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DIFFERENTIAL MONOMIALS AND THEIR MEASURE OF
GROWTHS FROM THE VIEW POINT OF RELATIVE WEAK TYPE

SANJIB KUMAR DATTA!, TANMAY BISWAS AND SARMILA BHATTACHARYYA

ABSTRACT. In this paper we explore on some comparative growth properties of com-
posite entire and meromorphic functions on the basis of relative weak type of differen-
tial monomials generated by transcendental entire and transcendental meromorphic
functions.

1. INTRODUCTION

Let f be an entire function defined in the open complex plane C. The function
My (r) on |z| = r known as maximum modulus function corresponding to f is defined as
follows:

max

M (r) |f (2)]-

- |z| =7

When f is meromorphic, My (r) can not be defined as f is not analytic. In this situation
one may define another function T (r) known as Nevanlinna’s characteristic function of
f, playing the same role as My (r) in the following manner:

Tf(r) = Ng(r)+mys(r) .

Ty (r)
Ty (r)

of f with respect to g in terms of their Nevanlinna’s characteristic function. When f is
entire function, the Nevanlinna’s characteristic function Ty (r) of f is defined as

Ty (r) =my(r) .

If given two meromorphic functions f and g the ratio as r — oo is called the growth

We called the function Ny (r,a) (]\7f (r, a)) as counting function of a-points (distinct

a-points) of f. In many occasions Ny (r,00) and ]\7f (r,c0) are denoted by Ny (r) and
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Ny (r) respectively. We put
T

t — —
Ny (r,a) :/nf( ) ; s (O’G)dt+nf (0,a)logr ,

0

where we denote by n (r,a) (n} (r,a)) the number of a-points (distinct a-points) of f
in |z| < r and an oo -point is a pole of f . Also we denote by ns—1(r,a) ,the number of
simple zeros of f —a in |z| < r. Next, Ny|—1(r, a) is defined in terms of ny_1(r,a) in the
usual way and we set, see [9]

ey . N(rya; f1=1)

61(a; f) =1 11&231) T, (r)

the deficiency of ‘a’ corresponding to the simple a- points of f 1,e. simple zeros of f — a.
In this connection Yang [8] proved that there exists at most a denumerable number of
complex numbers a € CU {oo} for which

81(a; f) > 0 and Z 81(a; f) < 4.

acCU{c0}

)

On the other hand, m (r, fia) is denoted by my (r, a) and we mean my (r, 00) by my (r) ,

which is called the proximity function of f. We also put
27

1

mys(r) = g/long |f (rei9)|d9,
0

where log"” z = max (log z,0) for all z > 0 .

Further a meromorphic function b = b(z) is called small with respect to f if it holds

Ty (r) = Sy (r) where Sy (r) = o{Ts(r)} ie, i; E:; — 0 as r — o0. Moreover for

any transcendental meromorphic function f , we call P[f] = bf"°(f(1))"1...(f(’“))"’c7 to
k

be a differential monomial generated by it where Zni >1(aln;|2=0,1,..k are

1=0
non-negative integers) and the meromorphic function b is small with respect to f. In this
k k
connection the numbers yp[s] = Z n; and I'pjs = Z(z + 1)n; are called the degree and
i=0 i=0

weight of P[f] respectively, see [1].

The order of a meromorphic function f which is generally used in computational
purpose is defined in terms of the growth of f with respect to the exponential function
as

pr= limsupM = limsupM = limsupM .
r—oo 108 Texp 2 (T) rooo log (L) rooo log (r) +O(1)

Lahiri and Banerjee [6] introduced the definitions of relative order and relative lower
order of a meromorphic function with respect to an entire function to avoid comparing
growth just with exp z. To compare the relative growth of two meromorphic functions
having same non zero finite relative lower order with respect to another entire func-

tion, Datta and Biswas [3] introduced the notion of relative weak type of meromorphic
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functions with respect to an entire function. Extending these notions of relative weak
type as cited in the reference, Datta, Biswas and Bhattacharyya [4] gave the definition
of relative weak type of differential monomsials generated by entire and meromorphic
functions.

