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DIAGRAMS
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Abstract. This article introduces strongly near smooth manifolds. The main results
are (i) second countability of the strongly hit and far-miss topology on a family B
of subsets on the Lodato proximity space of regular open sets to which singletons
are added, (ii) manifold strong proximity, (iii) strong proximity of charts in manifold
atlases implies that the charts have nonempty intersection. The application of these
results is given in terms of the nearness of atlases and charts of proximal manifolds
and what are known as Voronoï manifolds.

1. Introduction

This article carries forward recent work on strong proximities [28, 29, 30, 32] and their

applications [14, 25], which is a direct result of work on proximity [1, 2, 5, 6, 7, 9, 17, 20,

21, 22, 23, 27]. Applications of the results in this paper are given in terms of the atlases

and charts of proximal manifolds and what are known as Voronoï manifolds, which re�ect

recent work on manifolds [14, 24].

2. Preliminaries

The concept of strong proximity is characterized by a relation giving information

about pairs of sets that share points. Such proximities are not the usual proximities.

In fact, in the traditional sense, proximal sets do not always have points in common.

Actually, the name strong proximity signals a strong kind of nearness between sets with

points in common.

De�nition 2.1. Let X be a topological space, A;B;C � X and x 2 X. The relation
^̂

� on P (X) is a strong proximity, provided it satis�es the following axioms.

(N0) ;
^̂

6 � A;8A � X, and X
^̂

�A;8A � X
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(N1) A
^̂

�B , B
^̂

�A

(N2) A
^̂

�B ) A \B 6= ;

(N3) If fBigi2I is an arbitrary family of subsets of X and A
^̂

�Bi� for some i� 2 I

such that int(Bi�) 6= ;, then A
^̂

� (
S
i2I Bi)

(N4) intA \ intB 6= ; ) A
^̂

�B :

When we write A
^̂

�B, we read A is strongly near B. The notation A
^̂

6 � B reads A is

not strongly near B. For each strong proximity, we assume the following relations:

(N5) x 2 int(A)) x
^̂

�A

(N6) fxg
^̂

� fyg , x = y :

So, for example, if we take the strong proximity related to non-empty intersection of

interiors, we have that A
^̂

�B , intA\ intB 6= ; or either A or B is equal to X, provided

A and B are not singletons; if A = fxg, then x 2 int(B), and if B too is a singleton, then

x = y. It turns out that if A � X is an open set, then each point that belongs to A is

strongly near A.

Related to this new kind of nearness introduced in [30] which extends traditional

proximity (see, e.g., [20, 17, 18, 19, 23, 33]), we de�ned a new kind of hit-and-miss

hypertopology, [30, 31], which extends recent work on hypertopologies (see, e.g., [2, 3, 4,

8, 9, 10, 13, 15, 21]). The important thing to notice is that this work has its foundation

in geometry [15, 28, 29].

The strongly hit and far-miss topology � ^̂B associated to B has as subbase the sets

of the form:

(1) V ^̂ = fE 2 CL(X) : E
^̂

� V g, where V is an open subset of X,

(2) A++ = f E 2 CL(X) : E 6 �XnA g, where A is an open subset ofX andXnA 2 B.

In the de�nition of A++, � represents a Lodato proximity.

De�nition 2.2. Let X be a nonempty set. A Lodato proximity � is a relation on

P(X), which satis�es the following properties for all subsets A;B;C of X:

(P0) A � B ) B � A

(P1) A � B ) A 6= ; and B 6= ;

(P2) A \B 6= ; ) A � B

(P3) A � (B [ C), A � B or A � C

(P4) A � B and fbg � C for each b 2 B ) A � C

Further � is separated , if

(P5) fxg � fyg ) x = y :

A � B reads "A is near to B" and A 6 � B reads "A is far from B". Lodato proximity or

LO-proximity is one of the simplest proximities. We can associate a topology with the

space (X; �) by considering as closed sets those sets that coincide with their own closure

where. For a subset A, we have

clA = fx 2 X : x � Ag:
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Any proximity � on X induces a binary relation over the powerset exp X; usually denoted

as�� and named the natural strong inclusion associated with �, by declaring that A is

strongly included in B; A�� B, when A is far from the complement of B; A 6 � X nB:

In a recent paper [31], we looked at the Hausdor�ness of the hypertopology � ^̂B . Here,

the focus is on second countability.

Moreover, we want to point out the real possibility to use this concepts in applications.

For this reason we look at some kinds of descriptive strong proximities and strongly

proximal Voronoï regions.

