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UNIFORMLY CONVERGENT DIFFERENCE SCHEME FOR A
SEMILINEAR REACTION-DIFFUSION PROBLEM

SAMIR KARASULJIC!, ENES DUVNJAKOVIC AND HELENA ZARIN

ABSTRACT. In this work we consider the singularly perturbed one-dimensional semi-
linear reaction-diffusion problem
e?y"(z) = f(z,y), =€(0,1), y(0)=0,y(1)=0,

where f is a nonlinear function. Here the second-order derivative is multiplied by a
small positive parameter and consequently, the solution of the problem has boundary
layers. A new difference scheme is constructed on a modified Shishkin mesh with
O(N) points for this problem. We prove existence and uniqueness of a discrete so-
lution on such a mesh and show that it is accurate to the order of N~2In? N in
the discrete maximum norm. We present numerical results that verify this rate of
convergence.

1. INTRODUCTION

We consider the semilinear singularly perturbed problem

(1.1) e’y"(z) = f(z,y) on (0,1),

(1.2) y(0) =0, y(1) =0,

where 0 < € < 1. We assume that the nonlinear function f is continuously differentiable,
ie. for k > 2, f € C*¥([0,1] x R), and that it has a strictly positive derivative with respect
toy
of
(1.3) Pl fy>m >0 on [0,1] xR (m = const).
Y
A solution of (1.1) — (1.2) usually exhibits sharp boundary layers at the endpoints of
(0,1), when the parameter ¢ is near zero. When classical numerical methods are applied
to (1.1)—(1.2), one does not obtain e—uniform results on the entire interval (0, 1) , because
of which we shall use nonstandard discretization of (1.1) — (1.2).
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Many authors have considered the problem (1.1) — (1.2) under various hypotheses on
f, see e.g. Herceg and Miloradovi¢ [7] , Uzelac and Surla [14] , Vulanovi¢ [15] ,[16] , Sun
and Stynes [13] etc.

Uniformly convergent methods with respect to € for the problem (1.1) — (1.2) under
condition (1.3) have also been examined. Vulanovi¢ [15] applies a central difference scheme
to the problem (1.1) — (1.3) and proves second-order uniform convergence on a specially
graded mesh of Bakhvalov type. D’Annunzio [3] uses a simple central difference scheme on
a special locally quasi-equidistant mesh to solve a more general problem than (1.1)—(1.3).
The last result was significantly improved by Sun and Stynes in [13] using the mesh of
Shishkin type.

Our paper is devoted to the construction of approximations on a Shishkin-type mesh.
Our aim is to construct a difference scheme with coefficients which behave similar to the
solution of the starting problem. It is well-known that in modelling of the boundary
layer of the exact solution of the problem (1.1) — (1.3), it is used suitable exponential
functions with a perturbation parameter €. We intend to get a scheme for calculation
of the numerical solution with coefficients which acting on the same or similar way as
mentioned exponential functions. A motivation for constructing this kind of difference
scheme 1s getting as good numerical results as possible.

Discretization in this paper is based on the paper Boglaev [2]. Unlike our previous
work [5] where we only constructed a difference scheme for the boundary value problem
(1.1) — (1.3) and performed a numerical test, in this work we also prove the existence
and uniqueness of the numerical solution. Further, we show e—uniform convergence of
the numerical solution to the exact solution on a suitable layer-adapted mesh. We also
verify the rate and order of convergence on a numerical example.

Remark 1.1. Throughout the paper we denote by C, sometimes subscripted, a
generic positive constant that may take different values in different formulas, but is
always independent with respect to N and €.

2. CONSTRUCTION OF THE NONLINEAR DIFFERENCE SCHEME

In this section we construct a difference scheme which generates a system of nonlinear
equations and solving this system produces the values of the numerical solution at the
mesh points. The scheme will be constructed based on the results in solving the linear
boundary value problem and Green’s function for a suitable differential operator. The
method was first introduced Boglaev [2].

Let us now consider the differential equation (1.1) in an equivalent form

Ley(z) := %y"(z) — yy(z) = ¥(z,y(z)) on [0,1],
where
Y(z,9) = f(z,y) — 7y,

and v > m is a chosen constant.
On an arbitrary grid

O=zp<z1 <22 < ... <2y =1,
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consider the following boundary value problems

Leui(z) == 0on (zi, zit1) , Leui(z) == 0on(z;, ziq1) ,
(2.1) ui(:ri) = 1, ui($i+1) = 0, and ui(a:i) = 0, ui(:vi+1) = 1,
(i=0,1,..,N—1), (i=0,1,..,N—1).

We denote the solutions of problems (2.1) by u!(z), ul’(z), (+ = 0,1,2,..,N — 1),

respectively. Functions u/ and u!! are known from [11] , i.e.
sinh (8 (z — z;))
(@)= — 7~

_ sinh (B (2us1 — 2))
(2.2) w(®) =" (Bhi) w! sinh (Bh;)
(i=0,1,2,..,N — 1),

, T S [mi7$i+1]7

where § = g, hi=z,41—z;.

