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Abstract. In this survey we aim to emphasize the e�cient role of the special func-
tions and their properties for obtaining some mapping, distortion and other character-
ization properties of the operators of the generalized fractional calculus, when acting
on the class of the univalent functions in the unit disk and some of its subclasses.
Thus we provide an uni�ed approach to attack similar problems for all particular
cases of our operators of generalized fractional integration. The results surveyed here
extend the corresponding ones for many known linear integral operators considered
in geometric function theory by various authors, as well as our previous results.

1. Introduction

Let A(n), A := A(1) denote the classes of functions of the form

(1.1) f(z) = z +

1X
k=n+1

akz
k (n 2 N = f1; 2; 3; : : : g); f(z) = z +

1X
k=2

akz
k (n = 1);

which are analytic in the unit disk U = fz : jzj < 1g. By S(n) � A(n) it is denoted

the subclass of univalent functions in U . In geometric function theory various their

subclasses have been studied. We give the denotations of those touched in this survey:

� T (n) � S(n): functions with negative coe�cients,

f(z) = z �

1X
k=n+1

akz
k; ak � 0;

� S��(n) � S(n): functions starlike of order �, 0 � � < 1, i�

<

�
zf 0(z)

f(z)

�
> �; for � = 0 : S�0(n); or S�(�); resp. S� if n = 1;

� K�(n) � S(n): functions convex of order �, 0 � � < 1, i�

<

�
1 +

zf 00(z)

f 0(z)

�
> �; for � = 0 : K0(n); or K(�); resp. K if n = 1;

� T�(n) := S�
T
T (n); L�(n) := K�(n)

T
T (n);

� note that f(z) 2 K�(n) if and only if zf 0(z) 2 S��(n);

� note that for any 0 � � < 1: S��(n) � S�0(n), K�(n) � K0(n), K�(n) � S��(n).
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In the geometric function theory (GFT), also the notion of Hadamard product (con-

volution) of two analytic functions f; q in U is used, de�ned as:

(1.2) f(z) =
1X
k=0

akz
k; g(z) =

1X
k=0

bkz
k 7! f � g(z) :=

1X
k=0

akbkz
k:

In this survey we aim to emphasize the e�cient role of the special functions and their

properties for obtaining some mapping, distortion and other characterization properties

of the operators of the generalized fractional calculus (GFC) in A(n); S(n); T (n) etc.

subclasses. We demonstrate an uni�ed approach to attack similar problems for all men-

tioned particular cases of our operators of generalized fractional integration. The results

surveyed here extend the corresponding ones for many known linear integral operators

considered in classes of univalent functions by various authors, as well as our previous

results.

2. Definitions of some special functions

We need to remind brie�y the de�nitions of some special functions used in this paper.

For details and properties, see the basic contemporary handbooks as e.g. [7], [24], [29],

[12], etc., also Appendix of [14].

De�nition 2.1. The Wright generalized hypergeometric functions p	q(z), called also

Fox-Wright functions are de�ned as:

(2.1) p	q

�
(�1; A1); : : : ; (�p; Ap)

(�1; B1); : : : ; (�q; Bq)

���� z� = 1X
k=0

�(�1 + kA1) : : :�(�p + kAp)

�(�1 + kB1) : : :�(�q + kBq)

zk

k!
:

When all A1 = � � � = Ap = 1; B1 = � � � = Bq = 1, these are reduced to the more

popular generalized hypergeometric pFq-functions, namely:

p	q

�
(�1; 1); : : : ; (�p; 1)

(�1; 1); : : : ; (�q; 1)

���� z� = !�1 pFq(�1; : : : ; �p;�1; : : : ; �q; z) ;

pFq(�1; : : : ; �p;�1; : : : ; �q; z) =

1X
k=0

(�1)k : : : (�p)k
(�1)k : : : (�q)k

zk

k!
;

with the Pochhammer symbol and the constant ! denoted as follows:

(�)k := �(�+ k)=�(�); ! :=
h qY
j=1

�(�j)=

pY
i=1

�(�i)
i
:

The series p	q are usually considered for parameters �i; �j 2 C and Ai > 0; Bj > 0, i =

1; : : : ; p; j = 1; : : : ; q, and the numbers� =
Pq

j=1Bj�
Pp

i=1Ai, r =
Qp

i=1A
�Ai

i

Qq
j=1B

Bj

j ,

� =
Pq

j=1 �j�
Pp

i=1 �i+(p�q)=2 play important role for its properties as analytic func-

tions, see e.g. [12, p.56, Th. 1.5]. If � > �1, (2.1) is absolutely convergent series for all

z 2 C, and if � = �1, then it is absolutely convergent for jzj < r and < (�) > 1=2. For

example, the pFq-function, when p � q, � � 0, is an entire function. But if p = q + 1, it

is absolutely convergent in the unit disk U = fz : jzj < 1g (r = 1), and diverges for all

z 6= 0 if p > q + 1. In the case z = 1, for q+1Fq we require the condition (see [7], �4.1)

<
� qX
j=1

�j �

q+1X
i=1

�i
	
> 0:

For the considered operators of GFC the related generalized hypergeometric functions

(m+1	m; m+1Fm) have all real parameters �i, �j (so omit the sign <), p=q + 1, r=1.
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The p	q- and pFq functions are special cases of the more general special functions

known as Fox's H-functions and Meijer's G-functions.

De�nition 2.2. By a Fox's H-function we mean a generalized hypergeometric func-

tion de�ned by means of the Mellin-Barnes type contour integral

(2.2) Hm;n
p;q

�
�

���� (ak; Ak)
p
1

(bk; Bk)
q
1

�
=

1

2�i

Z
L

mQ
k=1

�(bk �Bks)
nQ

j=1

� (1� aj + sAj)

pQ
j=n+1

� (aj � sAj)
qQ

k=m+1

�(1� bk + sBk)

�s ds;

one can see more in [24], [29], [12]. When A1 = : : :=Ap =1; B1 = : : :=Bq =1, (2.2)

turns into the simpler Meijer's G-function G
m;n
p;q , see [7, Vol.1, Ch.5], [14, Appendix].

Here L is a suitable contour in C; the orders (m;n; p; q) are integers 0 � m � q, 0 �

n � p and the parameters aj 2 R; Aj > 0 (j = 1; : : : ; p); bk 2 R; Bk > 0 (k = 1; : : : ; q)

are such that Aj(bk+ l) 6= Bk(aj � l0� 1) (l; l0 = 0; 1; 2; : : : ). For various type of contours

and conditions for existence and analyticity of these special functions inside or outside

disks � C with radii � =
Qp

j=1A
�Aj

j

Qq
k=1B

Bk

k > 0, see the mentioned handbooks.

The H- and G-functions are analytic functions of z with a branch point at the origin.

Especially, the kernel functions H
m;0
m;m and G

m;0
m;m (n = 0;m = p = q) of the operators of

generalized fractional calculus that we consider, are analytic functions in the unit disc U

and vanish identically outside it (for jzj > 1).

We like to emphasize that the H- and G-functions encompass almost all the elementary

and special functions as particular cases, and thus the knowledge on them is very useful,

see some long lists of examples in Kiryakova [14, Appendix], etc. Specially,

pFq(a1; : : : ; ap; b1; : : : ; bq;�) =
� qY
k=1

�(bk)=

pY
j=1

�(aj)
�
G
1;p
p;q+1

�
��

���� 1� a1; : : : ; 1� ap
0; 1� b1; : : : ; 1� bq

�
;

p	q

�
(a1; A1); : : : ; (ap; Ap)

(b1; B1); : : : ; (bq; Bq)

������ = 1X
k=0

�(a1 + kA1) : : :�(ap + kAp)

�(b1 + kB1) : : :�(bq + kBq)

�k

k!