For entire and meromorphic functions, the notion of their growth indicators such as
order, lower order and weak type are classical in complex analysis and during the
past decades, several researchers have already been continuing their studies in the area of
comparative growth properties of composite entire and meromorphic functions in different
directions using the same. But at that time, the concept of relative order ( respectively
relative lower order) and consequently relative weak type of entire and meromorphic
functions with respect to another entire function was mostly unknown to complex analysts
and they are not aware of the technical advantages of using the relative growth indicators
of the functions. Therefore the growth of composite entire and meromorphic functions
needs to be modified on the basis of their relative order ( respectively relative lower
order) and relative weak type some of which has been explored in this paper. Actually
in this paper we establish some newly developed results based on the growth properties of
relative weak type of monomaials generated by transcendental entire and transcendental
meromorphic functions.

2. NOTATION AND PRELIMINARY REMARKS

We use the standard notations and definitions of the theory of entire and meromorphic
functions which are available in [5] and [7]. Henceforth, we do not explain those in details.
Now we just recall some definitions which will be needed in the sequel.

Definition 2.1. The order py and lower order Ay of a meromorphic function f are
defined as

log T log T
pF = limsupm and Ay = liminfw .
r—00 logr r—00 ogr
To determine the relative growth of two meromorphic functions having same non zero
finite lower order, Datta and Jha [2] introduced the definition of weak type of a mero-
morphic function of finite positive lower order in the following way:

Definition 2.2. [2] The weak type 7 of a meromorphic function f of finite positive
lower order \s is defined by
.. T ()
= limint =5
Simalarly, one can define the growth indicator T¢ of a meromorphic function f of
finite positive lower order Af as

Ty (1)

T¢ = limsup Y

T— 00
Given a non-constant entire function f defined in the open complex plane C, its Nevan-
linna’s characteristic function is strictly increasing and continuous. Hence there exists its
inverse function T, * : (T (0),00) — (0,00) with lim T, (s) = co.
5— 00
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Lahiri and Banerjee [6] introduced the definition of relative order of a meromorphic
function f with respect to an entire function g , denoted by p, (f) as follows:

pe(f) = inf{u>0:T;(r) <Ty(r*) for all sufficiently large 7}
. log T, ' Ty (r)
= limsup————.
r—00 10g r
The definition coincides with the classical one [6] if g (z) = expz. Similarly, one can

define the relative lower order of a meromorphic function f with respect to an entire g
denoted by A, (f) in the following manner :

-1
Ag(f) = liminfM .
T—00 ogr

In the case of relative order, it therefore seems reasonable to define suitably the relative
weak type of a meromorphic function with respect to an entire function to determine the
relative growth of two meromorphic functions having same non zero finite relative lower
order with respect to an entire function. Datta and Biswas [3] gave such definitions of
relative weak type of a meromorphic function f with respect to an entire function g which
are as follows:

Definition 2.3. [3] The relative weak type 7,(f) of a meromorphic function f with
respect to an entire function g with finite positive relative lower order A, (f) is
defined by

T (r

() = tmint

In a similar manner, one can define the growth indicator T4 (f) of a meromorphic
function f with respect to an entire function g with finite positive relative lower
order Ay (f) as

_ ) T1Ty ()
T4 (f) = hmsup%.

T—00

Definition 2.4. [1] P[f] is said to be admissible if
(1) P[f] s homogeneous, or
(i2) P[f] is non homogeneous and m (r,f) = S (r, f).

3. SOME EXAMPLES

In this section we present some examples in connection with definitions given in the
previous section.