Consider a new boundary value problem

Leyi(z) = ¥(z,y:(z)) on (z:, Tit1),
(2.3) yi(zs) = y(z4), ¥i(@iv1) = y(ziv1),
(1=0,1,2,..,N —1).
It is clear that y;(z) = y(z) on |[z;,zi+1], (¢ =0,1,2,...,N —1). The solution of
(2.3) is given by

vi(z) = C’luf(a:) + CzuzU(x) + /l’z+1 Gi(z,8)Y(s,y(s))ds, € [zsTita],

where G;(z,s) is the Green'’s function associated with the operator L. on the interval
[xii $i+1] .
The function G;(z, s) in this case has the following form

Gi(x,s) = 1 { Z{I(m)ul(s), Z; S T S S S Tit1,

1
e2w;(s) | ul(z)ull(s), =z <s<z<wmiyy,

2

where

wi(s) =uf’(s) (uf)' (s) = w{(s) (ul")" (5)
:sinh(B(sfxi)) . (sinh(ﬁ(xwlfs)))’ _ sinh(B(zit1—s)) | (sinh(B(sfxi)))l

sinh(Bh;) sinh(Bh;) sinh(Bh;) sinh(Bh;)
__ =B .
~ sinh(Bh;) 70, seleeinl,

because the solutions ui and uZU are linearly independent.

From the boundary conditions in (2.3), we have that C; = y(z;) =: y;, C2 = y(zs41) =
Yi+1, (1 =0,1,2,..., N — 1). Hence, the solution y;(z) of (2.3) on the interval [z;, z;11]
has the following form

Tit1

(2.4) yi(z) = youl (z) + yip1ul (z) + / Gi(z,s)¥(s,y(s))ds.

i

The boundary value problem
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has a unique continuously differentiable solution y € C*+2(0,1). Since y;(z) = y(z) on
[zi,ziv1], (¢ =0,1,2,..., N — 1) we have that
(2.5) Yi(z) =y a(z), 6=1,2,...,N-1).

Now, differentiating (2.4) and using (2.5), we get

1

vio1 (u) 1) (@) + v [(uzlil)’ (@) — (ul)’ (l‘z‘)] + Yit1 [— (wi’)

e [ [ e aiayenas- [0

1—1
Define
a; 1= — (ul_)) (@), ci = (uf) (=) = (u)) (@:), bi = (ul") (@2).
Using (2.2) we have that

g g B

%= nh(Bhiy) O T smn(Bh) % O T tanh(fhy) | tanh(Bhy)

Now (2.6) takes the following form

— Y1+ Y — biyipa =
2.7) [T 9 =9
B0 2 (G D WD s~ [ 2 (G0, W3

After finding the derivatives on the right hand side (2.7), we get that
(2.8)

1 z; Tit1
aiYi1 — CiYs + biip1 = = [ [ wil ()v(s,y(s))ds+ [ ul(s)d(s,y(s))ds|,
Ti—1 T

Yo =0, yv =0, (7’: 172)’“)N_1)'

Clearly, we cannot explicitly compute the integrals in (2.8) in general. Therefore, we
approximate the function ¥(z,y(z)) on the interval [z;_1,z;] by

RIS S =¥
where y,; are approximate values of the solution y of the problem (1.1) — (1.2) at points
;.
Finally, from (2.8) we get the following difference scheme

1 o z; o Tit1
aiY;_1 — Ci¥Y; + by g = 2 %‘-1/ ull (s)ds + ?/Ji/ ui(s)ds|,
Ti—1 i
(i=1,2,..,N—1).

From (2.2), we have

= 1 cosh(Bh;—1) 1 1

/ il =g o (Bhe 1) B snh(Bh )’
T (s)ds =L cosh(BR) 1 1

/z, ui(8)ds =5 Gh(hy) ~ B simb(Bhy)’
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Hence, our difference scheme has the following form
_ _ _ 1— 1—
a:Y; 1 — G + bl = ;1//1'71(051‘ —ai)+ ;wi(d’i—i-l — @it1),

tanh(Bh;_ 1)
After some computation, we get

where d; =

(2.9)

a; +d;_ a; +d;  ajp1+dig1 )
1 2 lyz_l _ ( 1 2 7 + 1 2 7 z

Qi1+ dip1 Ad;— Adiq—
+%yi+l :Tfi—l ~ fas

where Ad; = d; —a; and f; = ¥, +¥(¥; + ¥;41)/2, (1 =1,2,..,N = 1).
Using (2.9) let us introduce the discrete problem of the problem (1.1) — (1.3),
Fy = ((F9)o,(FY)y,---,(FR)y)" =0,
where
(FY)o =Y,
(F7); =23y, — (24 4 2snpdun ) g,y ssngding,

JaN: Sr Adiy17 .
T Ty fi—l_THfh(z_1727"'7N_1)7

(F?)N ::?Ni

and its equivalent normalized form

(2.10) g = ((ﬁ'y)o,(ﬁ’y)l,...,(ﬁy)N>T:o,

where
(ﬁ’g)o ::§07
. ¥ . .
Fy)y =——(Fy);,(1=1,2,...,N = 1),
(Fy) Adi—kAdiH( )i, (1 )
(Fy)n =Yy

Here we use the maximum norm

llull = 22X, [uil

T . .
for any vector u = (uo, u1,...,u,) € R¥*! and the corresponding matrix norm.