3. Second Countability of Strong Proximity Topology

As for the Hausdor� property of � ^̂ , we concentrate our attention on the class of reg-

ular closed sets, RCL(X). Recall that a set F is regular closed if F = cl(intF ), that

is F coincides with the closure of its interior. A well-known fact is that regular closed

sets form a complete Boolean lattice [34]. Moreover there is a one-to-one correspondence

between regular open (RO(X)) and regular closed sets. We have a regular open set A

when A = int(clA), that is A is the interior of its closure. The correspondence between

the two mentioned classes is given by c : RO(X) ! RCL(X), where c(A) = cl(A), and

o : RCL(X) ! RO(X), where o(F ) = int(F ). By this correspondence it is possible to

prove that also the family of regular open sets is a complete Boolean lattice. Furthermore

it is shown that every complete Boolean lattice is isomorphic to the complete lattice of

regular open sets in a suitable topology.

The importance of these families is also due to the possibility of using them for digital

images processing, because they allow to satisfy certain common-sense physical require-

ments.

Consider now � ^̂B , the strongly hit and far-miss topology associated to a family

B of subsets of X, on the space of regular closed sets to which singletons are added,

RCL�(X) = RCL(X) [ ffxg : x 2 Xg:

� V ^̂ = fE 2 RCL�(X) : E
^̂

� V g, where V is a regular open subset of X,

� A++ = f E 2 RCL�(X) : E 6 � X n A g, where A is a regular open subset of X

and X n A 2 B.

The following theorem is a generalization of classical results holding for hit and miss

hypertopologies, [9, 38]. In [38], L. Zsilinszki considers spaces that are weakly R0, i.e.,

every nonempty di�erence of open sets contains a non-empty closed subset of X. We will

use an analogous property that holds for regular open and regular closed sets.

De�nition 3.1. We say that a topological space X endowed with a compatible Lodato

proximity � is regularly weakly R0, if and only if every nonempty di�erence of regular

open sets proximally contains a nonempty regular closed subset of X, that is

8A;B 2 RO(X);9C 2 RCL(X) : C �� (A nB):

By �(B) we indicate the set of all �nite unions of members of B.
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Theorem 3.1. Let X be a T1, regularly weakly R0 topological space, � a compatible

Lodato proximity on X, and
^̂

� a strong proximity on X. Then the following are

equivalent:

i) (RCL�(X); � ^̂B ) is second countable;

ii) X is second countable and there exists a countable subfamily B0 � B such

that for each B 2 B and A;B 2 RCL�(X) with A 6 �B, then B � D �� X nA

for some D 2 �(B0).

To prove Theorem 3.1, we need the following lemma.

Lemma 3.1. Let X be a T1 regularly weakly R0 space, U1; :::; Un, V1; :::; Vm (n;m 2 N)

regular open subsets of X, B and D regular closed sets belonging to �(B). Then the

following are equivalent:

a) U = (
Tn

i=1 Ui
^̂ ) \ (X nB)++ � V = (

Tm

j=1 Vi
^̂ ) \ (X nD)++

b) X nB � X nD and for each Vj there exists i 2 f1; ::; ng such that Ui\(X nB) �

Vj \ (X nD)

Proof. (a) ) (b) . Suppose A 2 U and (X n B) n (X n D) 6= ;. Being X regularly

weakly R0, there exists a regular closed set C strongly included in (X n B) n (X n D).

We want to prove that A [ C 2 U n V . A [ C belongs to
Tn

i=1 Ui
^̂ by property (N3)

of strong proximities; furthermore A and C are far from B because A 2 (X n B)++ and

C �� X nB. Moreover A[C 62 V because C � (X nB) n (X nD) means that C \D 6= ;.

Now we want to prove the second part of (b). Suppose, by contradiction, that there

exists j� 2 f1; :::;mg such that for all i 2 f1; ::; ng (Ui \ (X n B)) n (Vj� \ (X nD)) 6= ;.

We use again the property of being regularly weakly R0 for X and we have that there

exist regular closed subsets Ai �� (Ui \ (X n B)) n (Vj� \ (X n D)). We claim thatSn

i=1Ai 2 U n V . Observe that
Sn

i=1Ai 2 U because of property (N3) for strong

proximities and property (P3) for Lodato proximities. Instead,
Sn

i=1Ai 62 V because

Ai �� (Ui \ (X nB)) n (Vj� \ (X nD)) implies that Ai \ (Vj� \ (X nD)) = ; and, being

Ai � X nB � X nD, we have that Ai \ Vj� = ; for all i. So we have (
Sn

i=1Ai) \ V
�
j 6= ;

and by (N2) (
Sn

i=1Ai) 6
^̂

� V �
j .

