ADV MATH Advances in Mathematics: Scientific Journal 4 (2015), no.2, 237-243
SCI JOURNAL  |SSN 1857-8365 UDC: 517.546.12

GROWTH AND DISTORTION THEOREMS FOR GENERALIZED
p-VALENT CLOSE-TO-CONVEX HARMONIC FUNCTIONS

ASENA GETINKAYA

Presented at the 11t* International Symposium
GEOMETRIC FUNCTION THEORY AND APPLICATIONS
24-27 August 2015, Ohrid, Republic of Macedonia

ABSTRACT. A harmonic function f in the unit open disc D = {z € C: |z| < 1} can
be written as a sum of an analytic and anti-analytic functions: f = h(z) + g(z); here,
h(z) and g(z) are analytic in D, and called the analytic part and co-analytic part of
f, respectively.

Growth (the bounds of the modulus of a function) theorems and distortion (the
bounds of the modulus of the derivative of a function) theorems play an important
role in the study of the geometric function theory, because this theorems give the
compactness of the corresponding classes.

In this paper we consider both of these cases with shear construction method for

the sense-preserving generalized p—valent harmonic mappings in the unit open disc
D.

1. INTRODUCTION

Let © be the family of functions ¢(z) regular in the open unit disc D and satisfy the
conditions ¢(0) = 0, |¢(z)| < 1 for all z € . Denote by P(p,n)(p > 1,n > 1) the family
of functions p(z) = p + Pnz™ + Pry12™ ! + Ppi22™t? + .- which are regular in ) and
satisfy the conditions p(0) = p, Rep(z) > 0 for every z € D.

Next, let A(p,n) be the class of all functions of the form s(z) = 2P + anpr12™ 1 +
Anpt+22™PT2 + .- which are analytic in . In particular, A(p,1) is the class of standard
p-valent analytic functions and A(1,n) is the class of all analytic functions for which the
first n coefficients are zero, and A(1, 1) is the class of all analytic functions in the standard
form. Let F(z) = z + as2? + a32® + -+ and G(2) = 2z + B22? + B32® + - - - be analytic
functions in D, if there exist ¢(z) € Q, such that F(z) = G(¢(z)) for all z € D, then we
say that F(z) is subordinate to G(z) and we write F < G. We also note that if FF < G,
then F(D) C G(D) ([6], [5])-
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Moreover, let s(z) be an element of A(p,n), if s(z) satisfies the condition Re(l +

z SSI,I((;))) > 0, then s(z) is called generalized p-valent convex function. The class of such
functions is denoted by C(p,n). Let ¢(z) be an element of A(p,n). If there exist a

function s(z) € C(p,n) such that Re(f,l((j))) > 0, then we say that ¢(z) is generalized

p-valent close-to-convex function. The class of such functions is denoted by K(p,n) (6],
51)-

Finally, generalized p-valent harmonic function f in the disc D has the representation
f = h(z) + g(2), where h(z) = 22 + anpr12™ ! + app22™+2 4. and g(2) = bppz™ +
bnp+12™PT 4 -+ are analytic in D, and called analytic part and co-analytic part of f,
respectively. If J;(z) = |h'(2)|>—|g'(2)|? > 0, then f is called sense-preserving generalized
p-valent harmonic function. The class of such functions is denoted by Sy (p,n) with
|bnp| < 1, and the class of sense-preserving generalized p-valent harmonic functions is
denoted by S%(p,n) with b,, = 0. We also note that w(z) = ¢'(z)/h'(2) is analytic
second dilatation of f and |w(z)| < 1 for every z € D ([5]).

In this paper we investigate some properties of the class (p,n) and give the growth
and distortion theorems for the class of sense-preserving generalized p-valent harmonic
mappings that are convex in the direction of real axis. The second part of this study
is based on the shear construction method for harmonic functions. We also note that
harmonic shear construction method is based on the following theorem of Clunie and
T.Sheil-Small. This theorem says that; A harmonic function f = h(z) + g(2), locally
univalent in D, is a univalent mapping of D onto a convex domain in the direction of the
real axis if and only if (h(2) — g(2)) is a conformal univalent mapping of D onto a convex

domain in the direction of the real axis [2].