= H
1;p
p;q+1

�
��

���� (1� a1; A1); : : : ; (1� ap; Ap)

(0; 1); (1� b1; B1); : : : ; (1� bq; Bq)

�
:

3. Operators of generalized fractional calculus

In the papers on classes of univalent functions, various linear integral or di�er-integral

operators have been introduced by di�erent authors which are variations or generaliza-

tions of the operators of the fractional calculus, even if not announced or observed to be

of this kind. On the other hand, several generalizations of the classical fractional calculus

have been introduced since the 70's of last century by means of various special functions

as kernel-functions, on the place of the elementary functions there, see some details in

[16], [14], and other Kiryakova's papers cited here. It was Kalla who in 1970 proposed

the most general form of the operators of generalized fractional integration, as

(3.1) If(z) = z��1
zZ

0

�(t=z)t f(t)dt =

1Z
0

�(�)� f(z�)d�;
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with an arbitrary continuous (or analytic in a disk 2 C) kernel-function �(�), instead

of the kernels (1 � �)��=�(�) of the Erdélyi-Kober (E-K), or resp. of the Riemann-

Liouville (R-L,  = 0) operators of integration of arbitrary (noninteger) order � > 0.

In Kiryakova [14], see also paper [13] and next ones, we have introduced operators of the

form (3.1) but with very suitable choice of the special functions: to be G- and H-functions

of peculiar orders (m; 0;m;m) that allow to develop a full theory with applications of the

so-called generalized fractional calculus. The generalized fractional integrals there are

based on commutable compositions of E-K operators (depending each on 3 parameters

� � 0;  and additional one � > 0) but instead of by repeated integrals, de�ned by means

of equivalent single integral operators involving H
m;0
m;m- and G

m;0
m;m- kernel functions with

vector parameters (�i)
m
1 , (i)

m
1 , (�i)

m
1 .

De�nition 3.1. Let m � 1 be an integer; �i � 0; i 2 R; �i > 0 (i = 1; : : : ;m).

We consider � = (�1; : : : ; �m) as a multi-order of fractional integration, resp.,  =

(1; : : : ; m) as multi-weight, � = (�1; : : : ; �m) as additional parameter. The integral

operators de�ned by:

(3.2) I
(i);(�i)
(�i);m

f(z)=

1Z
0

Hm;0
m;m

�
�

���� (i + �i + 1� 1=�i; 1=�i)
m
1

(i + 1� 1=�i; 1=�i)
m
1

�
f(z�)d�; if

mX
i=1

�i > 0;

or as the identity I
(i);(�i)
(�i);m

f(z) = f(z), if �1 = �2 = � � � = �m = 0, are said to be mul-

tiple (m-tuple) Erdélyi-Kober fractional integration operators. And more generally,

all the operators of the form

If(z) = z�0I
(i);(�i)
(�i);m

f(z) with �0 � 0;

are called brie�y generalized (m-tuple) fractional integrals.

The corresponding generalized fractional derivatives are denoted by D
(i);(�i)
(�i);m

and de-

�ned by means of explicit di�erintegral expressions (see [14]), similarly to the idea for the

classical Riemann-Liouville derivative. For m = 1 operators (3.2) turn into the Erdélyi-

Kober fractional integrals I
;�
� , widely used in the applied mathematical analysis and

to the classical Riemann-Liouville fractional integrals I� (with  = 0):

(3.3) I
;�
� f(z)=

1Z
0

(1� �)��1

�(�)
� f(z�1=�)d�; I�f(z)=z�

1Z
0

(1� �)��1

�(�)
f(z�)d�;

namely:
I
;�
� f(z) = I

;�
1;1 f(z); I�f(z) = z�I

0;�
1;1f(z);

form = 2 � into the hypergeometric fractional integrals (Love, Saigo, Hohlov, etc.); and

for various other special choices of m � 1 and of parameters, to many other generalized

integration and di�erentiation operators used in analysis, including in univalent functions

theory, integral transforms and special functions, di�erential and integral equations, etc.