(b)) (a). Suppose that A 2 U and A 2 RCL(X). We want to prove that A belongs

to V as well. Being A �� X n B � X n D, we have that A 6 � D. Moreover we have to

prove that A
^̂

� Vj for each j. By the hypothesis we know that there exists i such that

Ui \ (X nB) � Vj \ (X nD). So A\Ui � A\ Vj . But, if A
^̂

�Ui, then A\Ui 6= ;, and by

the regularity of A we have that int(A)\Ui 6= ;. Hence int(A)\ Vj 6= ; and by property

(N4) we have A
^̂

� Vj for all j. If A 2 U and A is a point of X, the implication is easy. �

Now we can prove Theorem 3.1.

Proof. (of thm. 3.1). i)) ii). First of all we want to prove that X is second countable.

By i) we know that there exist countable subfamilies O � RO(X) and B0 � B such that

f(
Tn

i=1A
^̂
i ) \ (X n B)++ : Ai 2 O; i 2 f1; ::; ng; n 2 N; X n B 2 O; B 2 �(B0)g is a

countable base for � ^̂B . We claim that fW \ (X n D) : W;X n D 2 O; D 2 �(B0)g is a

countable base for the topology on X. Take any open set V in X and suppose x 2 V .
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Choose D 2 B such that x 62 D. Then x 2 V ^̂ \ (X nD)++. So there exists an element

of the countable base for � ^̂B , (
Tn

i=1A
^̂
i ) \ (X n B)++, that contains x and is contained

in V ^̂ \ (X n D)++. By lemma 3.1 we have that there exists i� 2 f1; ::; ng such that

Ai� \ (X n B) � V \ (X nD). Hence x 2 Ai� \ (X n B) � V \ (X nD) and the second

countability is achieved.

Consider now B 2 B and B;K 2 RCL�(X) such that B 6 � K: So K 2 (X nB)++ and,

by (i), there exists an element of the countable base for � ^̂B , (
Tn

i=1A
^̂
i )\ (X nH)++, that

contains K and is contained in (X n B)++. Hence, by lemma 3.1, we have that B � H,

where H 2 �(B0). Finally we have B � H �� X nK, being K 2 (X nH)++.

ii)) i). Let T be a countable base for X. Take any open set in � ^̂B , U = (
T
i2I V

^̂
i )\

(X nC)++, where C 2 �(B). Suppose A 2 U , with A 2 RCL(X). Then, by axiom (N2),

we have A \ Vi 6= ; for all i 2 I and, being A regular, also int(A) \ Vi 6= ;. So, for each

i there exists xi 2 int(A) \ Vi and, being T a base, there exists Wk 2 T : xi 2 Wk � Vi,

where k runs in a countable set. Take the smallest regular open set containing Wk, Rk.

We have that xi 2 Rk � Vi because Vi, too, is a regular open set. On the other side,

by ii) we know that there exists D 2 �(B0) such that C � D �� X n A. Now let

Z = (
Tn

k=1R
^̂
k ) \ (X n D)++. We have that A 2 Z � U . We can repeat the same

procedure even if A is a singleton. �

4. Descriptive Strongly Proximal Connectedness

The concept of strong proximity easily �nds applications in several �elds. Here we

want to present, in particular, connections with descriptive proximities and Voronoï

regions. One of the main �elds of application for them is image processing.

The theory of descriptive nearness [26] is usually adopted when dealing with subsets

that share some common properties without being spatially close. We talk about non-

abstract points when points have locations and features that can be measured. The

mentioned theory is particularly relevant when we want to focus on some of these aspects.

For example, if we take a picture element x in a digital image, we can consider grey-level

intensity, colour, shape or texture of x. We can de�ne an n real valued probe function

� : X ! R
n, where �(x) = (�1(x); ::; �n(x)) and each �i represents the measurement of

a particular feature. So �(x) is a feature vector containing numbers representing feature

values extracted from x. �(x) is also called description of x.

Descriptive nearness is a powerful tool to shift our attention from nearness of sets in

a spatial sense to nearness of their features.

Example 4.1. Let X be a bi-dimensional space of picture points and � : X ! R
2 a

description on X de�ned by �(x) = ( color of x,gradientAngle in x), where in the �rst

entry we have a value for the color of the picture point x, while in the second entry

we have the image gradient angle calculated in x. It means that to each picture

point we can associate a bi-dimensional vector whose entries are represented by

axial derivatives of color functions, O(f) =

�
@f

@x
;
@f

@y

�
. Then we can calculate the

gradient angle by the formula � = arctan 2

�
@f

@x
;
@f

@y

�
.
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B
A C

X

Figure 1. A descriptively strongly near B

In [32], we introduced a new kind of connectedness related to strong proximities.