Theorem 2.1. The discrete problem (2.10) for v > f,, has the unique solution

¥= (90919 In-1,9n)"
inequality holds

, with yy = Yy = 0. Moreover, the following stability

1 ~ ~
ol & Jpo- 0]

T T
for any vectors v = (vo,v1,...,vx) € R¥TY w = (wg,ws,...,wy)" € RVN*L



144 S. KARASULJIC, E.DUVNJAKOVIC AND H. ZARIN

Proof. We use a technique from [7] and [16] , and the proof of existence of the solution of
F(g) = 0 is based on the proof of the following relation: Hﬁ”(ﬂ)’l H < C, where F'(3)
x

is the Fréchet derivative of 7.
The Fréchet derivative H := F'(3) of the operator defined in (2.10) is a tridiagonal
matrix. Let H = [h;;]. The non-zero elements of this tridiagonal matrix are

hoo =1, hn .y =1,

hi,i = — 3 2 N

Y a;+d; | Giy1tdign od; fiogg Adiys i
AditAdig [ z T 3 +5 T T <0,

Ad; fic1g,_
hi,i—l :7Adi+7&dz+1 [ai + = (1 _ 179 1 )i| > 0,

L Y . Adiyy i
hz,z-‘,—l T Adi+Adiga |:az+1 + 2 (1 P )i| > O,

where f;3 = i?j, je{i—1,i}, k€ {1 —1,1,1+ 1}. Hence H is an L—matrix.

: 59,
Since

il = Vheioal = hicsd R e R

— Y
_Adr‘rAdiJrl |: v 2 + v

> ¥ Ad;  m4m + Adity1  m4m
Z Adi+Adiga ¥ 2 v 2

:m’
the matrix H is also an M—matrix and

_ 1
(2.11) 17 < —-

Now, by Hadamard‘s Theorem (5.3.10 from [10] we can conclude that # defined in (2.10),
is a homeomorphism. Since RV *! is nonempty set, there exists a solution of the problem
(2.10) and regarding that 0 is the only image of F we come to the conclusion that ¥ is
the only solution of the problem (2.10).

The second part of the proof is based on the part of the proof of Theorem 3 from [6] .
We have that

Fw — Fy = (ﬁ”u) (w —v)
for some u = (ug, u1, .. .,uN)T € R¥+1, Therefore
w—v=(Fu)™? (ﬁ'w - ﬁ’v)
and finally because of (2.11) we have that

~ ~ ~ 1 ~ ~
lw — ]|, = H(F’u)_l(Fw—Fv)H < — HFw—FvH .
oo m oo
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3. CONSTRUCTION OF THE MESH

The solution changes rapidly near z = 0 and z = 1. Hence the mesh has to be
refined there. Various meshes have been proposed in the literature. The most frequently
analysed are the exponentially graded mesh of Bakhvalov [1] and piecewise uniform mesh
of Shishkin [12].

Here we shall use the smoothed Shishkin mesh from [8, 9] . Let N + 1 be the number
of mesh points, ¢ € (0,1/2) and ¢ > 0 the mesh parameters. Define the Shishkin-mesh
transition point by

A= min{\;%lnN,q}.

Let us chose o = 2.

Remark 3.1. For the sake of simplicity in representation, we assume that

A =2e(y/m) " 'InN, as otherwise the problem can be analysed in the classical way.
We shall also assume that ¢N s an wnteger. This s eastly achieved by choosing
g=1/4 and N dwisible by 4 for example.

The mesh A @ zp < 27 < ... < zy is generated by z; = (¢/N) with the mesh
generating function
A
gt €[0,4],
p(t) =1 p(t—q)®+ 3t tE 9, 1/2],
1 p(1-1) €[1/2,1],
where p is chosen so that ¢(1/2) = 1/2,ie. p= %(1 - 3)(7 —g) 3. Note that ¢ € C'[0, 1]
with [[¢|| o, 1¢"]lec < C. Therefore the mesh sizes h; = 241 — 24,0 =0,1,2,..., N -1
satisfy (see [9] for details)
(3.1)

(i+1)/N
hi:/ ©'(t)dt <CN™Y, |hip1 — hi| =
i/N

(i+1)/N  pt+1/N

4. THE ERROR ESTIMATING OF THE NONLINEAR DIFFERENCE SCHEME

We will prove theorem on uniform convergence of the difference scheme (2.9) on the
part of the mesh which corresponds to [0,1/2], while the proof on [1/2, 1] can be analo-
gously derived.

Namely, in the analysis of the value of the error the functions e~ ¢ V™ and e~ T Vm
appear. For these functions we have that e V™ > e~ = V™ ¥z €[0,1/2] and e V™ <
g [1/2,1]. In the boundary layer in the neighbourhood of z = 0, we have
that e~ V™ >> =" V™ while in the boundary layer in the neighbourhood of z = 1 we
have that e V™ << e %
on the part of the mesh which corresponds to [0,1/2] with the exclusion of the function
e~ =V™ oron [1/2,1] but with the exclusion of the function e~ < V™. Note that we need
to take care of the fact that in the first case h;_; < h;, and in the second case h;_1 > h;.
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The proof uses the decomposition of the solution y of the problem (1.1) — (1.2) to the
layer component s and a regular component r, given in the following assertion.

Theorem 4.1. [15] The solution y to problem (1.1) — (1.2) can be represented in the
following way:

y=r+s,
where for 7 =0,1,....,k+ 2 and z € [0,1] we have that
(4.1) @) <c,
and

‘s(j)(m)‘ < Ce™? (e_%ﬁ te e \/E) .