2. MAIN RESULTS
Lemma 2.1. If p(z) € P(p,n), then

1+2"¢p(2)
2.1 =p————=
(2.1) p(z) =py o)’
where (z) is an analytic function in D and satisfies the condition |¢(2)| < 1 for
every z € .

Proof. Let p1(z) be the analytic satisfying the conditions Rep;(z) > 0 and p;(0) =1 in
D, then p;(z) can be written in the form

(2.2) p(z) = LT #1(2)

Cl-pa(2)
where ¢1(z) is analytic in D and also has n** zero at the origin. Hence ¢;(2) = 2™¢(2),
where ¢(z) satisfies the conditions of Schwarz’s lemma. Therefore p;(2z) can be written
in the form
2. ne) = o
On the other hand, we consider the function p(z) = pp1(z), this function is analytic and
satisfies the conditions p(0) = p, Rep(z) > 0 for every z € D. Using (2.3) we obtain

(2.1). 0
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Remark 2.1. We also note that using the subordination principle, we have

142"
p(z) € P(p,n) & pl2) <py—
. . 1+2" . ) .
and the tmage of |z| = r under the transformation w(z) = T the disc with
n 2r™
the center C(r) = (%,0) and radius p(r) = 1 _TTQn.
Corollary 2.1. Let p(z) be an element of P(p,n), then
/ 2 n
(2.4) Re [E2)) 5 _ 2
p(z) 1—r2n
for all z € D.
Proof. Using Lemma 2.1, then we have
1+ ¢(z)>
Pz)=p\ 77—/
=2 (150
where ¥(2) = 2"p(z) for all z in D. Taking logarithmic derivative we obtain,

pz)  29(2)
pz) 1-WEE

Ple)| _ 29l 2192

p(z) | 1= (4'(2))?] — 1-¥(2)?

On the other hand, “Let ¥(z) = dg + dn2™ + dn 12" ! + - - - be analytic and bounded by
1in D, then

(2.5)

1 n|z|n_1 2

(26) Ve < T (- WEP)
for z € I with equality holding only when
Z"+a

P(z) 51+azn7 le] » lal <

This theorem was proved by G.M.Golusin ([4]). Using this theorem in (2.5) then we
obtain

/ 2 n / 2 n
L (2) < _nz 5= or Re 22 (2) > — 1”‘271.
p(z) | = 1-|e p(z) l—r
O
Lemma 2.2. If ¢(2) = 2P + cnpt12™P T + Cppi22™ 2 + - be an element of K(p,n),
then
ny22 9'(2)

(2.7 Re <(1 —2z") el I 0

for every z in D.
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Proof. We consider the function

z p—1 P 2
S(Z):/ %dg:iQFI <p)p7wyzn> )
o - 2\ e

where 5 F; is a Gauss hypergeometric function [1] and z in . This function, s(z) is an
element of C(p,n). Indeed

s'(z2) = 2P71(1 - z")_TZP =
(2) 1427
2.8 1 D).
(2.8) (1+:58) =p1% e
Using the definition of class of K(p,

Re(£2)) =R () F28) >0 e,

Corollary 2.2. If we gwe the special values to p and n we obtain following inequal-
ites:

(i) forn =1,

we obtain

d

2p¢’( z)

Re((l z) )>0 (z € D).

This result was obtained by T.Umezawa ([8]).
(i) forn=1, p=1,

Re[(1— 27¢/(2)] >0 (z € D).
This result was obtained by W. Kaplan ([7]).

Theorem 2.1. The radius of convezity of the family K(p,n) s less than the smallest
positive root of the equation

(2.9) Q(r) =pr® —2(p+n)r" +p=0

Proof. Since ¢(z) € K(p,n), then Re [(1 —2)% ¢;,(_Zl) > 0. So we have

z

(2.10) (1—2m)+ fp(,zl) = p(2),

where p(z) € P(p,n) for all z in I. If we take the logarithmic derivative from (2.10) we
get

S

L@ e p(2)
TEeE) TP T

thus we have

] 2 (e (i) )+ e me(550).

p(2)€P(n,p)

Using Corollary 2.1 we obtain

"

¢(z)>p1—rn_ 2nr™ :p " —2(p+n)r® +p
(z) =" 14+r* 1-—r2n 1—r2n
¢'(z)