The main feature of the generalized (m-tuple) fractional integrals is that single integrals

(3.2) involving H-functions (or G-functions in the simpler case of all equal �i = � >

0; i = 1; : : : ;m) can be equivalently represented by means of commutative compositions

of �nite number (m) of Erdélyi-Kober integrals (3.3), namely:

I
(i);(�i)
(�i);m

f(z)=

"
mY
i=1

I
k;�k
�k

#
f(z)=

1Z
0

: : :

1Z
0

h mY
i=1

(1��i)
�i�1�

i
i

�(�i)

i
f

�
z�

1

�1

1 : : : �
1

�m
m

�
d�1 : : : d�m:
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This decomposition formula is the key to numerous applications of (3.2), while the simple

but quite e�ective tools of the G- and H-functions make essentially easier their study.

Using the simple properties of the Fox H-function, evaluating the integral in (3.2)

according to our formula (E.21) from [14, App.], see also in [20], Lemma 0, one easily

obtains the following.

Lemma 3.1. For �i � 0; i 2 R; �i > 0 (i = 1; : : : ;m); and each p > max
i

[��i(i + 1)] ;

(3.4) I
(i);(�i)
(�i);m

fzpg = �p z
p with �p =

mY
i=1

�(i + 1 + p=�i)

�(i + �i + 1 + p=�i)
> 0:

Then under the conditions

(3.5) �i � 0; i � �1; �i > 0; i = 1; : : : ;m;

the image (3.4) holds for each p � 0, i.e. in the classes A, A(n) and their subclasses.

In view of formula (3.4), to stay in the classes A(n), S(n), T (n), it is suitable to

normalize the operators (3.2) by the multiplier constant N := [�1]
�1 (p = 1). Therefore,

further we consider the generalized fractional integrals (using the same name for the

normalized version, but stressing this fact by an additional �tilde� in the denotation:eI(i);(�i)(�i);m
:= [�1]

�1I
(i);(�i)
(�i);m

), as

(3.6) eI(i);(�i)(�i);m
f(z) :=

mY
i=1

�(i + �i + 1 + 1=�i)

�(i + 1 + 1=�i)
I
(i);(�i)
(�i);m

f(z) = N I
(i);(�i)
(�i);m

f(z):

Before to proceed with next statements for the properties of the operators (3.2)-(3.6),

we �rst provide some auxiliary results for the multiplier sequence �(k) that appears in

their representation as Hadamard products with the speci�c special functions. As these

are used essentially in the further proofs, we formulate them as a separate proposition.

Proposition 3.1. Let us introduce and consider the following auxiliary function of

the index k, k = n+ 1; n+ 2; � � � :

(3.7)

�(k)=

mY
i=1

h�(i + �i + 1 + 1=�i)

�(i + 1 + 1=�i)

�(i + 1 + k=�i)

�(i + �i + 1 + k=�i)

i
=N

mY
i=1

�(i + 1 + k=�i)

�(i + �i + 1 + k=�i)
:

Evidently,

(3.8) �(1) = 1 and �(k) > 0 for all k:

The following properties hold:

a)
lim
k!1

j�(k)j1=k = 1;

b) �(k) is nonincreasing function of k, therefore

(3.9) 0 < �(k) � �(n+ 1) for each k � n+ 1:

Proof. For brevity, denote

(3.10) ai = i + �i + 1; bi = i + 1; �i = k=�i; i = 1; : : : ;m; k = n+ 1; : : : ;

from where and according to (3.5), we have ai � bi, and �i ! 1 as k ! 1. To prove

a), we use the known asymptotic formula for the �-function ([7, �1.18, (4)]):