De�nition 4.1. Let X be a topological space and
^̂

� a strong proximity on X. We

say that X is
^̂

��connected if and only if X =
S
i2I Xi, where I is a countable subset

of N, Xi and int(Xi) are connected for each i 2 I, and Xi�1

^̂

�Xi for each i � 2 :

Remark 4.1. Strong nearness can be formulated in descriptive terms. Let X be a

set, � a description that maps X to Rn,
^̂

� a strong proximity on Rn endowed with

the Euclidean topology, if no speci�c topology is speci�ed. We say that two subsets

A;B are descriptively strongly near, and we write

A
^̂

�
�
B; if and only if �(A)

^̂

� �(B): (descriptive strongly near) :

Example 4.2. Let X be a space of picture points represented in Fig. 1. with red,

green or blue colors and let � : X ! R a description on X representing the color of a

picture point, where 0 stands for red (r), 1 for green (g) and 2 for blue (b). Suppose

the range is endowed with the topology given by � = f;; fr; gg; fr; g; bgg. Observe

that, choosing such a topology, we pay attention on red and green. Next consider

the following strong proximity : A
^̂

�B , intA \ intB 6= ;, provided A and B are not

singletons; if A = fxg, then x 2 int(B), and if B too is a singleton, then x = y.

Then A
^̂

��B because �(A) = fg; rg = int(�(A)) and �(B) = fr; g; bg = int(�(B)).

Instead B 6
^̂

��C because �(C) = fr; bg and int(�(C)) = ; :

A
B C

X

Figure 2. �(A) descriptively strongly near �(C)
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De�nition 4.2. Let X be a topological space and
^̂

� a strong proximity on X. We

say that X is descriptively
^̂

��connected if and only if X =
S
i2I Xi, where I is a

countable subset of N, �(Xi) and �(int(Xi)) are connected in the topology on R
N

for each i 2 I, and Xi�1

^̂

�
�
Xi for each i � 2 :

Example 4.3. Let X be a space of picture points with red, green or blue colors

represented in Fig. 2. Take �; � and
^̂

� as in example 4.2. The space X = A[B[C

is descriptively
^̂

��connected. In fact �(A) = fgg, int(�(A)) = ;, �(C) = fr; g; bg =

int(�(C)), �(B) = frg, int(�(B)) = ; and they are all connected in � . Furthermore

�(A)
^̂

��(C) and �(C)
^̂

��(B) :

π

4

Pi

ai

1

ai
na
i
n

APi
= ]0, π

4
]

Pi+1

ai+1

1

ai+1
n

APi+1
= [π

4
, π

2
]

M

Figure 3. APn�1 strongly near APn for each n � 2

Example 4.4. Curves Manifold.
Let M be a manifold represented in Fig. 3. For each point Pi in M consider a

family of curves f�ik : k 2 Kig and �x a speci�c curve �i1 as reference curve. Take

�if1;kg as the angle between the curves �i1 and �ik; APi = f�if1;kg : k 2 Ki n f1gg. We

can talk about descriptive strong connectedness for family of curves. In this case,

our space X is represented by all the curves for all the points of M . Our description

maps each curve �ik, for k 6= 1, in �if1;kg, and �
i
1 in some of the already found values

among �if1;kg with k 6= 1 . In particular, we have that the set of all the curves is

descriptively
^̂

��connected if we can �nd a countable subfamily of points Pn such

that APn is connected and APn�1

^̂

�APn for each n � 2. To better understand look at

�gure. We have APi =]0; �4 ] and APi+1 = [�4 ;
�
2 ]. They are connected and, if we take

A
^̂

�B , A\B 6= ;, they are also strongly near. It means that, �xed �i1 and �
i+1
1 there

is at least one curve through Pi and one through Pi+1 such that they form the same

angle with �i1 and �i+11 respectively. We could require more choosing a stronger

strong proximity. In the previous way we obtained a sort of angle connectedness for

families of curves.
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5. Proximal and strongly proximal manifolds

Suppose that M is a topological space. M is a manifold of dimension n, provided it is

Hausdor�, second countable and locally Euclidean of dimension n so that each point p in

M has a neighbourhood U that is homeomorphic to an open set in Rn. Let ' : U �! R
n

be a homeomorphism on the image. A chart on M is a pair (U;'). When the meaning

is clear from the context, we write chart U instead of (U;'). An atlas A for manifold M

is a collection of charts whose domain covers M . Given a pair of charts (U;'); (V;  ), the

composite map  � '�1 : '(U \ V ) �!  (U \ V ) is called a transition map from ' to  .

