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ABSTRACT. In this paper we consider some addition to Parseval’s relation and analytic
representation of some classes of distributions. Also we consider analytic representa-
tion of some density functions in the theory of probability.

1. INTRODUCTION

With L'(R™) we denote the space of all Lebesgue integrable functions on R™.
If x=(z1, ..., z,)and t = (¢4, ..., t,) are two points of R™ then its inner product
is
xt =101+ -+ Tptn.

With Co(R™) we denote the Banach space which consists of all continuous functions
defined on R™ which vanish at infinity.

The dual space Co(R™)’ is the space of all complex Borel measure y defined on R™. If
f € L*(R™), then it is well known that the function

fo - [ " ft)e

is called a Fourier transform of f.
The function f belongs to the space Co(R™) and

)] < / F@)e=|dz < || £l

—o0

where ||f||1 is norm in L'(R™) .
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Now, let 1 be a complex Borel measure defined on R™. With z(¢t) we denote the
Fourier transform of the measure p defined by

a0 = [ eau@) = [ en@aue)

—00 — 00
where h(z) is a Borel function such that |h(z)| =1 ([2], p.124)

For the sake of simplicity, the further exposition will be on the real line.

First we will prove that the function i(t) is continuous and bounded. Let (¢,) be a
sequence of real numbers such that ¢, — ¢t as n — co. Since |e**~*h(z)| < 1 and since
the function lis |u| integrable, we may apply Lebesgue’s dominated convergence theorem
and obtain

[ee)

. N T Ttnx
Jim f(tn) = lim o h(z)d|p|(z)
= [ Jim e hi@dul@) = [ eh@)dul(e) = a).

Thus we proved that & is continuous function.
From the estimate

()] < /oo €% h(z) |d|ul(z) = [|ull

—00

it follows that i is bounded function, where the norm ||u|| = |¢|(R) is the total variation
of u.

Thus from the above we may conclude that, if f € L!(R) then also f - & belongs to
L*(R).

Theorem 1.1. If f € L*(R) and u is a complex Borel measure on R, then

(1.1) ” F(z)du(z / FE)A()

— 0

Proof. Since the function f(z) is continuous and bounded, the integral

| f@ute)
exists, and we have that

/Zf(x)du(m: / du(z / F(t)eed
=/_Oo z)d|p|(z /f Je"edt.

Since both integrals exist we may apply Fubini’s theorem and receive
(e o] R o0 [e.e] .
/ J(@)du(z) = ft)dt / e'**h(z)d|p|(z)
—00 — 00 —
- [ ronc

Thus the relation (1.1) is proved. (see [1], p.145) O
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In particular, if du(z) = g(z)dz where g € L*(R), then we obtain
| i@ = [ fa
- / F(t)dt / dg(e)da = [ faa

This relation is known as Parseval’s relation. For this reason one may take the relation
(1.1) as some generalization of the Parseval relation.

Example 1.1. If § is the Dirac measure, then
| i@as@ =0 = [ 5

5(t) = / ” e dé(z) =

— 0

since

The Riesz representation theorem for the bounded linear functionals on the Banach
space Cp(R) asserts that if p and A are two measures such that p # A, then the functionals
defined by u and A, respectively, are different, and since the set of all functions f is dense
in Cy(R) from the relation (1.1) follows that & # A. Further, in the space of all complex
Borel measures on R, i.e., on Co(R)’, the convolution of measures is defined. Namely, if
© and A are two Borel measures, then there exists measure v = g * A defined by means of
the product of measures which is also complex Borel measure. The measure v is called a
convolution of the measures y and A.

We know that

(12) / Z fawsn) = [ [ 1o +yduar

from where we receive

/_O:o e ®d(u* A) ( // et =) dy(z)dA(y)
-/ e du(a) | ) = A,

For example, if A = §, then from (1.2) we have

/ ed(u x 8) = / eitmd,u(m)/ e'Wds(y)

(o]

= / e du(z) 1 = a(t).

—o0
This means that u * & = u, i.e., § is the unit element with respect to the convolution of
measures. This is similarly as a convolution of distribution with the distribution § = 1.
From (1.2) we also obtain that

[ AL < ([l

Note that the Banach space Cy(R)" with the operation of convolution of measures is a
commutative Banach algebra with unit element 6.
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Let now define mapping A from Co(R)' into L*°(R) as follows
h(u) = A

The mapping h is homomorphism form Cy(R)' into L*°(R). To realize this, first note
that h is linear and since

h(u* X) = (+A) = 44 = h(u)h(X),

it follows that A is homomorphism.
Since

|A(w) @) = [2@E)] < ||ul
we have that

|Alleo < kel

and h is continuous.

Example 1.2. Let consider the following Borel measure

p=>apd(t—1l),
k=1

where a are complex numbers and Iy, are real numbers. We know that 6(t — Ii) s
the Dirac measure at the point I, with 6(t — Ix)({lx}) = 1. If pu is a complex Borel
measure, then it is necessary that

[e.e]

Z|ak| )

k=1

and the norm of measure u 1s

(e
el = laxl.
k=1

The Fourier transform is

(e S (o) o]
a(t) = / edu(z) = Z ak/ eds(z — 1) = Z aye’t
k=1 —o° k=1

— 00

and consequently, Theorem 1 wmplies

/ T road =Y e / T pwetat = anflle).
—o0 k=1 - k=1

The Riemann-Lebesgue lemma shows that

lim —/ at)Pdt = ag|®.

