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Abstract. By making use of generalized Ruscheweyh derivative a new class of multi-
valent analytic function is introduced. In the present paper various inclusion relations
of the newly de�ned functions class is determined. The results generalized the works
due to Aghalary et. al.(cf.[1], J. Inequal. Pure & Appl. Math., 5(2),Art. 31, (2004),
pp. 1-11. )

1. Introduction and definitions

Let A be the class of functions analytic in the open unit disk

U := fz : z 2 C and jzj < 1g

and Ap be the subclass of A consisting of functions of the following form:

f(z) = zp +

1X
k=n+p

akz
k; n; p 2 N := f1; 2; 3; :::g

where f is analytic and p-valent in U.

Recalling subordination (cf.[2, 10]) of two analytic functions f and g in U, we say that

f is subordinate to g in U and written as

f(z) � g(z); (z 2 U);

if there exists a function w(z) analytic in U with

w(0) = 0; and jw(z)j < 1

such that

f(z) = g(w(z)); (z 2 U):
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It follows that

f(z) � g(z) (z 2 U) =) f(0) = g(0) and f(U) � g(U):

In particular, if g is univalent in U, we have following equivalence:

f(z) � g(z) (z 2 U)() f(0) = g(0) and f(U) � g(U):

Furthermore, f is said to be subordinate to g in the disk Ur, if the function fr(z) = f(rz)

is subordinate to gr = g(rz) in U. Hence, if f � g in U, then f � g in Ur for every

r (0 < r < 1).

Formulated in terms of subordination, the function f 2 Ap is said to be in the class

Kn(p; �) (0 � � < p) consisting of p-valent convex functions of order � (cf.[8], also see [3])

if
1

p� �

�
1 +

zf 00(z)

f 0(z)
� �

�
�

1 + z

1� z
(z 2 U):

Furthermore the function f 2 Ap is said to be in the class S�n(p; �) (0 � � < p), consisting

of p-valent starlike functions of order � (cf.[6], also see [8]) if

p

Z z

0

f(t)

t
dt 2 Kn(p; �):

Equivalently,

f 2 Kn(p; �)() zf 0 2 S�n(p; �) (8n 2 N):

For function q 2 A, normalized by q(0) = 1 of the form

q(z) = 1 + c1z + c2z
2 + :::

is said to be in P(1; b) if

(1.1) q(z) � 1 + bz; b > 0:

Or, equivalently

jq(z)� 1j < b; b > 0:

The class P(1; b) is introduced and studied by Janowski [5].

In our investigation we also need following de�nitions of fractional derivative operator

de�ned by Srivastava [12], and Srivastava and Saxena [13]:

De�nition 1.1. Let f is an analytic function in a simply connected region of the z-plane

containing the region, and the multiplicity of (z� �)� is removed by requiring log(z� �)

to be real when z� � > 0. Then the generalized fractional derivative of order l is de�ned

for a function f(z) by

J
l;�;�
0;z f(z) =

8<
:

1
�(1�l)

d
dz

n
zl��

R z

0 (z � �)�l: 2F1

�
�� l;��; 1� l; 1� �

z

�
f(�)d�

o
; (0 � l < 1);

dn

dzn J
l�n;�;�
0;z f(z); (n � l < n+ 1; n 2 N)

provided further that

f(z) = O(jzjk); (z ! 0; k > maxf0; �� � � 1g � 1):
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It follows from the above de�nition that

(1.2) J
l;�;�
0;z f(z) = 
l

zf(z); (0 � l < 1);

where 
l
z is the fractional derivative operator of order l. In terms of Gamma function,

we have

J
l;�;�
0;z z� =

�(�+ 1)�(�� �+ � + 2)

�(�� �+ 1)�(�� l+ � + 2)
z���; (0 � l < 1; � > maxf0; �� � � 1g � 1):

Recently, Goyal and Goyal [4] (also see [9]) de�ned a generalized Ruscheweyh derivative

J
l;�
p f; � > �1 as follows:

J
l;�
p f(z) =

�(�� l+ � + 2)

