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ON WEIGHTED BANACH SEQUENCE SPACES

AMRA REKI�-VUKOVI�1, NERMIN OKI�I� AND ENES DUVNJAKOVI�

Abstract. We consider Banach sequence spaces lp;� with a weighted sequence �,
which are generalizations of standard sequence spaces. We investigate the relation-
ships between these spaces for a �xed p (1 � p � +1) and for di�erent weighted
functions, as well as for �xed � and various p; q (1 � p < q � +1). We also present
the representation of bounded linear functionals on these spaces.

1. Introduction

In addition to looking at some standard sequence spaces s; c; c0 and lp, it is of interest

to consider some generalizations of such spaces. One of the ways to make such a general-

ization is by considering the sequence space lp(X) such that coordinates of the sequence

x 2 lp(X) belong to a metric space X. Particularly, if X = Rn or X = Cn (n 2 N) we
get standard sequence spaces. We can also change norms on standard spaces. Bynum [4]

considered spaces lp;q, for 1 � p; q < +1, of all x 2 lp, where the norm is given by

jjxjjlp;q =
�
jjx+jj

q
lp
+ jjx�jj

q
lp

� 1
q

:

The case when q = +1 gives us the space lp;1 where the norm is

jjxjjlp;1 = maxfjjx+jjlp ; jjx
�jjlpg

and x+n = maxfxn; 0g, x
�
n = maxf�xn; 0g for n 2 N.

Banas et al. [2] de�ned Baernstein spaces. A sequence x = (xn)n2N belongs to the

Baernstein space if

jjxjjB = sup

8>><
>>:
2
64 1X
k=1

0
@X

i2
k

jxij

1
A

2
3
75

1
2

: (
n)n2N 2 A

9>>=
>>; < +1 ;

where A is the set of all sequences (
n)n2N of �nite subsets of natural numbers such that

card(
n)n2N � minn2N 
n and maxn2N 
n < minn2N 
n+1 (n 2 N).
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Shue [15] introduced Cesaro sequence spaces cesp for 1 < p < +1 as

cesp =

8<
:x = (xn)n2N : jjxjj =

 X
n2N

 
1

n

nX
i=1

jxij

!p! 1
p

9=
; :

In the spaces mentioned above, the idea was to change the norm with respect to standard

spaces in order to obtain some new spaces in such a way.

In this paper we consider one generalization of the Banach sequence spaces that are

p-power summable, that is we make the generalization of the space lp(�) where � =

R;C and 1 � p � 1, so that we give some weight to every coordinate of the sequence

x = (xn)n2N. In [5, 6, 12, 13] Lorentz spaces were considered. Let 1 � p < 1 and let

� = (�n)n2N be an arbitrary non-increasing sequence of positive numbers. The space of

all sequences x = (xn)n2N, such that

jjxjj = sup
�

 X
n2N

jx�(n)j
p�n

! 1
p

< +1 ;

where � represents an arbitrary permutation of the set of natural numbers is called a

Lorentz sequence space, denoted by d(�; p). If by (x�n)n2N we denote the non-increasing

rearrangement of the sequence x = (xn)n2N, that is the non-increasing sequence that we

get from (jxnj)n2N by using an appropriate permutation of N, then for x 2 d(�; p) we

have that

jjxjj =

 X
n2N

x�pn �n

! 1
p

:

Now we can consider another class of spaces that are also the generalization of the

space lp. Moreover, we don't require that the sequence � is non-increasing.

De�nition 1.1. Let 1 � p < +1 and � = (�n)n2N be an arbitrary sequence of

nonnegative numbers. The set of all sequences x = (xn)n2N such thatX
n2N

jxnj
p�n < +1

is called a weighted sequence space and denoted by lp;�.

For p = +1 the corresponding space l1;� is called a weighted space of bounded

sequences. The function � is the weighted function or the weighted sequence.