�(b+ �)

�(a+ �)
� �b�a as �!1; which yields

�
�(bi + �)

�(ai + �)

�1=k
�
�
���ii

�1=k
=
�
k1=k

���i
� q

1=k
i
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with qi := ��ii , and the limit equalities lim
k!1

k1=k = 1; lim
k!1

q
1=k
i = 1 for qi = const;

give:

lim
�i!1

�
�(bi + �i)

�(ai + �i)

�1=k
= 1; and also lim

k!1

�
�(ai + 1=�i)

�(bi + 1=�i)

�1=k
= 1; i = 1; : : : ;m:

We have then

lim
k!1

j�(k)j1=k = lim
k!1

N1=k � lim
k!1

mY
i=1

�
�(bi + �i)

�(ai + �i)

�1=k
= 1 � 1 = 1:

To verify b), we start with the fact that the digamma function 	(x) = �
0

(x)=�(x) is in-

creasing for all x > 0, since 	
0

(x) > 0 for all x 6= �j; j = 0; 1; 2; :::, see the representation

of 	(n)(x), [7, �1.16,(9)], [24, II, �3/eq.4 on p.723]. Therefore,

	(x+ ") =
�0(x+ ")

�(x+ ")
>

�0(x)

�(x)
= 	(x) for " > 0;

or, the auxiliary function e�(x) := �(x+ ")

�(x)
has a positive derivative

e�0(x) = �0(x+ ")�(x)� �(x+ ")�0(x)

�2(x)
> 0 for x > 0; " > 0:

Then, e�(x) is also an increasing function, and so,

�(x+ ")

�(x)
�

�(y + ")

�(y)
whenever x � y > 0:

From this, by the replacement " 7! 1=�i; x 7! ai + k=�i; y 7! bi + k=�i (according to

the notations assumed in beginning of the proof) and by ai � bi > 0, we have for each

i = 1; : : : ;m:

�(ai + (k + 1)=�i)

�(ai + k=�i)
�

�(bi + (k + 1)=�i)

�(bi + k=�i)
:

Thus the required nonincreasing property for �(k) follows:

�(k)

�(k + 1)
=

mY
i=1

�(bi + k=�i)

�(bi + (k + 1)=�i)
�
�(ai + (k + 1)=�i)

�(ai + k=�i)
� 1;

and

0 < �(k) � �(n+ 1) for each k � n+ 1:

�

Then, we continue with properties of the generalized fractional integrals in the

considered classes of analytic functions.

Theorem 3.1. Under the parameters' conditions (3.5), the generalized fractional

integral eI(i);(�i)(�i);m
maps the class A(n) into itself, and the image of a power series

(1.1) has the form

(3.11) eIf(z) = eI(i);(�i)(�i);m

(
z +

1X
k=n+1

akz
k

)
= z +

1X
k=n+1

�(k) akz
k 2 A(n);

with multipliers' sequence �(k) as de�ned in (3.7).
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Proof. Under the assumptions of the theorem, Lemma 3.1 guarantees thateI(i);(�i)(�i);m
fzg = z and eI(i);(�i)(�i);m

fzkg =
�k
�1

zk = �(k) zk;

and term-by-term integration of power series (1.1) gives series (3.11). By virtue of the

Cauchy-Hadamard formula, the radius of convergence of the �rst series, as an analytic

function in the unit disk, is R =

�
lim
k!1

jakj
1=k

��1
� 1, and that of the latter series is

calculated, in view of Proposition 3.1, a), as

eR =

�
lim
k!1

�
jakj

1=k
� j�(k)j1=k

���1
=

�
lim
k!1

jakj
1=k

��1
= R � 1;

Therefore the image eI(i);(�i)(�i);m
f(z) given by series (3.11) is analytic in the unit disc, too.

