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ON WEIGHTED BANACH SEQUENCE SPACES

AMRA REKIC-VUKOVIC!, NERMIN OKICIC AND ENES DUVNJAKOVIC

ABsTrRACT. We consider Banach sequence spaces lp s with a weighted sequence o,
which are generalizations of standard sequence spaces. We investigate the relation-
ships between these spaces for a fixed p (1 < p < 4+00) and for different weighted
functions, as well as for fixed o and various p,q (1 < p < ¢ < 4+00). We also present
the representation of bounded linear functionals on these spaces.

1. INTRODUCTION

In addition to looking at some standard sequence spaces s, ¢, cg and Iy, it is of interest
to consider some generalizations of such spaces. One of the ways to make such a general-
ization is by considering the sequence space {,(X) such that coordinates of the sequence
z € 1,(X) belong to a metric space X. Particularly, if X = R™ or X = C"* (n € N) we
get standard sequence spaces. We can also change norms on standard spaces. Bynum [4]
considered spaces [, 4, for 1 <p,q < +00, of all z € I, where the norm is given by

1
2ll,., = (12 1F, + e 11 )

The case when g = +oo gives us the space [, o where the norm is

llzlh, .. =max{[lz"]l,, Iz~ I, }
and z;} = max{z,,0}, z;; = max{—z,,0} for n € N.
Banas et al. [2] defined Baernstein spaces. A sequence ¢ = (Z)nen belongs to the
Baernstein space if

1
21 2
o0

lzllz =supq | D | D |zl (Ya)nen € A § < 400,
k=1 \ i€k

where A is the set of all sequences (7, )nen of finite subsets of natural numbers such that
card(VYn)nen < MiNyeN Vn and maxpen Yo < Millpen Ynt+1 (7 € N).
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Shue [15] introduced Cesaro sequence spaces ces, for 1 < p < +oo as

1 P\ 7
ces, =<z = (zp)nen : ||z|| = — z;
» (@n)ner ¢ lal (;(n@ |>>
In the spaces mentioned above, the idea was to change the norm with respect to standard
spaces in order to obtain some new spaces in such a way.

In this paper we consider one generalization of the Banach sequence spaces that are
p-power summable, that is we make the generalization of the space {,(®) where & =
R,C and 1 < p < o0, so that we give some weight to every coordinate of the sequence
z = (Zn)nen. In [5, 6, 12, 13] Lorentz spaces were considered. Let 1 < p < oo and let
0 = (0n)nen be an arbitrary non-increasing sequence of positive numbers. The space of
all sequences = (Zy)nen, such that

1
P
l|z|| = sup < E |a:,r(n)|pan> < 400,
™

neEN
where 7 represents an arbitrary permutation of the set of natural numbers is called a
Lorentz sequence space, denoted by d(o,p). If by (z)nen we denote the non-increasing
rearrangement of the sequence z = (2, )nen, that is the non-increasing sequence that we
get from (|z,|)ney by using an appropriate permutation of N, then for z € d(o,p) we
have that

1

P

ol = (S
neEN

Now we can consider another class of spaces that are also the generalization of the

space l,. Moreover, we don’t require that the sequence o is non-increasing.

Definition 1.1. Let 1 < p < +o00 and ¢ = (0p)nen be an arbitrary sequence of
nonnegative numbers. The set of all sequences z = (zp)nen Such that

Z |zn POy, < 400
neN
15 called a weighted sequence space and denoted by lp ;.

For p = 400 the corresponding space lo, , 15 called a weighted space of bounded
sequences. The function o is the weighted function or the weighted sequence.

If we define the norm on the space I, ; as

1
p
||$||lp,c7 = <Z |mn|p0n> )

neN
for 1 <p< o, Le.
|2liee,c = SUP|Znlon ,
neN
for p = 400, then [, , is complete, i.e. a Banach space. Notice that for 0 < p < 1, I 5 is
not a normed space. However, the functional

[z] = Z(xn)pan

neEN
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defines the k-norm on l,, with k = 2% and in this case I, , is complete k-normed
space. The inequality ||a + b]| < k(||a|| + ||b]|) is called the k-triangle inequality and the
functional || - || is called k-norm.