If we de�ne the norm on the space lp;� as

jjxjjlp;� =

 X
n2N

jxnj
p�n

! 1
p

;

for 1 � p <1, i.e.

jjxjjl1;�
= sup

n2N
jxnj�n ;

for p = +1, then lp;� is complete, i.e. a Banach space. Notice that for 0 < p < 1, lp;� is

not a normed space. However, the functional

[x] =
X
n2N

(xn)
p�n
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de�nes the k-norm on lp;� with k = 2
1�p

p and in this case lp;� is complete k-normed

space. The inequality ka + bk � k(kak + kbk) is called the k-triangle inequality and the

functional k � k is called k-norm.

Some important properties of the space lp;� are given with the following lemma.

Lemma 1.1. Let (�n)n2N be a weighted function such that �n � 1 for all n 2 N and

let 1 � p <1. Then

(1) the space lp;� is ideal;

(2) the space lp;� is regular.

Proof. (1) Let y 2 lp;� and let x be such that jxj � jyj. Since a weighted function is

nonnegative, we have that jxnj�n � jynj�n, for all n 2 N and X
n2N

jxnj
p�n

! 1
p

�

 X
n2N

jynj
p�n

! 1
p

;

that is, x 2 lp;�. Furthermore, kxklp;� � kyklp;� . Hence lp;� is ideal space.

(2) Let x 2 lp;� be arbitrary. It means that jjxjj
p
lp;�

=
X
n2N

jxnj
p�n <1. Then

Rk =

1X
n=k+1

jxnj
p�n =

X
n2N

jPkxnj
p�n ! 0; k!1;

where Pk is a projection operator. This is equivalent to lim
n!1

kPnxklp;� = 0, so

we can conclude that x 2 lp;� has an absolutely continuous norm. Thus, lp;� is a

regular space.

�

Since every regular space is almost perfect and because it is closed, we can conclude

that lp;� is a perfect space. Thus lp;� is a completely regular space.

Now let X and Y be ideal spaces. The set Y=Xn (n 2 N) of all z such that zxn 2 Y ,

for all x 2 X, equipped with the norm

jjzjjY=Xn = supfjjzxnjjY : jjxjjX � 1g ;

is called n-th space of multipliers of X with respect to Y . Particularly for n = 1, the

space Y=X is called the space of multipliers of X with respect to Y .

The space of multipliers of lp;� with respect to lq;� is given by

lq;�=lp;� =

8<
:

l
pq

p�q
;�

p
p�q �

�
q

p�q
; p > q

l
1;�

1
q �
�
1
q

; p � q :

Indeed, for arbitrary x 2 lp;�, let y be arbitrary and let p > q. By Hölder's inequality

(see [9]), we have that

X
n2N

jxnynj
q�n � kxklp;�

"X
n2N

�
jynj

pq

p�q �
p

p�q

n �
�

q

p�q

n

�# p�q

p

:(1.1)

The right hand side of (1.1) is �nite if y 2 l
pq

p�q
;�

p
p�q �

�
q

p�q
. Hence, the left hand side

of (1.1) is also �nite, i.e. y 2 lq;�=lp;�. On the other hand, if p � q, the �niteness of
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the right hand side of (1.1) is achieved by an arbitrary bounded function y. Now, we

will consider the relationships between lp;� spaces for di�erent values of p and di�erent

weighted functions �, as well as relationships between lp;� and standard lp spaces.

2. Relationships between lp;� and lq;� spaces for p = q and � 6= �

First let us consider some relationships between lp;� and lp;� spaces, where 1 � p � +1,

and �, � are arbitrary sequences of nonnegative numbers.

Theorem 2.1. If lim sup
n!1

�n
�n

2 (0;+1), then lp;� � lp;� .

Proof. Let lim sup
n!1

�n
�n

=
�0
2
, for some �0 2 R+. Then there exists an n0 2 N, such that

for all n � n0 we have that
�n
�n

< �0. Let 1 � p < +1 and x 2 lp;� be arbitrary. Then:

X
n�n0

jxnj
p�n �

X
n�n0

jxnj
p�0�n � �0

X
n2N

jxnj
p�n < +1 :(2.1)

Adding a �nite number of summands to the left hand side of (2.1), we can conclude that

jjxjjlp;� < +1, that is x 2 lp;� .