Example 3.1 (Order (lower order)). Given any natural number n, let f(z) = exp z™.
Then My (r) = expr™. Therefore putting R = 2 in the inequality Ty (r) < log My (r) <

R 1 n
R+:Tf (R) , (see [5]) we get that Ty (r) <r™ and Ty (r) > 3 (g) . Hence

logT log T
pr = limsupm =n and )‘f = hmmef(r) =n
r—00 logr 00 logr
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expr

Further if we take g = expl® z, then Ty (r) ~ - (r — o0). Therefore
(273r)2
Pf = )\f =0 .
Example 3.2 (Weak type). Let f = expz. Then Tj(r) = 1, and py =1. So
T
T z T z 1
7¢ = lim inf 1 (r) =T =— and T;=Ilimsup f}\(r) =T =—.

r—oo S row rooo TN roow

2

— , then one can easily verify that
1 —exp(22)

Further, 1f we consider g =

_ 2
Tg=Tg=— .
g 9T 7

Example 3.3 (Relative order (relative lower order)). Suppose f = g = expl? 2 then
expr

Te(r)=Tg(r) ~ - (r — 00). Now we obtain that
(2m3r)?
Ty(r) < logMg(r) <3Ty(2r) (see[5])
te,Tg(r) < expr <37T,(2r) .
Therefore
T, Ty (r) > log | —2'
(2m3r)2
log T, 1T
ieliming 28T T (Mo
T—00 logr
and
T, T (r) < 2log | 0P
(2m3r)2
log T, 1T
i.e.,limsupw 1.
oo logr
Hence

po(f)=2g(f)=1.

Example 3.4 (Relative weak type). Suppose f = g = expz. Then T (r) = T, (r) =
T _1 1 /(T
Texpz (7‘) = ; and Tg Tf (7‘) = Tg (;) =7 .

So
.. 1OgT_1Tf (7’)
Ag (f) = lgnig}fiT =1.
Therefore
T, Ty (r TAT; (r
7y (f) = lim inf £ r(r) _ 1 and 7, (f) :nmsupgif() -1

T pre(f) mEPTN D
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4. LEMMAS
In this section we present some lemmas which will be needed in the following.

Lemma 4.1. [4] Suppose f be a transcendental meromorphic function of finite order
or of non-zero lower order and Z d1(a; f) = 4. Also let g be a transcendental
acCU{oo}
entire function of regular growth having non zero finite order and Z 01(a;9) =
acCU{co}
4. Then the relative lower order of P[f] with respect to P[g] are same as those of f
with respect to g.

Lemma 4.2. [4] Let f be a transcendental meromorphic function of finite order or

of non-zero lower order and >, 61(a;f) = 4 and g be a transcendental entire
acCU{c0}
function of regular growth having non zero finite weak type and 3, 61(a;g) = 4.
acCU{co}

Tpis) — (T — ve111)©(005 f)
T'pg) — (Tplg) — 7PIg))©(00; 9)

Then 7pig (P[f]) and 7pg (P[f]) are ( )pg times that

of f with respect to g t.e.,

_ (Tpis) = (T — vp1£1)©O(005 f)) Pg
Tetsl (PLD) = (l“p[g] — (T'pg) — YPL))©(0; g) o (f) and
= _ (Try— (Tpyp —VP[ﬂ)@(OO;f))*’lg _
#ora1 (PLA]) = (PPM A Yy

when Ay (f) s positive finite.

5. MAIN RESULTS
In this section we present the main theorems of the paper.

Theorem 5.1. Suppose f be a transcendental meromorphic function of finite order
or of non-zero lower order and >, d1(a;f) = 4. Also let h be a transcendental
acCU{oc0}
entire function of regular growth having non zero finite type with >,  &1(a;h) =4
acCU{co}
and g be any entire function such that 0 < 7, (fog) <Ta(fog) < o0, 0 < 1 (f) <

Th(f) < o0 and A (fog) = An (f). Then
< liminf

74 (f © 9) Ty, " Trog (1)

T 1
Toin—(Cri—7p)O(00if) Y Pr = 7= T Tris) (1)
(FP[h]*(FP[h]*’YP[h])@(‘X’?h)) 7h (f) Fir