Some important properties of the space I, , are given with the following lemma.

Lemma 1.1. Let (0,)nen be a weighted function such that o, > 1 for alln € N and
let 1 <p<oo. Then

(1) the space l,, is ideal;

(2) the space l, , is regular.

Proof. (1) Let y € Iy - and let z be such that |z| < |y|. Since a weighted function is
nonnegative, we have that |z,|0, < |yn|on, for all n € N and

(Sen) < (Soee)

neN n€eEN
that is, z € I, ;. Furthermore, ||z];,, < |lyll:,,. Hence [, is ideal space.
(2) Let z € [, , be arbitrary. It means that ||:z:||f“ = Z |zn|Pon < co. Then

neN
(o)
R, = Z |z |Poy, = Z |Prz,|Poy, — 0, k — o0,
n=k+1 neN

where Py is a projection operator. This is equivalent to lim ||P,z|;,, = 0, so
n—oo '
we can conclude that = € I, ; has an absolutely continuous norm. Thus, I, is a

regular space.
O

Since every regular space is almost perfect and because it is closed, we can conclude
that I, » is a perfect space. Thus [, ; is a completely regular space.

Now let X and Y be ideal spaces. The set Y/X™ (n € N) of all z such that zz" €Y,
for all z € X, equipped with the norm

l2lly/xn = sup{[[ez”[ly + [|z[|x <1},

is called n-th space of multipliers of X with respect to Y. Particularly for n = 1, the
space Y/X is called the space of multipliers of X with respect to Y.
The space of multipliers of I, , with respect to [, - is given by

l 2 a3 ; p>gq

P4 rp—ag P-4
lor/lpo = i

1 1
0,790 9

Q

; p<gq.

Indeed, for arbitrary = € I, ,, let y be arbitrary and let p > ¢g. By Holder’s inequality
(see [9]), we have that

Pa £ 2 T
(1.1) Z |ZnYn| T < ||2]ls, . [Z <|yn|z>c17',f—qo'n -)] .
neN neN
The right hand side of (1.1) is finite if y € ! 2 __a . Hence, the left hand side

LI rp—ag P—a

of (1.1) is also finite, i.e. y € lg+/lps. On tﬁe other hand, if p < g, the finiteness of
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the right hand side of (1.1) is achieved by an arbitrary bounded function y. Now, we
will consider the relationships between [, , spaces for different values of p and different
weighted functions o, as well as relationships between [, , and standard [, spaces.

2. RELATIONSHIPS BETWEEN [/, ; AND [y SPACES FOR p = ¢ AND 0 # T

First let us consider some relationships between I, , and I, » spaces, where 1 < p < 400,
and o, 7T are arbitrary sequences of nonnegative numbers.

Theorem 2.1. If limsup Tn € (0,+00), then lp, Cly .

n—0oo Uﬂ

Proof. Let limsup Tn _ @, for some oy € RT. Then there exists an ng € N, such that
n—oo On 2

for all n > ng we have that Tn < 0. Let 1 <p < +oco and z € [, ; be arbitrary. Then:

n

(2.1) Z |z |P T < Z |zn|Pooon < og Z |zn|Pon < 400 .

n>ng n>ng neN

Adding a finite number of summands to the left hand side of (2.1), we can conclude that
|21, < +oo, that is z € I, ;.

For p = +o0 and z € I, arbitrary, we have that |z,|7 < |zn|0g0n, for n € N.
Accordingly,

||loo,a °

sup |z |1 < ogsup|zp|on = ool|z
neN neN

Thus, z € lo,r. O

Theorem 2.2. If liminf n ¢ (0,4+00), then lpr Clpo.

n—oo Op

Proof. Let liminf Tn ¢ (0, +00). Then

n—oo Op

1 .
—_— = llmsup& € (0,400),
lim inf -~ n—oo  Tn
n—oo O,
and by Theorem 2.1 we get that I, - C [, .. |

Theorems 2.1 and 2.2 imply that if lim Tn _ oo € (0,+00) then [, , and I, , are
n—oo J.

equal as spaces, 1.e. they are isomorphic, taking the identity as the isomorphism between
them. We can now state this in a more generalized form.