For p = +1 and x 2 l1;� arbitrary, we have that jxnj�n < jxnj�0�n, for n 2 N.
Accordingly,

sup
n2N

jxnj�n � �0 sup
n2N

jxnj�n = �0jjxjjl1;�
:

Thus, x 2 l1;� . �

Theorem 2.2. If lim inf
n!1

�n
�n

2 (0;+1), then lp;� � lp;�.

Proof. Let lim inf
n!1

�n
�n

2 (0;+1). Then

1

lim inf
n!1

�n
�n

= lim sup
n!1

�n
�n

2 (0;+1) ;

and by Theorem 2.1 we get that lp;� � lp;�. �

Theorems 2.1 and 2.2 imply that if lim
n!1

�n
�n

= �0 2 (0;+1) then lp;� and lp;� are

equal as spaces, i.e. they are isomorphic, taking the identity as the isomorphism between

them. We can now state this in a more generalized form.

Corollary 2.1. If lim sup
n!1

�n
�n

; lim inf
n!1

�n
�n

2 (0;+1), then lp;� = lp;� .

If lim sup
n!1

�n
�n

= +1 then lp;� * lp;� . Without loss of generality we can assume that

lim
n!1

�n
�n

= +1. This means that
�

�
� �, that is

�n
�n

= �n ; n 2 N ;
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and lim
n!1

�n = +1. If � � lnn (n!1), then lp;� � lp;�.

Hence, let � 6� lnn, (n!1). Let k 2 R+ be such that

(2.2)
X
n2N

1

�kn
< +1 i (8" > 0)

X
n2N

1

�k�"n

= +1 :

If we de�ne the sequence x� = (x�n)n2N in such a way so that

x�n =
1

�
k
p

n

1

�
1
p

n

;

then
X
n2N

jx�nj
p�n =

X
n2N

1

�kn
< +1, i. e. x� 2 lp;�. We also have that

(2.3)
X
n2N

jx�nj
p�n =

X
n2N

1

�kn

�n
�n

=
X
n2N

1

�k�1n

:

The last series in (2.3) is divergent because of the value of k chosen in (2.2), so we can

conclude that x� =2 lp;�2 .

Lemma 2.1. If lim sup
n!1

�n
�n

= +1, then lp;�  lp;�.

Proof. Without lost of generality we can assume that lim
n!1

�n
�n

= +1. This means that

�n
�n

= �n for n 2 N, where lim
n!1

�n = +1. We can also assume that �n � 1 for all

n 2 N.
Let 1 � p < +1 and x 2 lp;� be arbitrary. Because of our previous assumptions, we can

conclude that X
n2N

jxnj
p�n =

X
n2N

jxnj
p �n
�n

�
X
n2N

jxnj
p�n < +1 :

Hence x 2 lp;�, that is lp;� � lp;�. Since there exists an element in lp;� that is not in lp;� ,

we get that lp;�  lp;�.

Let p = +1 and x 2 l1;� . For an arbitrary n 2 N we have that jxnj�n = jxnj
�n
�n

�

jxnj�n, so if we take the supremum over n 2 N we have that jjxjjl1;�
� jjxjjl1;� . Since

x 2 l1;� is arbitrary, we can conclude that l1;� � l1;�. Particularly, if we choose

� = ( 1n )n2N, � = (n2)n2N and x = ( 1n )n2N, we can conclude that x 2 l1;� and x =2 l1;� .

Hence, in this case we have that l1;�  l1;�. �

Lemma 2.2. If lim inf
n!1

�n
�n

= 0, then lp;�  lp;� .