A pair of charts is smoothly compatible, provided U \ V 6= ; and the transition map

 � '�1 is a C1�di�eomorphism on '(U \ V ). An atlas A is smoothly compatible,

provided any pair of charts in A is smoothly compatible [16, �1, p. 12]. By replacing the

requirement that charts be smoothly compatible with the weaker requirement that each

transition map  �'�1 and its inverse are Cr�di�erentiable, M is called a Cr�manifold.

Suppose that M is an n�dimensional Cr�manifold. We can endow it with a proximity

that is strictly connected with its structure. For example, if A = f(Ui; �i) : i 2 Ig is an

atlas on M , we can de�ne a proximity on A�A in the following way:

Ui � Uj
,

9C � Ui; D � Uj f : �i(C)! �j(D),

such that f is Cr�di�eomorphism.

Theorem 5.1. The relation � is a proximity on A�A.

Proof. 1) We have that ; 6 � Ui; 8Ui 2 A because ; is not a domain for any chart. 2)

Symmetry is obvious. 3) Ui \ Uj 6= ; ) Ui � Uj , since we can consider the transition

maps on Ui \ Uj . 4) We want to show that if Uj [ Uk = Uh 2 A; Ui�(Uj [ Uk) ,

Ui � Uj or Ui � Uk.
4)
(: Suppose that Ui � Uj . So there exist C � Ui; D � Uj f : �i(C) ! �j(D) s.t. f is a

Cr�di�eomorphism. But, being D � Uj [ Uk, we have also g : �j(D)! �h(D) that is a

Cr�di�eomorphism. Hence, by composing f and g we obtain Ui � (Uj \ Uk).
4)
): Suppose Ui � (Uj[Uk). Then there exist C � Ui; E � Uh = Uj[Uk f : �i(C)! �h(E)

such that f is a Cr-di�eomorphism. We can assume that E \ Uj 6= ;. So we have a

transition map g : �h(E \ Uj) ! �j(E \ Uj) that is a C
r�di�eomorphism. Now we can

take the restriction of f , f�, that is an homeomorphism onto �h(E \ Uj). By composing

f� and g we obtain the desired result. �

On a manifold, it is possible to de�ne also a stronger kind of proximity,called a man-

ifold strong proximity. As before, take an atlas A = f(Ui; �i) : i 2 Ig.

De�nition 5.1. Let
^̂

�A be a relation on A�A. It is called manifold strong proximity,

if the following axioms hold:

(M0) ; 6
^̂

�AUi8i 2 I,

(M1) Ui
^̂

�AUj , Uj
^̂

�AUi 8i; j 2 I

(M2) Ui
^̂

�AUi ) �i(Ui) \ �j(Uj) 6= ;,
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(M3) If fUhgh2H�I is an arbitrary family of domains in A and Ui
^̂

�AUj for some

j 2 H n fig � I, then Ui
^̂

�A
S
h2Hnfig Uh.

(M4) int(�i(Ui)) \ int(�j(Uj)) 6= ; ) Ui
^̂

�AUj

De�ne the following relation on A�A:

Ui
^̂

�A Uj , �i(Ui) \ �j(Uj) 6= ;:

That is, chart Ui is strongly near chart Uj , if and only if the chart descriptions �i(Ui)\

�j(Uj) have nonempty intersection. Moreover, if Uj [ Uk is not a domain in A, de�ne

Ui
^̂

�A(Uj [ Uk), �i(Ui) \ (�j(Uj) [ �k(Uk)) 6= ;. (�)

Theorem 5.2. The relation
^̂

�A is a manifold strong proximity on A�A, if Ui [Uj
is not a domain in A for all i and j with i 6= j.

Proof. M0) That ; 6
^̂

�AUi for each i 2 I is straightforward. M1) Symmetry is obvious.

M2) The descriptive form of A�B ) A \ B 6= ; holds by de�nition. M3) This holds

because we know that Ui [Uj is not a domain in A for all i and j with i 6= j. So we refer

to (�). M4) This holds is easily seen. �

In terms of the proximity relation � onA�A from Theorem 5.1, we obtain the following

result.

Theorem 5.3. Let Ui; Uj 2 A be charts in manifold atlas A. Ui
^̂

�A Uj ) Ui � Uj.