On equidistant part of the mesh, that is for z;,z;41 € [0,A\] and 2 =1,2,...,N/4 — 1,
we will use Taylor expansions for the function y

" " () (F—
R T %hffl - thffl + yi(cz)hil’
(4.2) 6 it 24
v Y y"(G)
Yi = Yi+1 = — Yihi — ?’hf - ?hf - Thf,

while for function f we will use Taylor expansions

f, _f Ti—1+%i Yi—1+Yyi
1—1 — 2 ) 2
"

2,1 1 2, .1 1 ! y;l 2 yi 3
=e‘y; — -€%y; hi1 + ify(xhyi) —yihi 1+ 7%‘71 - ?hifl

2
() (¢ 1 1
P ) Gl s v+ el R
(43) + S el€ 00— v e,

it T ity
fi=f($ i1 Y g+1>

1 1 i
=2yl + %y h; + §fy(xi7yi) (yéhi + y?zhzz +

2 6 ¢ 7

24
1 1 1
+§fyy(£f,nf)(yi+1 —y:) + gfm(éf,n?)h? + 1fzy(£j_777;_)(yi+l —Yi)hs,

where y; = y(z:), & € ((Tim1 + :)/2,7:), G € (2i1,2:), & € (z4, (s + 7i11)/2),
G € (2 zipa), 7 € ((%i-1 +9)/2,9:) and 0 € (¥, (¥i + ¥it1)/2). For @i, zi11 €
[mN/4,1,)\] U[A1/2], ie. @ = N/4,...,N/2 — 1, we will use Taylor expansions for the
function y

1" -
Yii —Yi = — Yihi1 + %h?—lv K € (Ti-1,T4),
(4.4)
A (20 Fr
Yi — Yit1 = — Y;hs — Thi, Ky € (Ti, Tig1).

Let us start with the following three lemmas that will be further used in the proof
of the uniform convergence on the part of the mesh from § 3 which corresponds to

[zn/a-1,1/2], Tyja = A
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Lemma 4.1. Assume that € < % In the part of the modified Shishkin mesh from §
8 when z;,T;41 € [mN/4,1,)\] U [A,1/2], we have the following estimate:

_ cosh(Bh;_1)—1 fifl . cosh(ﬁh,)—lf

7y sinh(Bh;—1) vy sinh(Bh;) J? C .
cosh(Phi—1)—1 , cosh(Bhi)—1 < N2’ (s =N/4,..,N/2-1).
ysinh(Bh;—1) v sinh(Bh;)

Proof of the lemma is given in Appendix 7.1.
Lemma 4.2. Assume that € < % In the part of the modified Shishkin mesh from §
8 when z;,Zix1 € [mN/4_1,)\] U [A,1/2], we have the following estimate

cosh(Bhi_1)—1 cosh(Bh;)—1

2sinh(Phi1) (Yi1 ~ Yi) = Zamn(phy (Yi — Yit1) c .
cosh(Bhi_1)—1 , cosh(Bh;)—1 < N2? (1=N/4,...,N/2-1).
ysinh(Bh;—1) + v sinh(Bh;)

Proof of the lemma is given in Appendix 7.2.
Lemma 4.3. Assume that ¢ < % In the part of the modified Shishkin mesh from §
8 when z;,%;4, € [mN/4,1,)\] U [, 1/2], we have the following estimate

1
+

Yi—1—Y; Yi — Yit1

sinh(Bh;_1) sinh(Bh;)

c .
< ﬁ’Z:N/47’N/2_1

cosh(Bhi_1)—1
vsinh(Bh;_1)

cosh(Bh;)—1
v sinh(Bh;)

Proof of the lemma is given in Appendix 7.3.
The proof of the theorem on e— uniform convergence is based on the relation ||y — 7|, <
c|lty- £y .
x
Since F'y = 0, it only remains to estimate HFyH . Now we can state the main theorem
[e.e]

on e—uniform convergence of our difference scheme and the specially chosen layer-adapted
mesh.

Theorem 4.2. The difference scheme (2.9) on the mesh from Section 3 is uniformly
convergent with respect to €, and
In* N

N7l </
O%%Xle(xz) y,| <C N2

where y(z) ts the solution of the problem (1.1) —(1.2), ¥ is the corresponding numer-
wcal solution of (2.9), and C > 0 is a constant independent with respect to N and
€.

Proof. Suppose first that z; € [0,A],72 = 1,...,N/4 — 1. On this part of the mesh, we
have that h;_; = h; < C’#. The scheme (2.9) for the function y can be represented as

“5) (Fy)i = <SRRI [y, 4 — g, — (y; — yoya)] - SBERL(5, 4 7)),
(i=1,.,N/4-1).
Now, putting (4.2), (4.3) and

(Bhi)?
2

cosh(Bhi) =1+ + O (In* N/N*),
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into (4.5), we get that

(Fy)s = [ﬂz i

S. KARASULJIC, E.DUVNJAKOVIC AND H. ZARIN

+ O(In* N/N‘*)} yl'hZ

2h2 @) (¢ VRS + 4y (¢ RS
4 24
O(ln* N/N* 1
_ Ol N/NT) [262y§’+ ~fy(zi,vi) (vi'hZ
¥ 2
LIOCOR IR
24
_ PR 2, YO )RE +y(GT)RE
0 Yi) | Ys Py — — D,
2 fy(rc vi) |9 hi + 54 +5
where
1. . N B
SD; :gfyy(fz o1 )Y — Yi1)® + gf:m:(fZ i ki + *fmy(fi oM NYi — Yim1)hy
1 + o F 1 2
+§fyy(fz‘ ) (Wi — 9)° + Sfm(fz 17 )hE + fxy(fz ) (i1 — i) R
For the sake of normalization, dividing (4.5) with % we get
B (Fy); In®* N
(46) 20(Fy)l = | gasdt | < BN
¥
Now, suppose that z; € [Ty/a—1,A] U [A,1/2] for 1 = N/4,...,N/2 — 1. The scheme