Note that due to positiveness of the multipliers �(k), see (3.8), series with positive (like

in A(n)) and negative (like in T (n)) coe�cients map into series of the same kind. �

Theorem 3.2. In the class A(n) the generalized fractional integral (3.6) can be

represented by the Hadamard product (1.2) in U as

(3.12) eI(i);(�i)(�i);m
f(z) = (h�f)(z); with the function h(z) = z+

1X
k=n+1

�(k)zk 2 A(n);

expressed by the Wright generalized hypergeometric function (2.1):

(3.13) h(z) = z +Nzn+1m+1	m

�
(1; 1); (i + 1 + (n+ 1)=�i; 1=�i)

m
1

(i + �i + 1 + (n+ 1)=�i; 1=�i)
m
1 z

���� z� ;
where the normalizing constant N = 1=�1 is as in (3.6).

Proof. In the expression for h(z) we change the index of summation k to j via k =

j + (n + 1), using the denotations from (3.10) and for briefness, put additionally ci =

ai + (n+ 1)=�i; di = bi + (n+ 1)=�i; i = 1; : : : ;m; k = n+ 1; : : : . Thus we get

h(z) = z +

1X
k=n+1

�(k)zk = z +
zn+1

�1

1X
j=0

�j+(n+1) z
j = z +

zn+1

�1

1X
j=0

n
�(1 + j)

�

mY
i=1

�(di + j=�i)

�(ci + j=�i)

ozj
j!

= z +
zn+1

�1
m+1	m

�
(1; 1); (d1; 1=�1); : : : ; (dm; 1=�m)

(c1; 1=�1); : : : ; (cm; 1=�m)

���� z� ;
according to the de�nition (2.1), which gives (3.13). �

Remark. If we ignore the requirement for the convolution function h(z) to be in same

class A(n), we can look for a function analytic in U of the form ĥ(z) = b0+b1z+b2z
2+ ::::

with the only condition bk = �(k), i.e. b1 = 1, but bk 6= 0; k = 0; 1; 2; :::; n; n+1; :::. ThuseI(i);(�i)(�i);m
f(z) = (ĥ � f)(z) = a0b0 + a1b1z + a2b2z

2 + :::+ anbnz
n + an+1bn+1z

n+1 + :::

= z+an+1bn+1z
n+1+:::; having in mind that a0 = 0; a1 = 1; a2 = ::: = an = 0; for n � 2;

since f 2 A(n). Then ĥ(z) is represented much simpler as the Wright function

ĥ(z) = N m+1	m

�
(1; 1); (i + 1; 1=�1)

m
1

(i + �i + 1; 1=�1)
m
1

���� z� ; analytic in U:

Corollary 3.1. For n = 1 the representation of the �convolution function� h(z) in

(3.12) in the classes A;S and T simpli�es as:

h(z) = z +Nz2 m+1	m

�
(1; 1); (i + 1 + 2=�i; 1=�i)

m
1

(i + �i + 1 + 2=�i; 1=�i)
m
1

���� z� 2 A:
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Corollary 3.2. When all �i = � > 0 (i = 1; : : : ;m); and especially for shortness of

denotations it is taken � = 1, for the generalized fractional integrals with Meijer's

G-function in the kernel;

(3.14) eI(i);(�i)1;m f(z) := eI(i);(�i)(1;1;:::;1);mf(z) = N

1Z
0

Gm;0
m;m

�
�

���� (i + �i)
m
1

(i)
m
1

�
f(z�)d�;

we get the simpler representation of multipliers' sequence �(k) :

�(k) =

mY
i=1

(i + 2)k�1
(i + �i + 2)k�1

> 0; k = n+ 1; n+ 2; : : : ;

with (a)k = �(a+k)=�(a) denoting the known Pochhammer symbol, and respectively,

for the convolution function h(z) as follows:

h(z) = z +

mY
i=1

(i + 2)n
(i + �i + 2)n

zn+1 m+1Fm

�
1; (i + 2 + n)m1

(i + �i + 2 + n)m1

���� z� 2 A(n):

For n = 1 (i.e. in the classes A;S; T ); h(z) simpli�es to a m+1Fm-generalized hyper-

geometric function:
h(z) = z + z2 m+1Fm

�
1; (i + 3)

m
1

(i + �i + 3)
m
1

���� z� 2 A:

4. Distortion inequalities and some characterization theorems

Here we provide some examples of distortion inequalities in terms of the generalized

fractional integration operators (3.6). We use the following auxiliary results.