Corollary 2.1. If limsup —, liminf " € (0,400), then ly o = lp 7.

T
n—oo Op M0 Op

. T . .
If limsup — = +oo then I, ¢ I, .. Without loss of generality we can assume that
n—co On

. i . T .
lim = = +o0. This means that — ~ «, that is
n—o0 O'n g

Tn
—=a, , nE€N,
Un
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and lim a, = +co. fa~Inn (n - ), then I, ; C L, ,.
n— 00
Hence, let a £ Inn, (n — o0). Let kK € RT be such that

1 . 1
neN neN 7

If we define the sequence z* = (z},)nen in such a way so that

11
Tp = E 1

an On

1 .
then Z |z, |Pon = Z -k < 400, 1. e. ¥ €1, ,. We also have that

neN neN
1 T 1
|2 - - n _
29 IR pR S Ny
neN neNy n o™ nENan

The last series in (2.3) is divergent because of the value of £ chosen in (2.2), so we can
conclude that z* ¢ {, ,.

Lemma 2.1. If limsup In +oo, then lpr G lpo.
n—oo On

Proof. Without lost of generality we can assume that lim Tn _ +00. This means that
n—oo Oy,

T .

2 = a, for n € N, where lim «, = +00. We can also assume that o, > 1 for all
Op n—oo

n € N.

Let 1 <p < 4co and = € I, » be arbitrary. Because of our previous assumptions, we can

conclude that
I
Z |zp|Pon = Z |z, [P < Z |0 |PTn < 400 .
neN neN An neN

Hence z € [, o, that is [, - C I, ;. Since there exists an element in I, , that is not in [, -,
we get that [, » G I 5.

Let p = +o0 and 2 € lo . For an arbitrary n € N we have that |z,|0, = |mn|;—: <
|Z7|Tn, so if we take the supremum over n € N we have that |[z||;. , < [|Z||ico,- Since
z € ly,r is arbitrary, we can conclude that I, C Il . Particularly, if we choose
o= (%)nENa T=(n?)pey and z = (%)nei\h we can conclude that 2 € lo , and z ¢ loo 7.
Hence, in this case we have that I r G lo o O
Lemma 2.2. If liminf * =0, then L,y G Iy,

n—oo O,

Proof. From the fact that lim inf Tn _ 0, and using some known properties we get that
n—oo O-TL

. . Tn . Un
liminf — =0 & limsup — = 400,
n—00 Opn n—oo Tn

and by Lemma 2.1 we can conclude that I, » & [, 7. O
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3. RELATIONSHIPS BETWEEN SPACES I, o AND [ FORPp# ¢ AND 0 =T

In the Section 2 we established some relationships between two weighted spaces of se-
quences for the same value of p and different weighted functions. Nowlet 1 <p < ¢ < 4+
and let ¢ be an arbitrary sequence of positive numbers. It is well known that for standard
[, spaces in the case 1 < p < g < 400, we have that [, C l;. In this section we want to see
under which conditions we will have the same relationships between I, , and [, , spaces.
We show that the weighted function plays an important role in the ordering weighted
spaces. First, we give one sufficient condition.

Theorem 3.1. Let 1 <p < g< +oo. If
(3.1) liminfo, >0,

n— 00

thenl, , Clg .

Proof. Let 1 < p < g < 400 and liminfeo, > 0. Let 11m1nf Op = 2pg > 0. Then, there

n—oo

exists ng € N, such that o, > pg, for all n > ng. NOW let z € lp s be arbitrary. This

means that Z |z |Pon, < +00. However, in that case we have that

neEN
Z |mn|p0n Z Po Z |$n|p .

n>ng n>ng

Because of the fact that = € I, , we can conclude that Z |z, P < +00,1. e. lim |z,]| =0,
neN n—oo
which means that there exists an n; € N, such that |z,| < 1, for all n > n;. Now, since

p < g we have |z, |P > |z,|?, for n > n4, i.e. we have that
Y (2nl0n < > [@nlfon < Y [@nlPon < 400,
n>ni n>ni neN

whence we get that z € [ .. |

We can’t weaken the condition (3.1), i.e. we can’t demand the condition lim inf ¢, > 0.
n—oo

Namely, if we consider the spaces I; 1 . 1 l2 2 and the weighted function o, = n%, such
that 11m o, = 0, we realize that for a sequence z = (n)nen 1t is clear that z € 1,1 but

T ¢ l2 4, This means that [; 1 ¢ Iy 1
The followmg theorem glves us the necessary and sufficient condition for the expected
order of weighted spaces in the sense of inclusion.