(2.9) for the function y can be written as

cosh(fh,—1) — 1 cosh(fh;) —
Fy)i=—F W1 — %) — o Wi —
(Fy) 2sinh(Bh: 1) (Yim1 — ¥s) 2 sinh(Bhy) (% — Yi+1)
Yi—1 — ¥  Yi — Yit1
sinh(Bh; 1) sinh(Bh;)
cosh(fh;—1) — 1 cosh(pBh;) —
— i1 — N/4,..,N/2 —1).
ysinh(Bh;_1) fiea ysinh(Bh;) o =Ny /2=1)
From the inequality
(Fly)i < 1
cosh(Bhi—1)—1 |, cosh(Bh;)—1 | > cosh(Bh,_1)—1 cosh(Bh;)—1
v sinh(Bh;_1) v sinh(Bh;) ysinh(Bhi_1) v sinh(Bh;)
cosh(Bh;_1)—
(| SR i1 — ) — S (i - ver)
Yio1—Y Yi—Ys _ cosh(Bhi_1)—1 cosh(Bhq)—1 ¢
+ sinh(éh,,l) - sinh(,BZ:) + 'ysmh(,Bh1 1) fz 1™ "ysinh(Bh;) fz ) ’
based on Lemma 1-Lemma 3, we have that
" (Fly)i C
(4.7) [(Fy)il = cosh(Bhii)—1 | cosh(Bhi)—1| S N2

According to (4.6) and (4.7), the proof is complete.

7y sinh(Bh;_1)

+ v sinh(Bh;)
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5. THE NUMERICAL RESULTS

In this section we present numerical results to confirm the uniform accuracy of the
scheme (2.9).
Consider the following problem from [14]

(5.1) ey = (1+9)(1+(1+y)?) on (0,1),

(5.2) y(0) =y(1) =0,

whose exact solution is unknown. The nonlinear system of equations is solved by Newton’s
method with initial guess yo = —1 that represents the reduced solution. The value

of the constant v = 4 has been chosen so that the condition v > fy(z,v), V(z,y) €
[0,1] x [yr,yu] C [0,1] x R is fulfilled, where y;, and yy are lower and upper solutions
of the test problem (5.1) — (5.2) and their values are y;, = —1 and yy = 0. Because of
the fact that the exact solution is unknown, we define the computed error Ey and the
computed rate of convergence Ord in the usual way (double-mesh method, see [4, 13, 14]

InEy —InFE
_ ~2N N _ =N ) — N 2N
By = max |7 (z:) —y" (zi)|,  Ord TmE

where N = 2%, k =6,7,...,11, @N(mi) is the numerical solution on a mesh with N subin-
tervals, and §?¥ (z;) is the numerical solution on a mesh with 2N subintervals and the

transition point altered slightly to A, = min {%, j—% In %} .

L L L L * x L L L L > x
*

02 04 06 08 10 02 04 06 08 1]

I

|
—02} | —02}
\ |

\ |
—0al| 704'»

“os] | _06 ‘

/
—08[ \ / -08 ‘

FIGURE 1. Graphics of approximate solutions for values ¢ = 273, ¢ = 2710,

In Figure 1 we display the computed solution of (5.1)-(5.2) for two values of the pa-
rameter €. For different values of the perturbation parameter ¢, in Table 1 we present
the results of numerical experiments that clearly confirm the robustness of the method
as well as that theoretical and experimental results match.
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N E, Ord E, Ord E, Ord
2% | 4.5606e —04 2.42 | 3.1000e — 03 1.99 | 7.9175e —03 1.99
27 | 1.2375e —04 2.04 | 1.0597e — 03 2.00 | 2.7093e — 03 2.00
2% | 3.9496e — 05 2.01 | 3.4620e — 04 2.00 | 8.8552¢ — 04 2.00
2° | 1.2398e — 05 2.00 | 1.0956e — 04 2.00 | 2.8030e — 04 2.00
2'° | 3.8199¢ — 06 2.00 | 3.3815e — 05 2.00 | 8.6565e — 05 2.00
2'1 | 1.1562¢ —06 2.00 | 1.0229e — 05 2.00 | 2.6187e — 05 2.00
2'% | 3.4400e — 07 2.00 | 3.0434e — 06 2.00 | 7.7911e — 06 2.00

2% 11.0003e —07 — | 8.9294e —07 — | 2.2860e —06 —
€ 273 275 2710
N E, Ord E, Ord E, Ord

26 [ 7.0175¢ —03 1.99 | 7.9175e —03 1.99 | 7.9175e — 03 1.99
27 | 2.7093e — 03 2.00 | 2.7093e — 03 1.99 | 2.7093e — 03 1.99
28 | 8.8552e —04 2.00 | 8.8552e — 04 2.00 | 8.8552¢ — 04 2.00
2% | 2.8030e — 04 2.00 | 2.8030e — 04 2.00 | 2.8030e — 04 2.00
210 | 8.6565¢ — 05 2.00 | 8.6565¢ — 05 2.00 | 8.6565e — 05 2.00
21 | 2.6187¢ — 05 2.00 | 2.6187e — 05 2.00 | 2.6187¢ — 05 2.00
212 | 7.7911e — 06 2.00 | 7.791le — 06 2.00 | 7.7911e — 06 2.00

213 1 2.2860e — 06 — | 2.2860e —06 — | 2.2860e —06 —
€ 2715 2725 2730
N E, Ord B, Ord E, Ord