Proof. If the intersection �i(Ui) \ �j(Uj) is non-empty, we can take that part of Ui that

is mapped in �i(Ui)\�j(Uj), and the same with Uj . On the intersection we can take the

identity map that is obviously a Cr�di�eomorphism. �

Remark 5.1. Observe that is particularly interesting to see that a manifold is de-

scriptively
^̂

�A�connected if we have on it an atlas composed by a countable number

of connected domains such that �i(Ui) \ �i+1(Ui+1) 6= ;; 8i 2 I.

Example 5.1. A simple example of descriptively
^̂

�A�connected manifold is S1 with

the stereographic projection atlas. In fact in this case we have two charts:

�1 : S
1 n fNg ! R, �1(x; y) =

1

1� y
,

�2 : S
1 n fSg ! R, �2(x; y) =

1

1 + y
,

where N � (0; 1) is the north, and S � (0;�1) is the south. We have that the domain

are homeomorphic to the whole R, so �1(S
1 n fNg) \ �2(S

1 n fSg) 6= ;.
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p

Vp

Figure 4. Vp = Intersection of closed half-planes

6. Strongly proximal Voronoï regions

A Voronoï diagram represents a tessellation of the plane by convex polygons. It is

generated by n site points and each polygon contains exactly one of these points. In each

region there are points that are closer to its generating point than to any other. Voronoï

diagrams were introduced by René Descartes (1667) looking at the in�uence regions of

stars. They were studied also by Dirichlet (1850) and Voronoï (1907), who extended the

study to higher dimensions.

To construct a Voronoï diagram, we have to start from a �nite number of points.

Consider a set S of n points in a �nite-dimensional normed vector space (X; k�k). We

call S the generating set. The Voronoï diagram based on S is constructed by taking for

each point of S the intersection of suitable half planes. Take p 2 S and let Hpq be the

closed half plane of points at least as close to p as to q 2 S n fpg given by

Hpq = fx 2 X : kx� pk � kx� qkg:

The intersection of all the half planes for q 2 S n fpg gives the Voronoï region Vp of p:

Vp =
\

q2Snfpg

Hpq:

Voronoï regions are named after the Ukrainian mathematician Georgy Voronoï [35, 36, 37].

The simplifying notation V (p) is sometimes used instead of Vp, when p is an expression

such as ai for an indexed site.

Lemma 6.1. [12, �2.1, p. 9] The intersection of convex sets is convex.

Proof. Let A;B � R2 be convex sets and let K = A\B. For every pair points x; y 2 K,

the line segment xy connecting x and y belongs to K, since this property holds for all

points in A and B. Hence, K is convex. �

Since a Voronoï region is the intersection of closed half planes, each Voronoï region

is a closed convex polygon (see, e.g., Fig. 4).

Remark 6.1. The Voronoï region Vp depicted as the intersection of �nitely many closed

half planes in Fig. 4 is a variation of the representation of a Voronoï region in the mono-

graph by H. Edelsbrunner [12, �2.1, p. 10], where each half plane is de�ned by its outward
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directed normal vector. The rays from p and perpendicular to the sides of Vp are com-

parable to the lines leading from the center of the convex polygon in G.L. Dirichlet's

drawing [11, �3, p. 216].

We want to de�ne a strong proximity acting on Voronoï regions. We say that two

Voronoï regions are strongly near, and we write Vp
^̂

� Vq, if and only if they share more

than one point.

Theorem 6.1. Let (X; k�k) be a �nite-dimensional normed vector space and S a

collection of points in X. The relation de�ned by saying Vp
^̂

� Vq if and only if Vp and

Vq share more than one point is a strong proximity on V (S), the class of Voronoï

regions generated by S.

Proof. Axioms N0) through N3) are easily veri�ed. Axiom N4) holds, since the inter-

section of the interiors is always empty. That is,

Vp
^̂

6 � Vq ) intVp \ intVq = ;; Vp 6= Vq:

Axiom N5) � N6) hold because there are no points in common among the interiors of

the Voronoï regions. �

Theorem 6.1 is illustrated in Example 6.1.

a4

a1
a5

a8

a2 a3

a7a6

V (a4)
⩕

δ V (a2) and V (a4)
⩕

/δ V (a5)

Figure 5. Voronoï Regions Vai ; i 2 f1; 2; 3; 4; 5; 6; 7; 8g

Example 6.1. Let X be a space covered with a Voronoï diagram V (S), S, a set of

sites. A partial view of V (S) is shown in Fig. 5, where

Vai 2 V (S); i 2 f1; 2; 3; 4; 5; 6; 7; 8g :