�(� + 2)�(�+ 1)
zpJ

l;�;�
0;z (z��pf(z)) = zp +

1X
k=n+p

Bl;�
p (k)akz

k;(1.3)

where

(1.4) Bl;�
p (k) =

�(k � p+ 1 + �)�(� + 2 + �� l)�(k + � � p+ 2)

�(k � p+ 1)�(k + � � p+ 2 + �� l)�(� + 2)�(1 + �)

For � = l, this generalized Ruscheweyh derivative get reduced to Ruscheweyh deriva-

tive of f(z) of order l > �1 (see, e.g. [11]) as follows:

Dlf(z) =
zp

�(l+ 1)

dl

dzl
(zl�pf(z))

(1.5) = zp +

1X
k=n+p

�(l+ k � p+ 1)

�(l+ 1)�(k � p+ 1)
akz

k:

For p = 1, (1.5) reduces to ordinary Ruscheweyh derivative for univalent functions

[11]. By making use of the above generalized Ruscheweyh derivative operator we de�ne

following:

De�nition 1.2. For � > �1; n � 1 and � � 0 and we de�ne a new class of functions

S
l;�
p;�(1; b) subclass of P(1; b) consisting of functions q(f) such that

q(f(z)) = (1� p�)
(J

l;�
p f(z))

zp
+ �

(J
l;�
p f(z))0

zp�1
:

It may note that, for � = l, the class S
l;�
p;�(1; b) reduced to the class Sl

p;�(1; b) consisting

of the functions q(f) such that

q(f(z)) = (1� p�)
(Dlf(z))

zp
+ �

(Dlf(z))0

zp�1
:

For p = 1, the above class is further reduced to the class Sl
�(1; b) de�ned by Aghalary et

al. [1].

Following Lemma due to Miller and Mocanu [7] play key role to prove our main results:

Lemma 1.1. Let q(z) = 1+qnz
n+ :::; (n � 1) be analytic in U and let h(z) be convex

univalent in U with h(0) = 1: If q(z) + 1
c zq

0(z) � h(z) for c > 0, then

q(z) �
c

n
z�c=n

Z z

0

h(t)t
c
n
�1dt:
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2. Main Results

We have following properties of the family S
l;�
p;�(1; b):

Theorem 2.1. If q(f) 2 S
l;�
p;�(1; b) then

z�p
J
l;�
p f(z) 2 P

�
1;

b

1 + �n

�
:

Proof. Let q(f) 2 S
l;�
p;�(1; b). Taking g(z) = z�pJ

l;�
p f(z). Upon di�erentiation and appli-

cation of (1.1), yields

g(z) + �zg0(z) = q(f(z)) � 1 + bz:

Now putting � = 1=c and applying Lemma 1.1, we have

g(z) �
1

n�
z�1=n�

Z z

0

(1 + bt)t
1
n�
�1dt = 1 +

b

1 + �n
z:

By principle of subordination, we have for jw(z)j � jzjn

g(z) = z�p
J
l;�
p f(z) = 1 +

b

1 + �n
w(z):

Thus, the theorem follows from the condition (1.1).

The estimates in Theorem 2.1 are sharp for q(f) where f is given by

z�p
J
l;�
p f(z) = 1 +

b

1 + �n
zn:

This completes the proof of Theorem 2.1. �

Corollary 2.1. If q(f) 2 S
l;�
p;�(1; b), then

��z�p
J
l;�
p f(z)� 1

�� � b

1 + �n
jzjn:

Putting � = l = 0 in Theorem 2.1, we have following Corollary:

Corollary 2.2. If

���(1� p�) f(z)zp + � f 0(z)
zp�1 � 1

��� < b, then

f(z)

zp
� 1 +

b

1 + �n
z:

On replacing f(z) �! zpf 0(z), Corollary 2.2 further reduced to the following:

Corollary 2.3. If jf 0(z) + �zf 00(z)� 1j < b, then

f 0(z) � 1 +
b

1 + �n
z:

In the next two theorems, we give the inclusion results for the functions class S
l;�
p;�:

Theorem 2.2. For 0 � �1 < � and l � 0, let b1 =
1+n�1
1+n� b. Then

S
l;�
p;�(1; b) � S

l;�
p;�1

(1; b1)
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Proof. The case for �1 = 0 is trivial as b1 =
1

1+n�b. Let q(f) 2 S
l;�
p;�(1; b). Therefore

(1� p�1)
J
l;�
p f(z)

zp
+ �1

(J
l;�
p f(z))0

zp�1
=
J
l;�
p f(z)

zp
:

Application of Theorem 2.1, yields

J
l;�
p f(z)

zp
� 1 +

1

1 + n�
b = 1 + b1:

This shows that q(f) 2 S
l;�
p;�1

(1; b1).

For �1 6= 0, suppose that q(f) 2 S
l;�
p;�(1; b). Therefore we have

(1� p�1)
J
l;�
p f(z)

zp
+ �1

(J
�;�
p f(z))0

zp�1

=
�1
�

"
(1� p�)

J
l;�
p f(z)

zp
+ �

(J
l;�
p f(z))0

zp�1

#
+

�
1�

�1
�

�
J
l;�
p f(z)

zp
:

Which on application of Theorem 2.1, gives�����(1� p�1)
J
l;�
p

zp
+ �1

(J
l;�
p f(z))

0

zp�1
� 1

����� � �1
�
jq(f)� 1j+

�
1�

�1
�

� �����J
l;�
p

zp
� 1

�����
<

�1
�
b+

�
1�

�1
�

��
b

1 + n�

�

= b

�
1 + n�1
1 + n�

�
= b1:

Which shows that q(f) 2 S
l;�
p;�1

(1; b1). This completes the proof of Theorem 2.2. �

Theorem 2.3. For l � 0, let b1 =
b(1+�)
n+1+� . Then

S
l+1;�+1
p;� (1; b) � S

l;�
p;�(1; b1):

Proof. Suppose that q1(f) 2 S
l+1;�+1
p;� (1; b). Therefore we have

(2.1) q1(f(z)) = (1� p�)
J
l+1;�+1
p f(z)

zp
+ �

(J
l+1;�+1
p f(z))

0

zp�1
� 1 + bz:

Taking

(2.2) q2(f(z)) = (1� p�)
J
l;�
p f(z)

zp
+ �

(J
l;�
p f(z))0

zp�1
:

Using (1.4), we �nd that

(2.3)
B

l+1;�+1
p (k)

B
l;�
p (k)

=
k � p+ �+ 1

�+ 1
:

Setting q1(f(z)) = q2(f(z))+ czq02(f(z)); solving using (1.3) and (2.2) and making use of

(2.3), we get c = 1
�+1 : Therefore, we have

(2.4) q1(f(z)) = q2(f(z)) +
1

�+ 1
zq02(f(z)):
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In the view of (2.1), we have

q1(f(z)) = q2(f(z)) +
1

�+ 1
zq02(f(z)) � 1 + bz:

Hence an application of Lemma 1.1 gives

q2(f(z)) �
�+ 1

n
z
�(�+1)

n

Z z

0

h(t)t
(�+1)
n

�1dt = 1 +
(�+ 1)bz

�+ 1 + n
= 1 + b1z:

Thus we conclude that

q1(f) 2 S
l;�
p;�(1; b1) implies q2(f) 2 S

l;�
p;�(1; b1):

This completes the proof of Theorem 2.3. �

Letting � = l in the Theorem 2.3 and using (1.2), we obtain the following:

Corollary 2.4. For l � 0; let b1 =
b(1+l)
n+1+l : Then

Sl+1
p;� (1; b1) � S

l
p;�(1; b1):

For p = 1; Corollary 2.4 reduces to the recently established result due to Aghalary et.

al.[1, Theorem 3.2] as our special case.

Further putting l = 0 and q2(f(z)) = f 0(z) in Theorem 2.3 and with suitable applica-

tions of (2.2) and (2.4) we get the following:

Corollary 2.5. If f 0(z) + zf 00n(z) 2 P(1; b), then (1 + p�) f(z)zp + � f 0(z)
zp�1 2 P(1;

b
n+1 ).
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