26 | 7.9175e — 03 1.99 | 7.9176e —03 1.99 | 7.9175e — 03 1.98
27 | 2.7093e — 03 1.99 | 2.7095e — 03 2.00 | 2.7223e — 03 2.01
28 | 8.8552¢ —04 2.00 | 8.8553e — 04 2.00 | 8.5552¢e — 04 2.00
2° | 2.8030e — 04 2.00 | 2.8030e — 04 2.00 | 2.8030e — 04 2.00
210 | 8.6565¢ — 05 2.00 | 8.6565e — 05 2.00 | 8.6571e — 05 1.99
2!l 1 2.6187e —05 2.00 | 2.6189e — 05 2.00 | 2.6329¢ — 05 1.99
212 | 7.7911e — 06 2.00 | 7.7915e — 06 2.00 | 7.8633e — 06 1.99

213 | 2.2860e —06 — | 2.2864e —06 — |2.3213e—06 —
2—35 2—40 2—45

TABLE 1. Errors Ey and convergence rates Ord for approximate solutions.

6. DISCUSSION

In this paper we present a discretization of a one-dimensional semilinear reaction-
diffusion problem, with suitable assumptions that ensure the existence and uniqueness of
the continuous problem. We prove the existence and uniqueness of the numerical solution,
the e—uniform convergence using a suitable layer-adaptive mesh and finally we perform a
numerical experiment which agrees with theoretical results.

The presented method should be expandable to discretization of higher dimensional
boundary value problems without major problems. Namely, hyperbolic functions appear
in the difference scheme coefficients, so one has to choose the discretization in which
these hyperbolic functions remain functions of one variable, which is not difficult to
do. In this case we could separate the terms in which the same variables appear and



UNIFORMLY CONVERGENT DIFFERENCE SCHEME FOR ... 151

the analysis would be reduced to the one presented in this paper. In the case of the
discretization in which hyperbolic functions of several variables appear, the analysis would
be more difficult. Clearly, the above discussion is only related to suitable Shishkin-type
meshes. Using Bakhvalov-type meshes the analysis of one-dimensional boundary value
problems becomes substantially more difficult, as is the analysis of the dicretization of
higher dimensional boundary value problems.

7. APPENDIX
7.1. Proof of the Lemma 4.1.

Proof. Due to €2y"(z;) = f(z:,y(z;)), Theorem 4.1 for both components r and s in part

of the mesh [mN/4,1, )\] U [A, 1/2] and the assumption ¢ < %, we have that
cosh(Bhi—1)—1 o cosh(Bhi)—1 o cosh(Bh;_1)—1
~ Ysinh(Bhi_1) fica— v sinh(Bh;) fi ysinh(Bh,;—1) _
cosh(Bh;_1)—1 , cosh(Bh;)—1 N Cosh(Bh;_1)—1 , cosh(Bh;)—1 | fial
vy sinh(Bh;_1) + v sinh(Bh;) vy sinh(Bh;_1) v sinh(Bh;)
cosh(Bh;)—1
inh(Bh,
+ 7 sinh(Bh.) il

cosh(Bhi_1)—1 cosh(Bh;)—1
ysinh(Bhi_1) 7 sinh(Bh;)

C
Sfimal +1fil < Nz

7.2. Proof of the Lemma 4.2.

Proof. Let us use again the decomposition from Theorem 4.1 and assumption € < %

For the layer component s we have that
cosh(Bhi_1)—1,_ ) cosh(Bhi)—1/ . )
2sinh(ﬁh:_1) (i1 —8i) = 2sinh(Bh;) (s: = 8i41) <7

cosh(Bhi_1)—1 cosh(Bh;)—1 ~ 5
7y sinh(Bh;—1) + v sinh(Bh;)

(Isimy = sil 4 |si — siqa) .

Using (4.2), e V™ > e VT, V€ [0,1/2], the monotonicity of the function e~ V™
and putting zy/4—1 = 2elaN  N/4—1 504, e‘ﬁﬁ, we get that

vm N/4
$i—1 — 85| +[8i — sit1| <4si_1] < Cre” = OVt
n <4 <C 2InN- C 2ln N
Ci 8In N
(7.1) < (1+ = +)

C

<ﬁ-

coshz—1

For the regular component r, due to = tanh Z, we have that

sinh 2

cosh(Bh;_1)—1, ) cosh(Bh;)—1 .

2sinh(Bh: 1) (rica—mi) — 2sinh(Bh;) (re —rit1)
cosh(Bh;_1)—1 cosh(Bh;)—1
vsinh(Bh;_1) + v sinh(Bh;)

2 1 he .
=3 tanh P51 tomn B tanh 2 s+ (ri—1 —r;) — tanh ﬁT(Tz —rip1)]-
2 2
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Using Taylor expansions (4.4) for r;_; and r;,1, we get that

Y 1
2

tanh %=1 (r;_; — ;) — tanh 82 (r; — r-_,_l)‘
tanh —’3}2*1 + tanh % 2 ' ' S

tanh ﬁzil (—rghi_l + %hf_l)

1
Bhi_1 Bh;

7
tanh ——+tanh =

) ’I‘” +
+tanh % ('r';hz + 7(:' )hf)‘

tanh ﬁh;“ h;_1 — tanh ﬁ;“ h;

).