Example 1.3. If in Ezample 1.2, the numbers ay are such thatay > 0, fork=1,2,...
and if

o]
E ar = 1,
k=1



SOME ADDITION TO PARSEVAL’S RELATION ... 233

then the measure u given with the formula

o0
p=> apd(t -l
k=1
1s called a probability Borel measure and the function
F(t) =) at€R
lkSt
is called a function of distribution. The function F(t) has the following properties:
(i) 0< F(t) <1,
(i7) lm F(¢) =0, lim F(¢) =1,
t——oo t—o00
(i12) F(t) is continuous function on the right hand side at every point t, and has
Jump equal to ly tn each points l, for k =1,2,....

The function X defined on the o algebra of all Borel sets with the valuesly, Io,...
on the real line and with the probabilities u(X = l) = ag, for k = 1,2, ... is called
a discrete random variable. In the theory of probability the triple: o algebra of all
Borel sets, probability function (the measure u) and the Borel function X(t) is called
probability space.

Note that the function

F(t) = p(X <1)
15 called a cumulative function for the random variable X which may be discrete or
continuous.

If X 1s continuous random variable, then we know that

ula < X <b) = F(b) - F(a),

where F(t) is function of distribution.
If there ezists a function f(t) such that

F'(t) = f(t)

ezcept possibly at a finite number of points, then the function f(t) is called density
function and

mm:[;ﬂw

The density function f(t) has the following properties

(1) 7(&) >0
(2) f belongs to the space L'(R) and

Also we know that
b
pla < X <b) = / f(t)dt.
a

One very important distribution function in the theory of probability is the normal
distribution.
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For the random variable X we say that has normal distribution if it has a function

of distribution
1 e u?
F(z) = — exp (—) du

and density function

&) = = ex (—2)

In this case we denote X ~ N(0,1) and it means that X has expected valu zero and
variance one.

Note that the function F(t) in Ezample 1.8 has no density function in ordinary
sense, but if we consider it as a distribution, then the distribution derivative is

= Z aké(t — lk) =
k=1

This measure (or distribution) serves as a density function.

Since the distribution function F does not belong neither to L' nor to L?, it has
no Cauchy representation as a distribution, but the density function has the Cauchy
representation. The Cauchy representation of the density function s the function

o0

Alz) = Z 27rz(lk 2)

k=1

Z;élk

Example 1.4. If in Ezample 1.3 the coefficients ay are given with
)\k
Ok = 77 exp(—A),
where k =0,1,... and XA > 0, then the Borel measure (or distribution)
(o) )\k B
pt) =) e ot —k)

k!
k=1

15 the density function of the Poisson distribution, and is also one of the very
important distribution in probability theory. The Cauchy representation of this
distribution is the function

oo

1 1)\’“

27rz —2)
0

—*, z# k.

Example 1.5. If ap = ¢* 'p, where p and q are greater than zero and p+q = 1,

then the function
x
p=> ¢ 'ps(t—k)
k=0

1s density function for the geometric distribution, and the analytic representation
of the geometric distribution s the function
1 x

N 1 P
f(z) = 27[2-;7“3_2)(1 'p, z#k.
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2. THE SPACES S AND S’

With S we denote the space of all infinity differentiable complex-valued functions
rapidly decreasing at infinity, and with S’ we denote the space of all continuous linear
functionals on S. The members of S’ are called tempered distributions.

It is known that, if ¢ € .S, then the Fourier transform is the function

50 = [ vlajeds

— 00
which is also belong to S.
If the sequence (¢,) tends to zero as n — oo in S, then the sequence of Fourier
transforms () tends to zero as n — oo in S.
This properties enables to define the Fourier transform for a given tempered distribu-
tion u. Namely, let u be a given tempered distribution. Then we define distribution @
by the formula

(2.1) <A p>=<u,p>.

The distribution 4 defined with (2.1) is called a Fourier transform of the distribution u.

The members of the space LP, for 1 < p < o0, are tempered distributions, and also
the set of all complex Borel measures p are tempered distributions. It is known the last
distributions are defined by the formula

< @ >=/ p(z)du(z), @€S.

—00
In the next theorem we will determine the Fourier transform f for the distribution y by
using relation (1.1).

Theorem 2.1. If u be a complexr Borel measure on R, then its Fourier transform fi,
as a tempered distribution, is equal to the Fourier transform [i(t) of the measure .

Proof. For the distribution p, we define distribution & as follows

o0

<M¢>=<m¢>=/ ¢(z)du(z),

— o0

and from the relation (1.1) we have

| eana = [ wwpta

—oQ — o0
for every ¢ € S. Thus, we may consider the function
oo
pe) = [ e du(a)
—o0

as a distribution f. |

We know that this is not true for every tempered distribution. In particular, if du(z) =
f(z)dz and if f € L', then a(t) = f(t) .

The Paley-Wiener theorem ([3], p.199) asserts that, if the distribution u has compact
support, if v has order N and if

(2.2) f(2) =< u(t),e" >,
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then f is entire, the restriction of f on the real line is the Fourier transform of u and
there is a constant v < oo such that

|f(2)] < (1 +|2)" exp(tIm 2)
and
f(z) =< u(t),e™ >=a.
Conversely, if f is an entire function which satisfies condition (2.2), then there exists

distribution u with support in [—r, r] and « has order N such that (1.2) holds.
The same is true if the measure p has compact support. Then the function

ae) = [ explite) autt

— 00

is entire and the restriction on the real line is

po) = [ exslite) duo)

—o0
which is the Fourier transform of the distribution u.
Thus, for every measure y, the function i is a regular distribution.

Remark 2.1. The Fourter transform of positive Borel measures is characterized by
the famous Boshner theorem for positively defined functions. ([4]).
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