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SOME FURTHER RESULTS ON THE BORWEIN-DITOR THEOREM

HARRY I. MILLER AND LEILA MILLER-VAN WIEREN1

Abstract. In 1978 D. Borwein and S. Z. Ditor published a paper answering a ques-
tion of P. Erd®s. Since then several authors including N. H. Bingham, A. J. Os-
taszewski, H. I. Miller and L. Miller-Van Wieren have further extended this result by
examining di�erent gauges of size for sets (including Lebesgue measure and Baire cat-
egory) and translates by null sequences. In this paper, we o�er some further insights
into related results using translates of sets by an additive function.

1. Introduction

There are several gauges of size of sets A � R. For example, if C � [0; 1] denotes the

classical Cantor middle third set, then C has cardinality c (continuum), i.e. C is large ,

but m(C), the Lebesgue measure of C, is zero, i.e. C is small. However, D(C) = fx�x0 :

x; x0 2 Cg = [�1; 1], i.e. C is large. But C is nowhere dense, i.e. C is small. For more

details on classical results comparing the largeness and smallness of A, using di�erent

gauges, see [14], [4], [11], [5], [3], [6] and [7]. Also the classical textbook by J.C. Oxtoby

[12] and its extensive list of references provide many results in this area. Along the lines

of these comparisons, D. Borwein and S.Z. Ditor [2] proved the following result.

Theorem 1.1 (Borwein, Ditor 1978). If A is a measurable set in R with m(A) > 0,

and (dn) is a sequence of reals converging to 0, then for almost all x 2 A, x+dn 2 A

for in�nitely many n. There exists a measurable set in R with m(A) > 0, and a

(decreasing) sequence (dn) converging to 0, such that, for each x, x + dn =2 A for

in�nitely many n.

In [8] H. I. Miller extended the Borwein-Ditor theorem by using a general function

f : R � R �! R instead of addition. In [1] N. H. Bingham and A. J. Ostaszewski

considered homotopy and its relation to the Borwein-Ditor theorem. In [10] H. I. Miller

and A. J. Ostaszewski considered general spaces, group action and shift-compactness and

their relations to the Borwein-Ditor theorem. In [9], we proved the following analog of

the �rst part of this theorem about translates of sets that are large in the sense of Baire

category.
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Theorem 1.2. Suppose A � [a; b] is such that [a; b]nA is of �rst category and suppose

(dn) is a sequence converging to 0. Then, there exists x 2 A and n0 2 N such that

x + dn 2 A for all n � n0: Furthermore, there exists n0 2 N and a set X � A that

is contained in some subinterval of [a; b] and has a complement of �rst category in

that interval, such that x+ dn 2 A for all x 2 X, n � n0:

Remark 1.1. It is clear that the restriction of boundedness on the set A can be

removed from the statement of Theorem 1.2, i.e. that we can simply assume the set

A has a complement of �rst category in R.

2. First result

We are now ready to prove a generalization of Theorem 1.2 for a more general additive

function of two variables.

Theorem 2.1. Suppose that f : R�R �! R is continuous and satis�es the following

conditions on a rectangle [a; b]� [c; d]:

(1) There exists e 2 (a; b) such that f(x; e) = x for all x 2 [a; b]

(2) Partial derivatives fx, fy are continuous on [a; b]� [c; d]

(3) There exist m;M > 0 such that m < fx < M and m < fy < M on

[a; b]� [c; d] :

Suppose A � [a; b] such that [a; b]nA is of �rst category and suppose (dn) is a sequence

converging to 0: Then, there exists x 2 A and n0 2 N such that:

f(x; e+ dn) 2 A

for all n � n0: Furthermore, there exists n0 2 N and a set X � A that is contained

in some subinterval of [a; b] and has a complement of �rst category in that interval,

such that

f(x; e+ dn) 2 A

for all x 2 X, n � n0:

Proof. A = [a; b] n
S1
k=1Dk where Dk � [a; b] are nowhere dense for k 2 N. Let

fe(x) = f(x; e) = x

fe+dn(x) = f(x; e+ dn)

for x 2 [a; b], n 2 N. Then fe+dn maps [a; b] onto an interval [an; bn] continuously and is

increasing. Hence

lim
n!1

an = lim
n!1

fe+dn(a) = fe(a) = a

lim
n!1

bn = lim
n!1

fe+dn(b) = fe(b) = b:

Therefore there exists n1 2 N and [x0; x1] � [a; b] so that [x0; x1] � [an; bn] for n � n1.

Let �n = f�1e+dn
(x0), �n = f�1e+dn

(x1) for n � n1. It is easy to see that limn!1 �n = x0
and limn!1 �n = x1. Hence there exists � > 0, n0 2 N, n0 � n1 such that

[x0 + �; x1 � �] � [�n; �n]
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for n � n0. Now for k 2 N, Dk is nowhere dense in [a; b] and consequently in [x0; x1], so

therefore f�1e+dn
(Dk) is nowhere dense in [�n; �n] and consequently in [x0 + �; x1 � �] for

n � n0. Therefore f
�1
e+dn

(
S1
k=1Dk) =

S1
k=1 f

�1
e+dn

(Dk) is of �rst category in [x0+�; x1��]

for n � n0. Since A = [a; b] n
S1
k=1Dk it follows that

f�1e+dn
(A)
\

[x0 + �; x1 � �]

has a complement of �rst category in [x0 + �; x1 � �], for n � n0. Therefore

(

1\

n=n0

f�1e+dn
(A))

\
[x0 + �; x1 � �]

has a complement of �rst category in [x0 + �; x1 � �] and we conclude that

A
\

(

1\

n=n0

f�1e+dn
(A))

\
[x0 + �; x1 � �]

has a complement of �rst category in [x0 + �; x1 � �]. This completes the proof of the

theorem. �

The following corollary is easy to obtain.