Because of the monotonicity of the function tanh = and (4.1), we get the following estimate

<C (hfl +h

Iy
tanh ——+tanh —*

s tanh Bhi-1p,. . —tanh #%ip.| <C Mh, L —h;
Bhi_ Bh; 2 Thi— 5| < B, Ni— il -
tanh Tl + tanh 5+ tanh =

Now, let us use the second inequality from (3.1) for h; — h;—1 in order to get

tanh Phi-1 tanh Ahi=1 C
——2 R —hy|=|—F—hii1— (ki1 + —
tanh% tanh % N2
_ tanh ﬁhé_l 1l n n C B tanh % — tanh % b N C
" | tann B | TN NZ T tanh PP -1+ 32
2 2
ePhi_1q ePhi—1_1
Bh; — _Bh,_ C e:th — eﬁhz—l C
— -‘rlﬁh.e 1+1hi71+7:2 - hifl"_i
. — e 17— e 11—
(7:3) eﬁh?+i Nz (P —1)(ePhimr +1) NZ
ePni
2 2_p2 3 3_ 33
_ zﬁ(hi —hi1) + b (hiz!hl_l) +f (h13!h"1) + Y C
= (ePhi — 1)(ePhi—1 4 1) i—1 T e
f B (hY — k1)

S hici+ —

(ePhi — 1)(ePhi1 4 1) N2°
From the identity
(7.4) a” —b"=(a—b)(a" ' +a" %+ .. +ab" P+ b" ), neEN,

and h;—1 < hsy, e =1,2,...,N/2 — 1, we get the majorization

A —h ) = (hi — hic1) (A} + A2 Phioy + oo+ AT + A2

7.5 ’
(7.5) <n(hi —hiq)RF L
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Moreover, for the last relation from (7.3), due to (7.5), we have

+o0 =
B (hy — hy,) (Bh.)"
Z—'l ,B(hi—hi—l)z 1
) ot n. he 4+ 2 C <9 n=0 v B4+ £
(eﬁhz — 1)(el3hi—1 T 1) i—1 N2 S (eﬁhz _ 1)(eﬂhi_1 + 1) 1—1 N2
_ o Blhi- hi—1)ePh ho 4
7.6 S (P (P 1) T N
(79 zzﬂ(hi—hifl)(eﬁh’_prl)h. + L
(ePhi —1)(ePhi +1) 17 N2
ePhi _ hi_ hi ¢
< 2(h1 — hi*l)e’shi—i ' eﬁﬁ;iilll + 2(}7’1 - hifl) (eﬂhiflﬁ)(eﬁ}‘i—lJrl) + ﬁ

1
gc(hi_hil‘FN?).

Now, collecting (3.1), (7.1), (7.2), (7.3) and (7.6), the statement of the lemma is therefore
proven. O

7.3. Proof of the Lemma 4.3.

Proof. We are using again the decomposition from Theorem 4.1 and expansions (4.4).
For the regular component r, we have that

1

cosh(Bhi_1)—1 cosh(Bh;)—1
7y sinh(Bh;—1) + v sinh(Bh;)

Tic1 =T Ti —Tiql
sinh(Bh; 1) sinh(Bh;)

< Y Ti1— T T~ Tiq
= % sinh(Bh;_1) sinh(Bh;)

sinh(Bh;)(r;—1 — ;) — sinh(Bhi_1)(r; — 7it1)
(cosh(Bh;) — 1) sinh(fh;_1)
+oo
1 ﬁhz 1 2n+1 ;Bh 2n+1
(77) Ti< b (2n+1)! Z ( 2n)+1 hi- )
_ n=0
=7 (cosh(Bh;)—1) smh(ﬁhz 1)

=7

“+oo
' (uf) (Bhiy)?" ¥t p2 | 1 (u )Z ) o
2 (2n+1)! 1 (2n+1)' 1—

n=0
+ (cosh(Bh;)— )smh(ﬁh, 1)

Let us first estimate the expressions from (7.7) using the first derivatives. Now we
have that
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+0oo
r’.( (Bhiza)* = (oh) Ay >
g (2n+1)! (2n+1)! hia
n=0
(cosh(Bh;) — 1) smh(ﬂhz_l)

(,Bhl L+ B ) hi — (,Bhi + 2Ry ) hi 1
(cosh(ﬁhi) — 1) sinh(Bh;_1)

(7.8) =|r;

,32n(h2n h2n )
ﬂh ~1hi Z (2n + 1)!

> % sinh(Bh;_1)

The identity (7.4) yields

g k)
(2n 4+ 1)!
IBZn(hQ h12 1)( 2(" 1) +h2(" 2)h2 1+ +hz hf(’; 2)+h2(" 1))

(2n + 1)!
n 2(n—1 n 2(n—1
B A L A G e VL
(2n + 1)! (2n)!

(7.9)

, Vn € N.

If we use the last expression from (7.9) into (7.8), together with (4.1), we get

ﬁQn(h2n h2n ) l@2n(h2 h2 )h 2(n—1)
Phi-hs ZT Phiahi Z ]
Y 7" oo S "'i +oo hoy2n
Z smh (Bhi_1) > ('522;))' sinh(Bh;_1)
n=1 n=1 :
(710) +oo ﬂthf(nfl)

! ﬂhi—l 201 ) n=1 (2TL)'
<2y Tim ~hi(hi —hi—1) - oo (Bhe)
; (2n)!

< C(hi — hi1).



