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Abstract. A harmonic function f in the unit open disc D = fz 2 C : jzj < 1g can

be written as a sum of an analytic and anti-analytic functions: f = h(z)+ g(z); here,
h(z) and g(z) are analytic in D, and called the analytic part and co-analytic part of
f , respectively.

Growth (the bounds of the modulus of a function) theorems and distortion (the
bounds of the modulus of the derivative of a function) theorems play an important
role in the study of the geometric function theory, because this theorems give the
compactness of the corresponding classes.

In this paper we consider both of these cases with shear construction method for
the sense-preserving generalized p�valent harmonic mappings in the unit open disc
D.

1. Introduction

Let 
 be the family of functions '(z) regular in the open unit disc D and satisfy the

conditions '(0) = 0, j'(z)j < 1 for all z 2 D. Denote by P(p; n)(p � 1; n � 1) the family

of functions p(z) = p + pnz
n + pn+1z

n+1 + pn+2z
n+2 + � � � which are regular in D and

satisfy the conditions p(0) = p, Rep(z) > 0 for every z 2 D.
Next, let A(p; n) be the class of all functions of the form s(z) = zp + anp+1z

np+1 +

anp+2z
np+2 + � � � which are analytic in D. In particular, A(p; 1) is the class of standard

p-valent analytic functions and A(1; n) is the class of all analytic functions for which the

�rst n coe�cients are zero, and A(1; 1) is the class of all analytic functions in the standard

form. Let F (z) = z + �2z
2 + �3z

3 + � � � and G(z) = z + �2z
2 + �3z

3 + � � � be analytic

functions in D, if there exist '(z) 2 
, such that F (z) = G('(z)) for all z 2 D, then we

say that F (z) is subordinate to G(z) and we write F � G. We also note that if F � G,

then F (D) � G(D) ([6], [5]).
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Moreover, let s(z) be an element of A(p; n), if s(z) satis�es the condition Re
�
1 +

z s
00(z)
s0(z)

�
> 0, then s(z) is called generalized p-valent convex function. The class of such

functions is denoted by C(p; n). Let �(z) be an element of A(p; n). If there exist a

function s(z) 2 C(p; n) such that Re
�
�0(z)
s0(z)

�
> 0, then we say that �(z) is generalized

p-valent close-to-convex function. The class of such functions is denoted by K(p; n) ([6],
[5]).

Finally, generalized p-valent harmonic function f in the disc D has the representation

f = h(z) + g(z), where h(z) = zp + anp+1z
np+1 + anp+2z

np+2 + � � � and g(z) = bnpz
np +

bnp+1z
np+1 + � � � are analytic in D, and called analytic part and co-analytic part of f ,

respectively. If Jf (z) = jh0(z)j2�jg0(z)j2 > 0, then f is called sense-preserving generalized

p-valent harmonic function. The class of such functions is denoted by SH(p; n) with

jbnpj < 1, and the class of sense-preserving generalized p-valent harmonic functions is

denoted by S0H(p; n) with bnp = 0. We also note that w(z) = g0(z)=h0(z) is analytic

second dilatation of f and jw(z)j < 1 for every z 2 D ([5]).

In this paper we investigate some properties of the class K(p; n) and give the growth

and distortion theorems for the class of sense-preserving generalized p-valent harmonic

mappings that are convex in the direction of real axis. The second part of this study

is based on the shear construction method for harmonic functions. We also note that

harmonic shear construction method is based on the following theorem of Clunie and

T.Sheil-Small. This theorem says that; A harmonic function f = h(z) + g(z), locally

univalent in D, is a univalent mapping of D onto a convex domain in the direction of the

real axis if and only if (h(z)� g(z)) is a conformal univalent mapping of D onto a convex

domain in the direction of the real axis [2].

2. Main Results

Lemma 2.1. If p(z) 2 P(p; n), then

(2.1) p(z) = p
1 + zn'(z)

1� zn'(z) ;

where '(z) is an analytic function in D and satis�es the condition j'(z)j < 1 for

every z 2 D.
Proof. Let p1(z) be the analytic satisfying the conditions Rep1(z) > 0 and p1(0) = 1 in

D, then p1(z) can be written in the form

(2.2) p1(z) =
1 + '1(z)

1� '1(z) ;

where '1(z) is analytic in D and also has nth zero at the origin. Hence '1(z) = zn'(z),

where '(z) satis�es the conditions of Schwarz's lemma. Therefore p1(z) can be written

in the form

(2.3) p1(z) =
1 + zn'(z)

1� zn'(z) :

On the other hand, we consider the function p(z) = pp1(z), this function is analytic and

satis�es the conditions p(0) = p, Rep(z) > 0 for every z 2 D. Using (2.3) we obtain

(2.1). �
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Remark 2.1. We also note that using the subordination principle, we have

p(z) 2 P(p; n), p(z) � p
1 + zn

1� zn

and the image of jzj = r under the transformation w(z) =
1 + zn

1� zn is the disc with

the center C(r) =
�
1+r2n

1�r2n ; 0
�
and radius �(r) =

2rn

1� r2n .

