at zero level using B-spline func-

tion may be obtained by the formula

(5.5) U0(r; �; �) = R0(r)�0(�)�0(�); r 2 [1; 3]; � 2 [0; �=4]; � 2 [1; 2];

where R0(r) and �0(�) are given by (5.3) and (5.4), respectively, while �0(�) is the

approximate solution of the equation (4.7), with � = 0; � = 4 and boundary conditions

�(1) = 1;�(2) = 2: It can be obained by the formula

�0(�) = 3:64596�(� + 1)� 1:64596�(�) + 5:64596�(� � 1); � 2 [1; 2]:

From the range of the variables r, � and �, we choose three values r = 1:3; � = 1:5

and � = 0:6 and get the projections of the numerical solution (5.5) of the LPDE onto

r = 1:3; � = 1:5 and � = 0:6, respectively (see Figure 6, 7 and 8).

6. Conclusion

In this paper we �nd the approximate solution of the Laplace PDE of third order,

applying the wavelet-Galerkin method to the three ODEs in which the Laplace equation

is reduced. The ODEs depend on two parameters, � and �. Varying their values, we

consider several cases. In the cases where the ODEs have exact solution we give it, �nd

the numerical solution and compare them (see Fig.1 and Fig.3). In the cases where the
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exact solution does not exist we �nd the numerical solutions for di�erent parameters at

di�erent levels (see Fig.2, Fig.4, Fig.6). From the obtained results we can conclude that

at higher level the wavelet-Galerkin method gives better approximate solutions. At the

end, we resume the numerical solution of the Laplace equation.

Figure 6. Projection of the numerical B-spline solution of the LPDE

onto r = 1:3

Figure 7. Projection of the numerical B-spline solution of the LPDE

onto � = 1:5

Figure 8. Projection of the numerical B-spline solution of the LPDE )

onto � = 0:6
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