< Th (f 0 9)
- 1
Lo —(Cris—yp1s1)O(0if) ) P
(FP[h]*(FP[h] *’YP[h])@(oo;h)) *Th (f)
71 _
< limsup Ty Troq (r < Th(fog)

roo Tpi Tris] () ™ [ Corn=(Corn—ve1)@(o0if) \ o1 '
P[h]* PIf] (P:[[;f]]—(l“i[[ﬂ—x[[f])e(oo;h)) " (F)
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Proof. From the definition of 75, (f), 7» (f o g) and in view of Lemma 4.1 and Lemma
4.2 we have for arbitrary positive € and for all sufficiently large values of r that

(5.1) Ty, 'Trog (1) = (Th (0 9) —€) (r))‘h(f°9)
and

T;[Z]Tp[f] (r) < (713[;4 (P[f]) + 5) (T))‘P[h](P[fD

i.e., T};[}_L]Tp[f] (’I‘)

Tpis) — (Tpps) — 1p11)) ©(00; f)) " . Mn(f)
(52) < <(PPW ) )+ ) (™)

Now from (5.1), (5.2) and using the condition Ay (f o g) = An (f), it follows for all large
values of r that

Ty, (1) y (th (fog)—e)
— = z |
Toi el () ((Fplﬂ(rpm S EMEEED ) e+ E)

Tp(n)—(T pr)—7YP(a])O(00;h)

As e (> 0) is arbitrary , we obtain from above that

-1
(5.3) lim inf T Trog (1) > ™ (fo9)

rree TI;[};]TP[J‘] (r) =~ (PP[f]_(PP[f]_'YP[f])e(OO;f))i “Th (f) |
L pin)—(T pr1—7P[r])©(o0;h) h

Again for a sequence of values of r tending to infinity,
(5.4) Ty *Trog (r) < (1 (f 0 g) +é) (r)"V/°”
and for all sufficiently large values of r,

TomTeis) (r) > (7ep) (PLf]) —€) (r) e (PLD

z‘.e., T;{:;'L}Tp[ﬂ (7’)

Tris) = (Tprsy = 1p1))©(00; f)) " _ B An(f)
(58) . <(FP[h] — (Cppa) = YP[r])©(00; h) ™) E) ) ’

Combining (5.4) and (5.5) and using the condition An (fog) = An (f), we get for a
sequence of values of r tending to infinity that
Ty "Trog () (o (fog) +e)
— — 1 :
TP[%;]TP[f] (r) <<FP[f]_(FP[f]_'YP[f])e(OO?f) ) Pr ™ (f) — E)

T —(Tpr]—Yp[n])©(005h)
Since € (> 0) is arbitrary, it follows from above that
T T,
(5.6) lim inf —f——7 o (1) < 7 (f o g)

r—oo T 1 Tp[f} (7’) T [ Toig— (o —veis)O(c0if) i .
Plh] (Pp[h]—(FP[h]—rYP[h])e(oo;h)) ~Th (f)

Also for a sequence of values of r tending to infinity that

Tl Teis (r) < (o (PLF]) +€) (r)* P FUD
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z‘.e., T;[]}'L}Tp[ﬂ (’f‘)
1
T'pis) — (Tpis) — 117 ©(00; f)) 2 An(f)
5.7 < g +e | (r)"V .
(57) - <(FP[h] — (T'pia) — YP[R])©(00; k) » (f) (r)
Now from (5.1) and (5.7) and using the condition A, (f o g) = An (f), we obtain for a
sequence of values of r tending to infinity that
Ty (1) (m(fog) )

T Teis) () ~ ((Tep-(r )8 (c0if) \ 7 ’
P[f P 1= PI1=P1£])©(00; Ph
o <(FP[M(FP[hl‘YP[h])@(OO?h)) 7 (f) + E)

As € (> 0) is arbitrary, we get from above that

-1
(5.8) lim sup T Trog (7) > 7 (f ©9)

r—co TppTeif) (1)~ ( Coin=(Cein=ve10)O(coif) \ o '
" (Fp[h]7(FP[h]*’YP[h])®(oo;h)) *Th (f)

Also for all sufficiently large values of r,
(5.9) Ty Tyog (r) < (T (f 0 9) + &) ()70

Since A (fog) = An (f), it follows from (5.5) and (5.9) for all sufficiently large values of

r that
Ty Trop (1) _ (Fa(fo0) +e)

TJ;[Z]TP[f] (r) ~ ((Fpm(FP[fl‘YP[f])@(oo;f) ) o 1w (F) — 8) .