Proof. From the fact that lim inf
n!1

�n
�n

= 0, and using some known properties we get that

lim inf
n!1

�n
�n

= 0, lim sup
n!1

�n
�n

= +1 ;

and by Lemma 2.1 we can conclude that lp;�  lp;� . �
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3. Relationships between spaces lp;� and lq;� for p 6= q and � = �

In the Section 2 we established some relationships between two weighted spaces of se-

quences for the same value of p and di�erent weighted functions. Now let 1 � p < q � +1

and let � be an arbitrary sequence of positive numbers. It is well known that for standard

lp spaces in the case 1 � p < q � +1, we have that lp � lq. In this section we want to see

under which conditions we will have the same relationships between lp;� and lq;� spaces.

We show that the weighted function plays an important role in the ordering weighted

spaces. First, we give one su�cient condition.

Theorem 3.1. Let 1 � p < q < +1. If

(3.1) lim inf
n!1

�n > 0 ;

then lp;� � lq;�.

Proof. Let 1 � p < q < +1 and lim inf
n!1

�n > 0. Let lim inf
n!1

�n = 2�0 > 0. Then, there

exists n0 2 N, such that �n � �0, for all n � n0. Now, let x 2 lp;� be arbitrary. This

means that
X
n2N

jxnj
p�n < +1. However, in that case we have that

X
n�n0

jxnj
p�n � �0

X
n�n0

jxnj
p :

Because of the fact that x 2 lp;� we can conclude that
X
n2N

jxnj
p < +1, i. e. lim

n!1
jxnj = 0,

which means that there exists an n1 2 N, such that jxnj � 1, for all n � n1. Now, since

p < q we have jxnj
p � jxnj

q, for n � n1, i.e. we have thatX
n�n1

jxnj
q�n �

X
n�n1

jxnj
p�n �

X
n2N

jxnj
p�n < +1 ;

whence we get that x 2 lq;�. �

We can't weaken the condition (3.1), i.e. we can't demand the condition lim inf
n!1

�n � 0.

Namely, if we consider the spaces l1; 1

n3
i l2; 1

n3
and the weighted function �n = 1

n3 , such

that lim
n!1

�n = 0, we realize that for a sequence x = (n)n2N it is clear that x 2 l1; 1

n3
but

x =2 l2; 1

n3
, This means that l1; 1

n3
* l2; 1

n3
.

The following theorem gives us the necessary and su�cient condition for the expected

order of weighted spaces in the sense of inclusion.

Theorem 3.2. Let 1 � p < q < +1. Then lp;� � lq;� if and only if the weighted

function � satis�es the condition

(3.2) (8n 2 N) �n � 1 :

Proof. Let 1 � p < q < 1 and lp;� � lq;�. Let k be an arbitrary �xed natural number.

Let us choose the sequence x = (xn)n2N such that xk = 1 and xn = 0 for n 6= k. Then,

since lp;� � lq;�, we have that jjxjjlp;� � jjxjjlq;� , and because of the choice of the sequence

x, it would mean that (�k)
1
p � (�k)

1
q . Since p < q, we can conclude that �k � 1, for

arbitrary k.

Now suppose that condition (3.2) is satis�ed, and let � > 1 be such that q = p�. Without
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loss of generality assume that x 2 lp;� is such that
P

s2N jxsj
p�s = 1. Then, for all s 2 N,

we have that jxsj�s � 1, henceX
s2N

jxsj
q�s =

X
s2N

(jxsj
p�s)

�(�s)
1�� �

X
s2N

(jxsj
p�s)

� �
X
s2N

jxsj
p�s :

Thus, jjxjjlq;� � jjxjjlp;� , i.e. lp;� � q;�. �

Theorem 3.3. Let 1 � p < +1. If sup
n2N

�n < +1 then lp;� � l1;�.