Corollary 2.1. Let p(z) be an element of P(p; n), then

(2.4) Re

�
z
p0(z)

p(z)

�
� � 2nrn

1� r2n
for all z 2 D.

Proof. Using Lemma 2.1, then we have

p(z) = p

�
1 +  (z)

1�  (z)
�
;

where  (z) = zn'(z) for all z in D. Taking logarithmic derivative we obtain,

p0(z)

p(z)
=

2 0(z)

1� ( 0(z))2
)

(2.5)

����p0(z)p(z)

���� = 2j 0(z)j
j1� ( 0(z))2j �

2j 0(z)j
1� j (z)2j :

On the other hand, �Let  (z) = d0+ dnz
n+ dn+1z

n+1+ � � � be analytic and bounded by

1 in D, then

(2.6) j 0(z)j � njzjn�1
1� jzj2n (1� j (z)j

2)

for z 2 D with equality holding only when

 (z) = "
zn + a

1 + azn
; j"j = 1; jaj < 1:

This theorem was proved by G.M.Golusin ([4]). Using this theorem in (2.5) then we

obtain ����z p0(z)p(z)

���� � 2nzn

1� jzj2n or Re

�
z
p0(z)

p(z)

�
� � 2nrn

1� r2n :

�

Lemma 2.2. If �(z) = zp + cnp+1z
np+1 + cnp+2z

np+2 + � � � be an element of K(p; n),
then

(2.7) Re

�
(1� zn) 2pn �

0(z)

zp�1

�
> 0

for every z in D.
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Proof. We consider the function

s(z) =

Z z

0

�p�1

(1� �n) 2pn
d� =

zp

p
2F1

�
p

n
;
2p

n
;
n+ p

n
; zn
�
;

where 2F1 is a Gauss hypergeometric function [1] and z in D. This function, s(z) is an

element of C(p; n): Indeed
s0(z) = zp�1(1� zn)�2pn )

(2.8)

�
1 + z

s00(z)

s0(z)

�
= p

1 + zn

1� zn (z 2 D):

Using the de�nition of class of K(p; n) we obtain

Re

�
�0(z)

s0(z)

�
= Re

�
(1� zn) 2pn �

0(z)

zp�1

�
> 0 (z 2 D):

�

Corollary 2.2. If we give the special values to p and n we obtain following inequal-

ities:

(i) for n = 1,

Re

�
(1� z)2p�

0(z)

zp�1

�
> 0 (z 2 D):

This result was obtained by T.Umezawa ([8]).

(ii) for n = 1; p = 1,

Re[(1� z)2�0(z)] > 0 (z 2 D):
This result was obtained by W. Kaplan ([7]).

Theorem 2.1. The radius of convexity of the family K(p; n) is less than the smallest

positive root of the equation

(2.9) Q(r) = pr2n � 2(p+ n)rn + p = 0

Proof. Since �(z) 2 K(p; n), then Re
h
(1� z)2p �0(z)

zp�1

i
> 0. So we have

(2.10) (1� zn) 2pn �
0

(z)

zp�1
= p(z);

where p(z) 2 P(p; n) for all z in D. If we take the logarithmic derivative from (2.10) we

get

1 + z
�00(z)

�0(z)
= p

1 + zn

1� zn + z
p0(z)

p(z)
;

thus we have

Re
h
1 + z

�00(z)

�0(z)

i
� min

jzj=r

�
Re

�
p
1 + zn

1� zn
��

+ min
jzj=r

p(z)2P(n;p)

Re

�
z
p0(z)

p(z)

�
:

Using Corollary 2.1 we obtain

(2.11) Re[1 + z
�
00

(z)

�0(z)
� p

1� rn
1 + rn

� 2nrn

1� r2n =
pr2n � 2(p+ n)rn + p

1� r2n :
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The denominator of the expression on the right-hand side in inequality (2.11) is positive

for 0 � r < 1, Q(0) = p, Q(1) = �2n < 0. Thus the smallest positive root r0 of the

equation Q(r) = pr2n � 2(p + n)rn + p lies between 0 and 1. Therefore the inequality

Re
�
1 + z �

00(z)
�0(z)

�
> 0 is valid for jzj = r < r0: Hence the radius of convexity for K(p; n) is

not less than r0. So we have

r0 =

 
p

(p+ n) +
p
n2 + 2pn

! 1

n

:

�

Remark 2.2. By giving special values to the above radius we obtain the following

equalities:

(i) for n = 1: r0 =
p

(p+ 1) +
p
1 + 2p

,

(ii) for p = 1: r0 =

�
1

(1 + n) +
p
n2 + 2n

� 1

n

;

(iii) for n = 1, p = 1: r0 =
1

2 +
p
3
:

Theorem 2.2. Let �(z) be an element of K(p; n), then

(2.12)
prp�1(1� rn)
(1 + rn)

2p

n
+1

� j�0(z)j � prp�1(1 + rn)

(1� rn) 2pn +1
(jzj = r < 1):

This inequality is sharp.