T —(T pn]—Yp[n])©(005h)
Since € (> 0) is arbitrary, we obtain that
. T T}, -
(5.10) lim sup—2——7 g (7) < Th(fog)

— T_l T [ ] (’r‘) - T (1—\ )@( f) 1 .
r—00 P[r* P[f i —(Tpis1—YP1f) 0; o
" (FP[h]*(FP[h] *’Yp[h])@(oo;h)) Th (f)

Thus the theorem follows from (5.3), (5.6), (5.8) and (5.10). O
The following theorem can be proved similar as Theorem 5.1 and so its proof is omitted.

Theorem 5.2. Suppose g be a transcendental entire function of finite order or of

non-zero lower order and >, 61(a; f) = 4. Also let h be a transcendental entire
acCU{co}
function of regular growth having non zero finite type with >, d1(a;h) =4 and
acCU{oo}
f be any meromorphic function with 0 < 7, (fog) < Th(fog) < 00, 0 < 1 (9) <

Th(g) < co and Ap (fog) =Ax(g). Then
< limin;

™ (f 09) £ Tn " Troq (7)

1 —1
r g_(P g~ g)G(oo;g) P - r—roo TP (lr)
(pru{fruteaBEna )™ .7, (g) PIk] =Pl

< ™ (fog)
- 1
L pig1— (T pig] —YPlg])@(0:9) \ Ph
(FP[h]*(FP[h]*’YP[h])@(oo;h)) *Th (g)
71 _
< limsup T Trog (7) < Th(fog)

r—oo Tot Tp (r) =/ Tpio)=(Tpie)—7Pla))O(o0ig) o ’
P[r)* Pla] (F:{;}]_(P;[hj_32111])6(00;5}1)) "1 (9)
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Theorem 5.3. Suppose f be a transcendental meromorphic function of finite order
or of non-zero lower order and Y. 61(a; f) = 4. Also let h be a transcendental
acCU{co}
entire function of regular growth having non zero finite type with . 61(a;h) =
aeCU{oo}
and g be any entire function such that 0 < T (fog) < o0, 0 < Tx (f) < o0 and

M (fog)=An(f). Then

T Treg (r) 7r(fog) < timsup o Lt0 (7)

e T TP[f]( ) T ( Cetn—(Coin—re1n)0(0if) \ 71~ roo TpiyTep) (1)
i (Fp[h]*(Fp[h]*’)’p[h])@(oo;h)) "Th (f) il

Proof. From the definition of 7p(x) (P[f]) and in view of Lemma 4.1 and Lemma 4.2, we
get for a sequence of values of r tending to infinity that

Ty Tein1 (1) > (Topn (PLF)) — €) (r) i ELD

i.e., T};[:I;'Z]Tp[f] (’l")
T'pis) — (Ceps) — vP1s)) ©(00; f)) B An(F)
(511 = <(Fpm = (Tpn) — YpPr))©(00; h) Te ) E) ) '

Now from (5.9), (5.11) and using the condition An (fog) = Ap(f), it follows for a
sequence of values of r tending to infinity that

T;:leog (r) < (Tn(fog) +e) :
TpipTeis (r) ~ ((Fpm(FPU”PU])@(W) ) ") - E)

Tpn— (T pir) —7p(r))©(00h)
As € (> 0) is arbitrary we obtain that

T, T, G
(512) lim inf —% f 9( ) < Th (f og) - )
ree Tp[h]TP[f]( r) (Fpm*(Fplfrﬂfpm)@(oo;f))Ph T4 (F)

T pin)— (T piaj =P )8 (003 k)
Again for a sequence of values of r tending to infinity,
(5.13) Ty Trog (r) > (Ta (f 0 g) =€) (r) V7).
So combining (5.2) and (5.13) and using the condition Ap (f o g) = A (f),we get for a
sequence of values of r tending to infinity that
T, My (r) (Ta(fo8) —¢)
1
Ph