Proof. Let sup
n2N

�n < +1 and x 2 lp;� be arbitrary. Then jjxjjlp;� < +1, so we can

conclude that lim
n!1

jxnj
p�n = 0. Since the weighted sequence is bounded, it follows that

lim
n!1

xn = 0, our convergent sequence x is bounded and there exists M 2 R such that

jxnj �M for all n 2 N. We have that jxnj�n �M�n i.e., sup
n2N

jxnj�n �M sup
n2N

�n. Thus,

jjxjjl1;�
�M sup

n2N
�n <1 ;

i.e. x 2 l1;�. �

The following example shows that in Theorem 3.3 the strict inclusion can hold. Let

x = (n)n2N and � =
�
1
np

�
n2N

. Since sup
n2N

jxnj�n = sup
n2N

1

np�1
= 1, we have that x 2 l1; 1

np
.

However, the series

1X
n=1

jxnj
p�n =

1X
n=1

1 is divergent, i.e. x =2 lp; 1

np
.

4. Relationships between lp;� and lp spaces

From the condition (3.2) of Theorem 3.2 we see that for the special choice of the

weighted function, for which �n = 1 for n 2 N, we obtain the standard lp space as

the special case of the weighted lp;� space. In this section we consider the relationships

between lp and lp;� spaces.

Theorem 4.1. Let 1 � p � +1 and let � be the sequence of nonnegative numbers.

If sup
n2N

�n < +1, then lp � lp;�.

Proof. Let 1 � p < +1, �n � M 2 R for all n 2 N and x 2 lp be arbitrary. We have

that X
n2N

jxnj
p�n �M

X
n2N

jxnj
p < +1 :

Thus, x 2 lp;�.

If p = +1 and �n � M 2 R for all n 2 N, then for arbitrary x 2 1 we have that

jxnj�n � jxnjM , i.e. sup
n2N

jxnj�n �M sup
n2N

jxnj. Therefore,

jjxjjl1;�
�M jjxjjl1 < +1 ;

and x 2 l1;�. �

Considering the lp space as a weighted lp;1 space and using Lemma 2.2 and Theorem

4.1 we get the following corollary.
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Corollary 4.1. If � is the sequence bounded from above and such that lim inf
n!1

�n = 0,

then lp  lp;�.

For example, for p = +1 we consider the sequence x = (n)n2N and weighted function

�n = 1
n (n 2 N). Clearly x 2 l1; 1

n
and x =2 l1. Hence, we have a strict inclusion in the

relation from the Theorem 4.1 and in this case we have that l1 � l1; 1
n
.

Theorem 4.2. Let 1 � p � +1 and let � be the sequence of nonnegative numbers.

If inf
n2N

�n > 0 then lp;� � lp.

Proof. Let 1 � p < +1 and �n � m > 0 for all n 2 N. For an arbitrary x 2 lp;� we have

that

m
X
n2N

jxnj
p �

X
n2N

jxnj
p�n < +1 ;

i.e. x 2 lp.

Let p = +1 and �n � m > 0 for all n 2 N. Let x 2 l1;� be arbitrary. For arbitrary

n 2 N we have that mjxnj � jxnj�n and hence m sup
n2N

jxnj � sup
n2N

jxnj�n, i.e.

mjjxjjl1 � jjxjjl1;�
:

Hence x 2 l1. �

Considering the lp space as a weighted lp;1 space and using Lemma 2.1 and Theorem

4.2 we obtain the following result.

Corollary 4.2. If inf
n2N

�n > 0 and lim sup
n!1

�n = +1, then lp;�  lp.

Let us consider x =
�
1
n

�
n2N

and weighted sequence � = (n2)n2N. It is clear that

sup
n2N

jxnj�n = sup
n2N

n = +1, and x =2 l1;n2 . But it is also clear that x 2 l1. This example

justi�es the previous corollary, i.e. in this case we have that l1;n2 � l1. Now we can

give a more general statement.

Corollary 4.3. Let 1 � p � +1 and let � be the sequence of nonnegative numbers.

If there exist m;M 2 R, such that 0 < m � �n � M < +1 holds for all n 2 N, then
lp = lp;�.