Proof. Using Lemma 2.1. and Lemma 2.2. we obtain

p(z) = p
1 +  (z)

1�  (z) ,  (z) =
p(z)� p
p(z) + p

=
(1� zn) 2pn �0(z)

zp�1
� p

(1� zn) 2pn �0(z)
zp�1

+ p
:

Since  (z) satis�es the conditions of Schwarz lemma, then we have����� (1� z
n)

2p

n
�0(z)
zp�1

� p
(1� zn) 2pn �0(z)

zp�1
+ p

����� � r ,
����(1� zn) 2pn �0(z)zp�1

� p
���� � r

����(1� zn) 2pn �0(z)zp�1
+ p

����
or

(2.13)

����(1� zn) 2pn �0(z)zp�1
� p(1 + r2n)

1� r2n
���� � 2prn

1� r2n :

After the simple calculations from (2.13) we get (2.12). This inequality is sharp because

the extremal function can be obtained in the following manner:

(1� zn) 2pn �
0(z)

zp�1
= p(z)) (1� zn) 2pn �

0(z)

zp�1
= p

1 + zn

1� zn :

�



242 ASENA ÇETINKAYA

3. An Application To The Harmonic Functions

Theorem 3.1. Let f = h(z) + g(z) be an element of S0H(p; n), then

(3.1)
prp�1(1� rn)
(1 + rn)

2p

n
+2

� jfzj � prp�1(1 + rn)

(1� rn) 2pn +2
;

and

(3.2)
jw(z)jprp�1(1� rn)

(1 + rn)
2p

n
+2

� jfzj � jw(z)jprp�1(1 + rn)

(1� rn) 2pn +2

for jzj = r < 1. These distortions are sharp.

Proof. Let f = h(z) + g(z) be an element of S0H(p; n), and let �(z) 2 K(p; n), if we take
�(z) = h(z)� g(z);

then we have

h0(z) =
�0(z)

1� w(z) and g0(z) = w(z)
�0(z)

1� w(z) ;

where w(z) is the second dilatation of f and satis�es the conditions of Schwarz's lemma.

Therefore we have

(3.3)
j�0(z)j

1 + jw(z)j � jfzj = jh0(z)j � j�0(z)j
1� jw(z)j

and

(3.4)
jw(z)jj�0(z)j
1 + jw(z)j � jfzj = jg0(z)j � jw(z)jj�0(z)j

1� jw(z)j :

Using Theorem 2.2 in the inequalities (3.3) and (3.4) we get (3.1) and (3.2). We also

note that these distortions are sharp because the extremal function can be found in the

following manner:

(1� zn) 2pn �
0(z)

zp�1
= p

1 + zn

1� zn ; (1� zn) 2pn �
0(z)

zp�1
= p

1� zn
1 + zn

(i.e, p(z) 2 P(p; n), then 1=p(z) 2 P(p; n)), so if we take a s�itable second dilatation

w(z), then

h(z) =

Z z

o

�0(�)

1� w(�)d�; g(z) =

Z z

o

�0(�)w(�)

1� w(�) d�:

Note that the solution of h(z) and g(z) must be found under the conditions h(0) = g(0) =

0. So we have

f = h(z) + g(z) =

Z z

o

�0(�)

1� w(�)d� +
Z z

o

�0(�)w(�)

1� w(�) d�

=

Z z

o

�0(�)

1� w(�)d� +
Z z

o

�0(�)

1� w(�)d� �
Z z

0

�0(z)d�

= Re

�Z z

o

2�0(�)

1� w(�)d�
�
� �(z):

�
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Corollary 3.1. Let f = h(z) + g(z) be an element of S0H(p; n), then

jf j � n

p

h
B

�
rn;

p

n
;�1� 2p

n

�
+ 2B

�
rn;

n+ p

n
;�1� 2p

n

�

+B

�
rn + 2 +

p

n
;�1� 2p

n

�i
;

(3.5)

where B
�
rn; p

n
;�1� 2p

n

�
, B

�
rn; n+p

n
;�1� 2p

n

�
, and B

�
rn + 2 + p

n
;�1� 2p

n

�
are beta

functions [1].

Proof. Using the below formula which can be �nd in [3],

(jfzj � jfzj)jdzj � jf j � (jfzj+ jfzj)dz
for all z 2 D we obtain

jf j �
Z r

o

p%p�1(1 + %n)

(1� %n) 2pn +2
d%+

Z r

o

p%p+n�1(1 + %n)

(1� %n) 2pn +2
d%:

After the simple calculations we get (3.5). �
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