From Theorem 6.1, observe that

Va4
^̂

� Va2 ; Va4
^̂

� Va6 and Va4
^̂

6 � Va5 ; Va2
^̂

6 � Va5 ; Va6
^̂

6 � Va5 ;

since fVa2 ; Va4g ; fVa4 ; Va6g have a common edge. Further, Va2 ; Va4 ; Va6 are not strongly

near Va5 . Va2 ; Va4 ; Va6 share only one point with Va5 . Similarly,

Va5
^̂

� Va3 ; Va5
^̂

� Va7 ; Va5
^̂

� Va8 ;
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since, taken pairwise, these Voronoï regions have a common edge. There are also

Voronoï regions in Fig. 5 that are near but not strongly near, e.g., Va3
^̂

6 � Va6 ;

Va7
^̂

6 � Va2 :

From Theorem 6.1, we can de�ne a strongly hit and miss hypertopology, � ^̂ , on the

space of Voronoï regions generated by S, V (S), to which we add the empty set, [30]. The

hypertopology � ^̂ has as subbase the elements of the following form:

� int(Vp)
^̂ = fVq 2 V (S) : Vq

^̂

� int(Vp)g = fVq 2 V (S) : Vq
^̂

� Vpg,

� V +
s = fVq 2 V (S) : Vq \ Vs = ;g,

where Voronoï regions Vp; Vs 2 V (S).

Theorem 6.2. Let (X; k�k) be a �nite-dimensional normed vector space and S a

collection of points in X. For any p 2 S let faigi2I the family of points in S such

that Vai
^̂

� Vp, and fbjgj2J the family of points in S such that Vbj \ Vp = ;. Then

A = (
Tn

i=1 int(Vai)
^̂ ) \ (

Tm

j=1 V
+
bj
) is the smallest open set in � ^̂ containing Vp.

Proof. Suppose that B is an open set in � ^̂ such that Vp 2 B � A . Then B =

A \ (
Tr

k=1 int(Vck)
^̂ ) \ (

Ts

h=1 V
+
dh
), where c1; ::; cr; d1; ::; ds 2 S. It means that Vp

^̂

� Vck
for each k = 1; ::; r and Vp \ Vdh = ; for each h = 1; ::; s. So, by the hypothesis, we have

that each ck has to coincide with some point in faigi2I and each dh has to coincide with

some point in fbjgj2J . That is B = A . �

a4

a1
a5

a8

a2

a11

a3

a10

a7

a9

a6

a12

V (a4)
⩕

δ V (a2) and V (a4)
⩕

/δ V (a5)

Figure 6. Smallest open set containing Voronï region of a4

Example 6.2. Consider the situation in Fig. 6. Take, for example, the Voronoï

region Va4 . The smallest open set in � ^̂ containing Va4 is given by

A = (
\

i=1;2;4;6

int(Vai)
^̂ ) \ (

\
q=8;9;10

V +
q ) :

Theorem 6.3. Let (X; k�k) be a �nite-dimensional normed vector space and S a

collection of points in X. If p 2 S and A is the smallest open set containing Vp,

then A cannot contain any other region in V (S).
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ai

a3

a1

a9

a8
a2

a7

a6

a5

p

a4

Figure 7. Voronoï diagram with respect to Theorem 6.3

Proof. Let A be A = (
Tn

i=1 int(Vai)
^̂ )\ (

Tm

j=1 V
+
bj
) and suppose it is the smallest open

set containing the Voronoï region, Vp, of a point p . If there is another region Vq 2 A ,

then Vq
^̂

� Vai for all i = 1; ::; n. Suppose Vai are indexed in such a way that each Vai has

non-empty intersection with the next one Vai+1 for i = 1; ::; n� 1, and Vn has non-empty

intersection with Va1 . This is possible because they de�ne Vp. Consider now Va1 and

Va2 . Since Vp is convex, Va1 and Va2 have to form a convex angle, and because also Va1
and Va2 are convex, they can intersect at most in an edge. But also Vq is convex and

it is delimited by Va1 and Va2 . So either Vq has the same convex angle as Vp, or it can

have a di�erent convex angle situated on the opposite side, that is outside Hpa1 \Hpa2 ,

intersection of half planes (see, e.g., Fig. 7). Suppose it is veri�ed this last situation

holds. We know also that Va3 delimits Vq. By the last supposition it would mean that

we should take the convex angle formed by Va2 and Va3 situated outside Hpa2 \Hpa3 . By

continuing in this way for all the points a1; ::; an we obtain an absurdity by the convexity

of all regions. So we have to consider necessarily the same convex angles as Vp and we

obtain that Vq = Vp. �

7. Proximal Voronoï Manifolds, Atlases and Charts

LetM be a manifold, that is a topological space which is Hausdor�, second countable,

locally Euclidean of dimension n. This means that for each point there is a neighbourhood

U of M with a homeomorphism ' : U �! Û = '(U) � R
n. M is a Voronoï manifold,

provided '(U) is a Voronoï diagram. The pair (U;') is called a Voronoï chart on M.