5. The reflexivity of the space lp;�

Theorem 5.1. Any bounded linear functional x� on the space lp;�, 1 < p < +1, has

the following representation

(5.1) x�(x) =
X
i2N

�i�i; y = (�i)i2N 2 lp;� ;

where � = ��
1

p�1 ,
1

p
+

1

q
= 1. Then the functional x� on lp;� de�nes a unique point

y 2 lq;� and kx�k = kyklp;� .
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Proof. Let x = (�i)i2N 2 lp;� and y = (�i)i2N 2 lp;� , where �i = �
� 1

p�1

i i
1

p
+

1

q
= 1.

Hölder's inequality implies

X
i2N

j�i�ij =
X
i2N

j�i�
� 1

p

i �i�
1
p

i j �

 X
i2N

j�i�
� 1

p

i jq

! 1
q
 X

i2N

j�i�
1
p

i j
p

! 1
p

:

Since  X
i2N

j�ij
q�
�

q

p

i

! 1
q

=

 X
i2N

j�ij
q�
� 1

p�1

i

! 1
q

=

 X
i2N

j�ij
q�i

! 1
q

= kyklq;� ;

we have that X
i2N

j�i�ij � kyklq;� kxklp;� <1 ;

hence the expression
X
i2N

j�i�ij always make sense. If we consider this expression as the

function of x 2 lp;� then it de�nes a functional x� on the space lp;�. The linearity of

the functional x� is clear, while its boundedness follows from the inequality jx�(x)j �

kyklq;� kxklp;� . Thus

(5.2) kx�k � kyklq;� :

Conversely, let x� be a bounded linear functional on lp;�, 1 < p < +1. Then for all

x 2 lp;� we have that




x�
X
i2N

�iei







lp;�

=







1X

i=n+1

�iei







lp;�

=

 
1X

i=n+1

j�ij
p�i

! 1
p

! 0; (n!1) ;

hence we can write x =
X
i2N

�iei. By the linearity and boundedness of the functional x�

we conclude that

x�(x) =
X
i2N

�ix
�(ei) :

If we take y = (�i)i2N = (x�(ei))i2N, we can see that the functional x� has the form (5.1).

Now consider the sequence xn = (�ni )i2N, n = 1; 2; :: where

�ni =

(
sgn �ij�ij

q�1�
� 1

p�1

i for i � n;

0 for i > n:

Then

kxnklp;� =

 
nX
i=1

j�ij
pq�p

�
�
� 1

p�1

i

�p

�i

! 1
p

=

 
nX
i=1

j�ij
q�
� 1

p�1

i

! 1
p

;

and x�(xn) =
X
i2N

�ni x
�(ei) =

nX
i=1

j�ij
q�i. Since the functional x

� is bounded we have that

jx�(xn)j � kx�kkxnk, i.e.

nX
i=1

j�ij
q�i � kx�k

 
nX
i=1

j�ij
q�i

! 1
p

:
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Thus

 
nX
i=1

j�ij
q�i

! 1
q

� kx�k and

(5.3) kyklq;� =

 X
i2N

j�ij
q�i

! 1
q

� kx�k:

We conclude that y 2 lq;� , and by using (5.2) and (5.3) we get that kyklq;� = kx�k.

Now we wish to show that the representation (5.1) is unique. Suppose that there exist

two di�erent points y1 = (�
(1)
i )i2N and y2 = (�

(2)
i )i2N such that

x�(x) =
X
i2N

�
(1)
i �i =

X
i2N

�
(2)
i �i :

This would mean that for x = (ei)i2N we have that x�(ei) = �
(1)
i = �

(2)
i , for all i = 1; 2; :::,

which contradicts the assumption that y1 6= y2. �

Therefore l�p;� = lq;� , where � = ��
1

p�1 i
1

p
+

1

q
= 1. For the second dual of the space

lp;�, we have that

l��p;� = l�q;� = lp;� ;

where � = ��
1

q�1 . Since

� = ��
1

q�1 =
�
��

1
p�1

�� 1
q�1

= �
1

pq�q�p+1 = � ;

we have that l��p;� = lp;�. Thus, lp;� (1 < p < +1) is a re�exive space.