UNIFORMLY CONVERGENT DIFFERENCE SCHEME FOR ... 155

For the terms from (7.7) with second derivatives we have

+oo
() LAY s I (u ) ity
2 ((2n3-)1)! i Z (2n+1)' i—
n=0
(cosh(Bh;)— )smh(ﬁh, 1)
(7.11)
) N () () prty
Z G Z G s

< (cosh(ﬁh) 1) sinh(Bh;—1) + (cosh(ﬁh) 1) sinh(Bh;—1)

Again, considering (4.1), for the first summand from the last expression from (7.11), we
have that

”(u*) (Bhi_1)?"*
Z (en+1)! i w inb(Bh_1)h? M
(7 12) (cosh(ﬁh) 1) sinh(Bh;—1) = (cosh(Bh;)—1)sinh(Bhi—1) = cosh(ﬁzh,)fl
+ hz
X . /(;;hg < 082)

while the second summand can be estimated using

+oo
v’ (u ) Bhi)> iy Bhi)?" 12
Z ( 2n)+1 i ") Phi Z E2n+)1) hy
' (u, n=
(cosh(,Bh) 1) sinh(Bh;_1) = 2 ) n, :
< (?Zn) 1) sinh(Bh;_1)
n=0
S (Bhi)?"
") Bhih? | "(uD) ﬁhf_lhiz (2n1)!
T I'l't r p’z
(7.13) ST e B
Z (2n)' smh (Bhi-1) Z smh (Bhi—1)
“+oo
85
n+1)!
_ Bhih2_ r(ul) Bhi_ihi p=
< 7‘”(/~"i ) (,Bhl)z-ﬂhtq (; ) . ﬁhzil . n=1
(ﬁh1)2n
(2n)!

< C(e + hi_1hy).

For the layer component s, first we have that
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1

$;—1—84 S84
cosh(Bh;_1)—1 , cosh(Bh;)—1 sinh(/lsh%l) o sinh(ﬁiti)
v sinh(Bh;_1) v sinh(Bh;)
< sinh(Bh;)(s;—1 — s;) — sinh(Bh;—1)(s; — sit1)
a (cosh(Bh;) — 1) sinh(Bhi_1)
I (ﬁh1)2n+1 I (,th_1)2n+1
W(Siﬂ —8;) — W(si — 8it1)
_ n=0 n=0
N ’y +OO h 2n
(’?Qn)), sinh(Bh; 1)
=1
(7.14) "
<7 ﬁ}:(si—l—Si)_ﬁhi—1(51—51+1)
>
N2n
(’B(Z;L))! sinh(fh;_1)
n=1
hi =2 h
Bhi Z (gn_i_)l)l Si—1 — ) _ﬁhi—l %( S; si—i—l)
n—1
+ vy T
Z smh (Bhi—1)
The first summand can be bounded with
,), /3:’_(51 1— 51) Bhi_ 1(51_51+1)
S BRI sinh(Bhi_y)
n=—1
(7.15) Bh, {—s SENEACRICY ]—ﬁhH {— (s hot 1L )h2>:|
< ’y /32h2
.th 1
hi_1 —iﬁ h —Mj—s/ﬁ C
< 62 5”(#1'_) ;Li _|_sll(lu;|—) < 082 <e ;2 . ;1:1 + e ;2 ) < ﬁ

For the second summand in (7.14) we get
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—+o00
2n
Bhi Z Egr}zbj&-)l)l(sz 1= — Bhi_1 Z (?:,;+11)), S; 3i+1)
fy = I 2n
(’?Zn)), sinh(Bh; 1)
n=1
+oco +oo
5 i =
’)’ Bh; n=1 .|s' 1—s'|+7'3hi71 =1 ) 55— 5511
1 oo 1= z ] s [ P
sinh(Bh;_1) +Z (Bh)? Bhi_1 +Z (Bha)"
(2n)! (2n)!
n=1 n=1
and
+oo
> Gy
2n+1
C
(7.16) e i — Si+1] N2’

In the expression

Bh;
T sinh(Bh; 1)

(7.17)

there is a ratio W Though inequality W < % holds true, the quotient
hh—il is not bounded for z; = A and € — 0. This is why we are going to estimate the
expression (7.17) separately on the transition part and on the nonequidistant part of the
mesh.

In the case 1 = N/4, we can write

~—

+oo ,Bh 2n s
Z (861 = s sinh(Bh:) — Bh

Z( )" smh(ﬁhI 1)

Si—1 — S4

cosh(Bh;) —1  sinh(Bh;_1)|’
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since S % = coshz — 1 and 3% (zf:rll), = sinhz — z, Vz € R. The function
r(z) = SBRZ=Z takes values from the interval (0,1) when z > 0. Thus
N (o)
Bhi oy (Sim1 — 84) _
(7 18) n=1 G — Slnh(ﬁhi) B lBhl . Si—1 — 8¢
A R 7| cosh(Bhi) — 1 sinh(Bhi_1)

> Er) T sinh(Bh; 1)
n=1

g InN
y sl ot O
sinh(Bh; 1) b N
“+ oo z2n .
When ¢ = N/4+1,...,N/2 — 1, we can use ”iio(i:;{)! = z(sc‘gfh“”;fl) = p(z) and
n=1 (2n)!
0 < p(z) < 3 for = > 0. Therefore
too 2n
(ﬁh 2" e (Bhs)
Phi GniDyr (Si-1 — 8i) Bh; ; (2n + 1)! C
(7.19) V| e ’Yﬂh' s 5 [sic1 — 84| < Ne
(Bh:)>" h(Bh: il (BRi)*"
(2n)! sinh(fh;_1) o
n=1 n=1 ( ’I’L)
Using (3.1), (7.10),(7.12),(7.13),(7.15),(7.16), (7.18) and (7.19) completes the proof of
the lemma. O
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