Corollary 2.1. Suppose that f : R� R �! R is continuous and satis�es conditions

(1), (2) and (3) from Theorem 2.1 on a rectangle [a; b] � [c; d]. There exists a set

A of real numbers with m(A) = 0 such that for every sequence (dn) converging to 0,

there exists x 2 A and n0 2 N such that f(x; e+ dn) 2 A for n � n0.

Proof. It is well known that we can construct subsets of [0; 1] of any positive measure L,

0 < L < 1 that are nowhere dense. Therefore, we can obtain a sequence of nowhere dense

sets Xn, n 2 N, such that Xn � [0; 1] withm(Xn) = 1�
1

n
. If we set A = [0; 1]n

S1
n=1Xn,

then clearly m(A) = 0 and the conclusion follows from Theorem 2.1. �

3. A result on sets concentrated on Q

Next we examine a di�erent type of small set and prove a result about translates by

null sequences of such a set. Let Q denote the set of rational numbers. The following

de�nition can be found in the classical textbook by C. A. Rogers [13].

De�nition 3.1. A set of real numbers A is said to be concentrated on Q if every

open set containing Q contains all but at most countably many elements of A.

Assuming the Continuum hypothesis, we prove the following analog of Corollary 2.1.

Theorem 3.1. Suppose the Continuum hypothesis holds. Suppose that f : R�R �!

R is continuous and satis�es conditions (1), (2) and (3) from Theorem 2.1 on a

rectangle [a; b] � [c; d]. There exists a set A concentrated on Q such that for every

sequence (dn) converging to 0, there exists x 2 A and n0 2 N such that f(x; e+dn) 2 A

for n � n0.
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Proof. The set of all open sets that contain Q has cardinality c (continuum) and hence

these sets can be arranged into a trans�nite sequence G�, � < ! where ! is the least

ordinal of cardinality c. Likewise the set of all null sequences has cardinality c and can

also be arranged into a trans�nite sequence (d�n), � < !. Since G1
T
(a; b) is an open

set and f(x; e + d1n) �! x in (a; b) , we can �nd x1 2 G1
T
(a; b) and n1 such that

f(x1; e + d1n) 2 G1
T
(a; b) for n � n1. Now suppose � < ! is a �xed ordinal. Then

because of the continuum hypothesis, � has countable cardinality and hence the set

(
T
���G�)

T
(a; b) has a complement of �rst category in [a; b] (as each G� has a nowhere

dense complement in R). Therefore by Theorem 2.1, we can �nd x� 2
T
���G�

T
(a; b)

and n� such that f(x�; e+ d�n) 2
T
���G�

T
(a; b) for n � n�. Now let:

A = fx� : � < !g
[

�<!

ff(x�; e+ d�n) : n � n�g :

It is easy to see that the Continuum hypothesis implies that A is concentrated on Q and

it satis�es the desired conclusion. �

The special case when f(x; y) = x+ y has been examined earlier through oral commu-

nication with A. J. Ostaszewski.

4. Non-measurable sets

Here we prove the existence of a non-measurable set that satis�es the conclusion of

Theorem 2.1.

Theorem 4.1. Suppose that f : R � R �! R is continuous and satis�es conditions

(1), (2) and (3) from Theorem 2.1 on a rectangle [a; b]� [c; d]. There exists a non-

measurable set A in [a; b] such that for every sequence (dn) converging to 0, there

exists x 2 A and n0 2 N such that f(x; e+ dn) 2 A for n � n0.

Proof. Let F�, � < ! be the set of all closed subsets of [a; b] of positive Lebesgue

measure and (d�n), � < ! denote the trans�nite sequence of all null sequences. Fix an

arbitrary x1 in F1 . Put x1 and f(x1; e + d1n), n � 1 into A. Fix an arbitrary y1 from

F1 n fx1; f(x1; e + d1n) : n � 1g and put y1 into B. Suppose that for all � < � ( some

� < !) we have already put x� 2 F� , f(x� ; e+d
�
n) for n � 1 into A and y� 2 F� into B, so

that A and B are disjoint. The set F� is closed and has positive measure, and hence has

cardinality c. Therefore we can now �x an element x� 2 F�n
S
�<�fy� ; f

�1
e+d�

n

(y�) : n 2 Ng

(using notation from the proof of Theorem 2.1). Put x� and f(x�; e+ d�n) for n � 1 into

A. Now we can �x y� 2 F� n
S
���fx� ; f(x� ; e + d

�
n); n � 1g. Put y� into B. It is

clear that after step �, A and B remain disjoint. Therefore by trans�nite induction we

have constructed disjoint sets A and B. Since both A and B intersect each closed set

of positive measure, the set A is non-measurable. Also from our construction, it is clear

that the set A satis�es the conclusion of the theorem. �

Again the special case when f(x; y) = x+ y has been looked into before together with

A. J. Ostazewski.
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