Theorem 5.2. Any bounded linear functional x� on the space l1;�, has the following

representation

(5.4) x�(x) =
X
i2N

�i�i; y = (�i)i2N 2 l1; 1
�
:

Then the functional x� on l1;� de�nes a unique point y 2 l1; 1
�
and kx�k = kykl

1; 1
�

.

Proof. Let y = (�i)i2N 2 l1; 1
�
. Equality (5.4) de�nes a bounded linear functional on the

space l1;�. Indeed,

jx�(x)j �
X
i2N

j�i�ij � sup
i2N

j�ij
1

�i

X
i2N

j�ij�i = kykl
1; 1

�

kxkl1;�:

Thus,

(5.5) kx�k � kykl
1; 1

�

:

Let us prove that for every bounded linear functional x� on l1;� there exists a unique

point y 2 l1; 1
�
such that (5.4) holds. Notice that for all x = (�i)i2N 2 l1;� we have that




x�

nX
i=1

�iei







l1;�

=

1X
i=n+1

j�ij�i ! 0; (n!1) ;
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hence we can write x =
X
i2N

�iei. Consequently x
�(x) =

X
i2N

�ix
�(ei): If we put �i = x�(ei),

we see that the functional x� has the form (5.4). Now we will prove that y = (�i)i2N
belongs to the space l1; 1

�
. Consider the sequence xn = (�ni )i2N, n = 1; 2; ::, where

�ni =
n sgn �n ; i = n;

0 ; i 6= n:

For n 2 N we have that kxnkl1;� = �n and x�(xn) = j�nj. Since x� is a bounded linear

functional, i.e. jx�(xn)j � kx�kkxnkl1;� , we have t the inequality j�nj
1
�n
� kx�k. Taking

the supremum over all n 2 N yields

(5.6) kykl
1; 1

�

� kx�k:

Thus y 2 l1; 1
�
and the equality kykl

1; 1
�

= kx�k holds due to (5.5) and (5.6).

The uniqueness of the representation (5.1) can be shown in the same way as was done in

Theorem 5.1. �

6. Discussion

Borwein and Gao [3] gave some necessary and su�cient conditions for a nonnegative

matrix to bounded operator from lp to lq, 1 < p � q < 1. We could consider acting of

the mentioned matrix from the weighted sequence space lp;� to lq;� .

Let lp;� and lq;� be weighted spaces such that lim
n!1

�n
�n

2 (0;1) and let (�n)n2N be a

bounded weighted sequence, such that 0 < m � �n �M < +1. If we assume that there

exists a real positive number C and a positive sequence (uj)j2N such that

1X
i=1

aij

 
1X
k=1

aikuk

!p�1

� Cu
p�1
j ; j = 1; 2; :::;

where A = (aij) is a real nonnegative matrix, then using Theorem A from [3] and Corol-

laries 2.1 and 4.3 we conclude that the matrix operator A acts from lp;� to lp;� and that

kAklp;� � C
1
p holds.

There are many results about the acting conditions of di�erent classes of operators

(matrix, integral, etc.) which are de�ned on sequence spaces as well as on weighted

sequence spaces ([1, 10, 14]). Furthermore, some attention was given to the calculating

of the norm of such operators. For example, Jameson and Laksharipour [7] determined

the norm of some operators on weighted lp spaces and corresponding Lorentz sequence

spaces d(w; p) with the power weighting sequence wn = n�� or the variant de�ned by

w1 + ::: + wn = n1��. The problem of �nding a lower bound of such operators was

also considered by Jameson and Laksharipour [8]. The norm of arbitrary weighted mean

matrix acting on an arbitrary weighted space l1;� where � is a decreasing, nonnegative

sequence such that lim
n!1

�n = 0 and

1X
n=1

�n is divergent, was presented by Lashkaripour

in [11].
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In view of the relationships between weighted sequence spaces presented in this paper,

we could then consider the action of di�erent operators on weighted sequence spaces

under some other assumptions about the weighted sequence.
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