(2.11) Re[l+ 2z
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The denominator of the expression on the right-hand side in inequality (2.11) is positive
for 0 <r <1, Q0) =p, Q1) = —2n < 0. Thus the smallest positive root rg of the
equation Q(r) = pr2™ — 2(p + n)r™ + p lies between 0 and 1. Therefore the inequality
Re[l + zﬁl,l((j))] > 0 is valid for |z| = r < rg. Hence the radius of convexity for K(p, n) is
not less than rg. So we have

n

p

To =
(p+n)++/n%+2pn

O

Remark 2.2. By giving special values to the above radius we obtain the following
equalities:

p
(b+ 1)+ 1+ %’

(i) form=1: rg=

. L _ 1 »
(ii) forp=1: 1rg= ((1+n)+m> ,
1

T 2443
Theorem 2.2. Let ¢(z) be an element of K(p,n), then

(iii) forn=1,p=1: 7o

prf (1 —r")
(14 rn)5+1

prP (1 +r™)

(2.12) 1

<|¢'(2)] < (lz2] = r < 1).

Thas inequality is sharp.

Proof. Using Lemma 2.1. and Lemma 2.2. we obtain

_ it ¥() Cplz)-p (1-2m)FLE) _p
p(z) _p]_ —¢(Z) < 1//(2) - p(Z) +p - (1 _zn)%f;(_zl) —|_p

Since 1(z) satisfies the conditions of Schwarz lemma, then we have

Py ’
1 — zn 7”45(71)_ o & » @
Aot .
1—2n 721,7,1 +p 25 25
or
2 ¢'(2)  p(l+r") 2pr™
(2.13) ‘(1—2")71 o T <

After the simple calculations from (2.13) we get (2.12). This inequality is sharp because
the extremal function can be obtained in the following manner:

R E A G R SRR

= p .
zp—1 zp—1 1— 27
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3. AN APPLICATION T'0 THE HARMONIC FUNCTIONS

Theorem 3.1. Let f = h(z) + g(z) be an element of SY(p,n), then

prP~i(1 —r") prP=1(1 4 r™)
(3.1) REE <|fzl < 7( e
and
w1 =) ()14 r)
(3:2) (1+ Tn)%”—m <lIfl < (1- rn)%”—i-g

for |z| =r < 1. These distortions are sharp.
Proof. Let f = h(z) + g(z) be an element of S¥(p,n), and let ¢(z) € K(p,n), if we take
$(2) = h(z) — g(2),

then we have
/ /
Wy — 4 #2)
1—w(z2) 1—w(z)
where w(z) is the second dilatation of f and satisfies the conditions of Schwarz’s lemma.
Therefore we have

and ¢'(z) = w(z)

@)l 1) < 1@
(3.3) e S = PEl < T
and
(W@ iy < ( )¢ (2)]
(3'4) 14+ |w(z)| S |fz| - |g( )l |w( )|

Using Theorem 2.2 in the inequalities (3.3) and (3.4) we get (3.1) and (3.2). We also
note that these distortions are sharp because the extremal function can be found in the
following manner:

pd'(z)  1+2" p¢(z) 1-—2z0

— nn = — nn =
(=" o =p—m (=2 25 P

(i.e, p(2) € P(p,n), then 1/p(z) € P(p,n)), so if we take a sitable second dilatation
w(z), then

AR _ [P w()
h(z) = ) 1—71”(5)(167 9(z) = . mdf-

Note that the solution of h(z) and g(z) must be found under the conditions ~(0) = g(0) =
0. So we have

f=n@)+a = [ P [0
[ [ [ o
)
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Corollary 3.1. Let f = h(z) + g(z) be an element of S¥(p,n), then

2 2
f1< 2B (r",p,— —p) + 2B (r”,””,—l—p)
P n n n n
(3.5) )
+B<r"+2+p,—1—p)},
n n
where B(r",%,—l—%p), B(rn,"nj,— —27’7), and B(rn+2+%,—1— %p) are beta

functions [1].

Proof. Using the below formula which can be find in [3],
(Ifzl = 1fzDldz] < |F| < (If:] + [ fz])d=

for all z € D we obtain
T —1 1 + n T p+n—1 1 + n
|f|§/ p(gip (n)%ig)dé"f'/ p.Q(l 5)21:_5 )dQ
o — Q n o — g n
After the simple calculations we get (3.5). a
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