Theorem 3.2. Let 1 < p < g < +00. Then l,, C l,, 1f and only if the weighted
function o satisfies the condition

(3.2) (VneN) o, >1.

Proof. Let 1 <p<g<ooandl,, Cly,. Let k be an arbitrary fixed natural number.
Let us choose the sequence z = (z,,)nen such that zp = 1 and z,, = 0 for n # k. Then,
since I » C lg 5, We have that ||z||;, , > [|z|[s,,, and because of the choice of the sequence
z, it would mean that (ok)% > (O'k)%. Since p < ¢, we can conclude that o > 1, for
arbitrary k.

Now suppose that condition (3.2) is satisfied, and let § > 1 be such that ¢ = p8. Without
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loss of generality assume that z € [, ; is such that ) _|zs[Pos = 1. Then, for all s € N,
we have that |zs|os < 1, hence

Z |zs|0s = Z(|$S|p‘75)ﬁ(‘75)17ﬁ < Z(|$S|p05)ﬁ < Z |lzs[Pos

sEN seEN sEN sEN
Thus, ||z|[z,, < ||2]li,., i€ lpo Cq

q,0 — = q,0°"
Theorem 3.3. Let 1 <p < +00. If supo, < +00 thenlp o Clos.
neN

Proof. Let supo, < +o0o and z € [, be arbitrary. Then ||z||;,, < 400, so we can
neN

conclude that lim |z,|Po, = 0. Since the weighted sequence is bounded, it follows that
n— 00

lim z, = 0, our convergent sequence z is bounded and there exists M € R such that
n—oo

|zn| < M for all n € N. We have that |z, |0, < Mo, ie., sup |z,|0n, < M sup o,. Thus,
neN neN

[2[}1ee,, < M sUPO, < 00,
neN
ie. z€lxy. O
The following example shows that in Theorem 3.3 the strict inclusion can hold. Let

#)nEN’

. 1
z = (n)penyand o = ( Since S'LEIIIiI |zn|on = swLEq;I =1, we have that z € [, 1 .
n n

np—1 nP
(o0 (o)
However, the series E |zn|Pon, = E 1is divergent, i.e. z ¢ lp, -

n=1 n=1

4. RELATIONSHIPS BETWEEN [, , AND l, SPACES

From the condition (3.2) of Theorem 3.2 we see that for the special choice of the
weighted function, for which 0, = 1 for n € N, we obtain the standard I, space as
the special case of the weighted [, , space. In this section we consider the relationships
between I, and I, , spaces.

Theorem 4.1. Let 1 < p < 400 and let ¢ be the sequence of nonnegative numbers.
If supoy, < 400, then l, Cly,,.
neN
Proof. Let 1 <p < 400, 0, <M € Rfor alln € N and z € I, be arbitrary. We have
that
Z |zn|Po, < M Z |zn|P < 400 .
neN neN
Thus, z € [, 5.
Ifp=+4oc0and 0, < M € R for all n € N, then for arbitrary z € , we have that
|zn|on < |zn| M, ie. sup|zn|on < M sup|z,|. Therefore,
neN neN

z]liee,. < Mllz]li,, < 400,
and z € o 6. O

Considering the [, space as a weighted [, ; space and using Lemma 2.2 and Theorem
4.1 we get the following corollary.
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Corollary 4.1. If 0 is the sequence bounded from above and such that liminf o, =0,

n—00
thenl, G lp .

For example, for p = +0co we consider the sequence z = (n),cn and weighted function
on =2 (n€N). Clearly z € I, 1 and = ¢ lo. Hence, we have a strict inclusion in the
relation from the Theorem 4.1 and in this case we have that I, C I 1.