The collection A of all Voronoï charts on M is called a Voronoï atlas.

Let M1;M2 be Voronoï manifolds and let S1 � M1; S2 � M2 be nhbds of points in

M1 andM2 respectively, '; homeomorphisms from S1; S2 to subsets '(S1);  (S2) � R
n

such that cl('(S1)); cl( (S2)) are Voronoï diagrams. From what has been observed about

manifolds, we make the following observations. De�ne

M1

^̂

� M2 , 9(S1; '); (S2;  ) : cl('(S1))
^̂

� cl( (S2)) in the sense of thm. 6.1:
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Example 7.1. Let M1;M2 be Voronoï manifolds in the plane. From Fig. 7, let

M1 = the portion of the plane containing the regions associated with a1; a3; a4; a5; p

M2 = the portion of the plane containing the regions associated with a2; a6; a7; a8; a9

S1 = the interior of the portion of the plane containing the regions associated with p; a1

S2 = the interior of the portion of the plane containing the regions associated with a2; a8

cl('(S1)) = V (S1) (Voronoï diagram); Vp 2 V (S1):

cl( (S2)) = V (S2) (Voronoï diagram); Va2 2 V (S1):

In this simple case, the homeomorphisms correspond to the identity map. In Fig. 7,

V (S1);V (S2) share the edge between Voronoï regions Vp and Va2 . Hence, cl('(S1))
^̂

� cl( (S2)).

So M1

^̂

� M2.

In terms of descriptively near manifolds M1;M2; S1 � M1; S2 � M2 with corre-

sponding descriptively near charts (S1; '); (S2;  ), we have

M1

^̂

�
�
M2 , 9(S1; '); (S2;  ) : '(S1)

^̂

�
�
 (S2); in the sense of page 96

where � :M1 [M2 ! R
n :

Example 7.2. Continuing Example 7.1, assume

x 2 '(S1); y 2  (S2):

�(x) = (colour of x; �x gradient angle); feature vector for x:

�(y) = (colour of y; �y gradient angle); feature vector for y:

Assume x; y have matching feature vectors, then

M1

^̂

�
�
M2 , 9(S1; '); (S2;  ) : �('(S1))

^̂

� �( (S2)) :

Let A1 = f(Ui; 'i) : i 2 N
+g ;A2 = f(Vj ;  j) : j 2 N

+g be atlases on smooth manifolds

M1;M2, respectively, Ûi = 'i(Ui); V̂j =  j(Vj), and de�ne the descriptive intersection

of the disjoint charts by

Ûi \
�;Â

V̂j =
n
x 2 Ûi [ V̂j : �(x) 2 �(Ûi); �(x) 2 �(V̂j)

o
:

Then de�ne the relation
^̂

�
Â;�

on A1 �A2 by

Ui
^̂

�
Â;�

Vj , Ûi \
�;Â

Ûj 6= ;:

Theorem 7.1. Let A1 = f(Ui; 'i) : i 2 N
+g ;A2 = f(Vj ;  j) : j 2 N

+g be atlases on

smooth manifolds M1;M2, respectively. Then

(1) Ûi
^̂

�
�
V̂j ) Ui

^̂

�
Â;�

Vj

(2) M1

^̂

�
�
M2 ) 9(Ui; 'i) 2 A1; (Vj ;  j) 2 A2 : Ui

^̂

�
Â;�

Vj
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Proof. (1): Suppose Ûi
^̂

�
�
V̂j . By de�nition of descriptive strong nearness (Remark 4.1),

we have �(Ûi)
^̂

��(V̂j). So �(Ûi) \ �(V̂j) 6= ;. This means that Ûi \
�;Â

V̂j 6= ;. Hence

Ui
^̂

�
Â;�

Vj .

(2): We know thatM1

^̂

�
�
M2 . So there exist (Ui; 'i) 2 A1; (Vj ;  j) 2 A2 : '(Ui)

^̂

�
�
 (Vj).

Hence, from (1), we have that there exist (Ui; 'i) 2 A1; (Vj ;  j) 2 A2 such that Ui
^̂

�
Â;�

Vj .

�

Remark 7.1. Observe that the converse of (1) is not in general true. In fact,

we could have �(Ûi) \ �(V̂j) 6= ; but �(Ûi) 6
^̂

��(V̂j): This would mean Ui
^̂

�
Â;�

Vj but

Ûi
^̂

6 �
�
V̂j.
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