T_l Tp[f} (T) - Tps1— (Trs—vp)©(00; f) i '
PIh] (F;h] (Pilh Yp(n])©(00; h)) “Th (f) +e&

Since € (> 0) is arbitrary, it follows that

(5.14) lim sup Ty, "o (7) > Th(fog)

r—oo 1 [h]TP[f}( ) - (FP[f]i(FP[f]*’Yp[f])@(oo;f))i - (f) .
T —(T 1 —Yp[n])©(005h) h

Thus the theorem follows from (5.12) and (5.14). O

The following theorem can proved similar as Theorem 5.3 and therefore we omit its
proof.
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Theorem 5.4. Suppose g be a transcendental entire function of finite order or of
non-zero lower order and >, 61(a; f) = 4. Also let h be a transcendental entire
acCU{co}
function of regular growth having non zero finite type with >, d1(a;h) =4 and
aceCU{oo}
f be any meromorphic function with 0 < Tp(fog) < 00, 0 < Tr(g) < o and

M (fog)=An(g). Then

liming 2o Lrea (r) T (fog) < limsupw

- < : < i .

e TPU‘}TP[Q} () (FP[sﬂ*(FP[gr“YP[g])@(OO;g) ) Ph | — (9) r—00 Tp[:}z}TP[g} (r)
T pin)— (T pn)—71p[K])©(00;R) r (g

The following theorem is a natural consequence of Theorem 5.1 and Theorem 5.3.

Theorem 5.5. Suppose f be a transcendental meromorphic function of finite order
or of non-zero lower order and Y. 61(a; f) = 4. Also let h be a transcendental
acCU{co}
entire function of regular growth having non zero finite type with . 61(a;h) =4
aeCU{oo}
and g be any entire function such that 0 < 7, (fog) <Th(fog) < o0, 0 < 1 (f) <

Th(f) < oo and A\p (fog) = An (f). Then

Ty (r) _ [, ™(fog) , Ta(fog)
o R SN O )
Tw(fog) , Ta(fog) } - Ty, " Tpog (r)
A- A- 1 — =
Snmx{ n(h) TR S SRR T Ty ()

1
.
T (1= (T p(s) =7P(s)) O(>if) ) *h

where A =

Tpin] —(Tp[a]—YP[n])©(03h)

The proof is omitted. Similarly one may state the following theorem, again without
its proof.

Theorem 5.6. Suppose g be a transcendental entire function of finite order or of

non-zero lower order and >,  d1(a; f) = 4. Also let h be a transcendental entire
acCU{co}

function of regular growth having non zero finite type with >, 61(a;h) =4 and
acCU{oco}

f be any meromorphic function with 0 < T, (fog) < Th(fog) < 00, 0 < 1, (9) <
Th(g) < oo and Ap (fog) = An(g9). Then

1jminfw Smin{B~ Th(fog)7B’7'h(fog)}
s (9) Th(9)

r= Tpin Tp(g) ()
Th(fog) 5 Th(fog)
e R A

-1
< tim sup T Trea (1)

r—roo Tp[h]TP[g] ()
1

- .
Cplg] ~("p[g] ~7P[g))O(0i9) | Ph
T pia)—(Tp[a]—YP[n])©(c0ih)

where B =
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6. CONCLUSION

Actually this paper deals with the extension of the works on the growth properties
differential monomazals generated by transcendental entire and transcendental mero-
morphic functions on the basis of their relative weak types. These theories can also be
modified by the treatment of the notions of generalized relative weak type and ( (p,q)-
th relative weak type. In addition some extensions of the same may be done in the light
of slowly changing functions. Moreover, the notion of relative weak type of differential
monomzials generated by transcendental entire and transcendental meromorphic func-
tions may have a wide range of applications in complex dynamics, factorization theory of
entire functions of single complex variable, the solution of complex differential equations
etc. which should be a vergine area of further research.
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