Theorem 4.2. Let 1 < p < 400 and let ¢ be the sequence of nonnegative numbers.
If inf 0, > 0 then I, , Clp.
neN

Proof. Let 1 <p < +o0 and 0, > m > 0 for all n € N. For an arbitrary z € [, , we have
that
mz |z, P < Z |zr|Pon < 400,
neN neN

ie. z€lp.

Let p=+o00 and 0, > m > 0 for all n € N. Let z € [, be arbitrary. For arbitrary
n € N we have that m|z,| < |z, |0, and hence msup |z,| < sup |z,|on, i€

neN neN

mzlli, < [2lie,o -

Hence z € 1. O

Considering the I, space as a weighted [, 1 space and using Lemma 2.1 and Theorem
4.2 we obtain the following result.
Corollary 4.2. If inf 0, > 0 and limsup o, = +00, then lp s G Ip.
neN n—co

1

Let us consider z = (ﬁ)neN and weighted sequence 0 = (n?),cn. It is clear that

sup |z, |0, =supn = +00, and = ¢ I n2. But it is also clear that z € lo,. This example
neN nEN
justifies the previous corollary, i.e. in this case we have that I > C l. Now we can

give a more general statement.

Corollary 4.3. Let 1 <p < 40 and let ¢ be the sequence of nonnegative numbers.
If there exist m, M € R, such that 0 <m < g, < M < +0c0 holds for all n € N, then

lp=lpo.

5. THE REFLEXIVITY OF THE SPACE I, »

Theorem 5.1. Any bounded linear functional z* on the space lp s, 1 < p < 400, has
the following representation

(5.1) (@) = 3 i, ¥ = (m)iew € e
€N
_a 1 1 . . .
where T =0~ 21, — + — = 1. Then the functional z* on l,, defines a unique point

r gq
y € lgr and [l27]| = [lyll,.. -
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Proof. Let ¢ = (&)ien € lpe and y = (1;)ien € lp,r, Where 7; = ai_

Holder’s inequality implies

\Q [

1 1

St = 3 Imioy o | (Zmﬁw)(im i >

€N €N €N €N
Since
1 1 1
_a q 1 q q
(zwas) :(zmwai ) =<Z|m|"ﬁ> vl
ieN ieN ieN

we have that

> miéil < lylh,, Nz, < oo,

€N
hence the expression Z |n:&;| always make sense. If we consider this expression as the
function of z € I, tlheeNn it defines a functional z* on the space l,,. The linearity of
the functional z* is clear, while its boundedness follows from the inequality |z*(z)| <
1lle.- N1z, - Thus

(5.2) Izl < M1yl

Conversely, let z* be a bounded linear functional on /,,, 1 < p < 400. Then for all
z € lp o we have that

- e

1EN

Z gzez

1=n+1

- ( 5 |si|Pai>p 50, (n - 00),

lp - 1=n-+1

hence we can write z = Z &;e;. By the linearity and boundedness of the functional z*
we conclude that e
=Y &a*(e:)
1€EN
If we take y = (7;)ien = (2*(€;))ien, We can see that the functional z* has the form (5.1).
Now consider the sequence z,, = (£')ien, 7 = 1,2, .. where

.
&= { sgn m;|mi|?T Yo, Tt for i< m,
1

0 for i1>n.
Then
1 1
n L \P P n 1\
Znlls,., = <Z|m|p“’ (Uz- pl) Ui> = <Z n:|%0; pl) ,
i=1 =1
n
and z* Zf = Z |7:|97;. Since the functional z* is bounded we have that
1=1

|z*(zn)] < IIév*IIIIl’nII, Le.

Y=

n n
> Imltm < |z (Z |77z'|qTi>
=1 =1
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1
n q
Thus (Z |m|qn> < ||z*|| and

=1

1
(5:3) 1yl = (Zlml"ﬂ) < [lz=l-

iCN
We conclude that y € I, ,, and by using (5.2) and (5.3) we get that ||y||;, . = ||z*||.

Now we wish to show that the representation (5.1) is unique. Suppose that there exist

two different points y; = (nz(l))ieN and y; = (ngg))ieN such that

z*(z) = Zm(l)& = Zm@)& .
ieN ieN

This would mean that for z = (e;);cn we have that z*(e;) = 771(1) = 771(2) Jforalle = 1,2, ..,
which contradicts the assumption that y; # ys. O

.11
Therefore I, , = g7, where 7 = o 771 1i=+==1. For the second dual of the space
' p g

l we have that

p,0»
*% 7k
Zp,rr - lq,T - lP,P )
__1_ .
where p = 7~ @-T. Since
_ 1 \ g1 1
p:fr -1 = (g pr-1 :o’ququ+1:o',

we have that 1%, =1, ,. Thus, [, (1 <p < +00) is a reflexive space.

Theorem 5.2. Any bounded linear functional t* on the space ly ,, has the following
representation

(5.4) 2 (z) = méi, v = (m)ien € loo,1 -
ieN
Then the functional z* on 1y, defines a unique point y € I, 1 and [|z*|| = |jylli_ , -

Proof. Let y = (7 )ien € loo, 1. Bquality (5.4) defines a bounded linear functional on the
space l; ;. Indeed,

1
lz*(z)] < § |ni&i| < Slelg|77i|; E Néloi = Nyl o lI2lly,0-
; 3

iEN ' ieN
Thus,

(5.5) Izl < llylle_

1
Let us prove that for every bounded linear functional z* on [; , there exists a unique
point y € Iy, 1 such that (5.4) holds. Notice that for all z = (&;):ew € l1,, we have that

ra
n
T — Z &ie
i=1

oo

= > J&loi =0, (n—> ),

1=n-+1

ll,a
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hence we can write z = Z &ie;. Consequently z*(z) = Z &z (e;). If we put ; = z*(e;),
iEN ieN
we see that the functional z* has the form (5.4). Now we will prove that y = (7;)ien

belongs to the space I, 1. Consider the sequence z,, = ({]')ien, 7 = 1,2, .., where

2

gﬁ_{sgnnn , 1=mn,
¢ 0 , 1#n.

For n € N we have that ||z,[;,, = 0 and z*(z,) = |7,|. Since z* is a bounded linear
functional, i.e. |[z*(zn)| < [|z*||||znls, ., we have t the inequality |n,|- < ||z*||. Taking
the supremum over all n € N yields

(5.6) 1Yl o < ll="[]

Thus y € lo,1 and the equality [|yll; _ , = [[z*|| holds due to (5.5) and (5.6).

The uniqueness of the representation (gl) can be shown in the same way as was done in
Theorem 5.1. O

6. DISCUSSION

Borwein and Gao [3] gave some necessary and sufficient conditions for a nonnegative
matrix to bounded operator from I, to I, 1 < p < g < co. We could consider acting of
the mentioned matrix from the weighted sequence space I, , to I, ;.

Let I, » and {4 be weighted spaces such that lim Tn € (0,00) and let (0, )nen be a

n—oo J.

bounded weighted sequence, such that 0 < m < g, < Mn< +o0. If we assume that there
exists a real positive number C' and a positive sequence (u;); ey such that

) ) p—1

_1 .
Zaij <Z aik“k) <Cuy T, 1=1,2,.,
=1 k=1

where A = (a;;) is a real nonnegative matrix, then using Theorem A from [3] and Corol-
laries 2.1 and 4.3 we conclude that the matrix operator A acts from I, ; to I, , and that
|4, , < C* holds.

There are many results about the acting conditions of different classes of operators
(matrix, integral, etc.) which are defined on sequence spaces as well as on weighted
sequence spaces ([1, 10, 14]). Furthermore, some attention was given to the calculating
of the norm of such operators. For example, Jameson and Laksharipour [7] determined
the norm of some operators on weighted [, spaces and corresponding Lorentz sequence
spaces d(w,p) with the power weighting sequence w, = n~% or the variant defined by
wy + ... + w, = n*~%. The problem of finding a lower bound of such operators was
also considered by Jameson and Laksharipour [8]. The norm of arbitrary weighted mean
matrix acting on an arbitrary weighted space /; , where o is a decreasing, nonnegative

oo
sequence such that lim o, = 0 and Z oy, is divergent, was presented by Lashkaripour

n—00
n=1

in [11].
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In view of the relationships between weighted sequence spaces presented in this paper,
we could then consider the action of different operators on weighted sequence spaces
under some other assumptions about the weighted sequence.
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