Lemma 4.1. (Chatterjea [6]) Let the function f(z) 2 A(n). Then f(z) is in the class

T�(n), resp. in L�(n), if and only if

(4.1)

1X
k=n+1

k � �

1� �
ak � 1; resp.

1X
k=n+1

k(k � �)

1� �
ak � 1:

Applying Lemma 4.1 and Theorem 3.1, we obtain the following distortion theorems.

Theorem 4.1. Let conditions (3.5) be satis�ed and f(z) de�ned by (1.1) belong to

the class T�(n). Then the following inequalities hold for each n � 1 and z 2 U :

(4.2)
���eI(i);(�i)(�i);m

f(z)
��� � jzj �

1� �

n+ 1� �
�(n+ 1) jzjn+1

and

(4.3)
���eI(i);(�i)(�i);m

f(z)
��� � jzj+

1� �

n+ 1� �
�(n+ 1) jzjn+1;

where the multiplier �(n+ 1) is de�ned as in (3.7), namely:

(4.4) �(n+ 1) =

mY
i=1

�(i + 1 + (n+ 1)=�i) �(i + �i + 1 + 1=�i)

�(i + �i + 1 + (n+ 1)=�i) �(i + 1 + 1=�i)
> 0:

Equalities in (4.2) and (4.3) are attained by the function

f(z) = z �
1� �

n+ 1� �
zn+1:

Theorem 4.2. Let conditions (3.5) be satis�ed and the function f(z) de�ned by (1.1)

belong to the class L�(n). Then the following inequalities hold for n � 1 and z 2 U :



THE ROLE OF SPECIAL FUNCTIONS AND GENERALIZED FRACTIONAL CALCULUS. . . 169

(4.5)
���eI(i);(�i)(�i);m

f(z)
��� � jzj �

1� �

n+ 1� �

�(n+ 1)

n+ 1
jzjn+1

and

(4.6)
���eI(i);(�i)(�i);m

f(z)
��� � jzj+

1� �

n+ 1� �

�(n+ 1)

n+ 1
jzjn+1;

where the multiplier �(n+1) is de�ned as above, (4.4). Equalities in (4.5) and (4.6)

are attained by the function

f(z) = z �
1� �

(n+ 1)(n+ 1� �)
zn+1:

Proof of Theorems 4.1 and 4.2. The main point in this proof is that the multiplier

function �(k) is nonincreasing, see Proposition 3.1, b), that is,

0 < �(k) � �(n+ 1) for each k � n+ 1:

Then, for f(z) 2 T�(n) with image of the form (3.11) with negative coe�cients,���eI(i);(�i)(�i);m
f(z)

��� � jzj �

�����
1X

k=n+1

�(k) akz
k

�����
� jzj � �(n+ 1)jzjn+1

1X
k=n+1

ak � jzj � �(n+ 1)jzjn+1
1� �

n+ 1� �
;

since in view of Lemma 4.1 (see (4.1)), we have also
1X

k=n+1

ak �
1� �

n+ 1� �
:

Thus, inequality (4.2) is obtained. The next inequality (4.3) can be proved similarly, and

Theorem 4.2 follows in analogous way by application of the same lemma, but the second

inequality in (4.1). Details can be found in Kiryakova et al. [21]. �

Corollary 4.1. Setting n = 1 and � = 0, we obtain for the subclasses of starlike and

convex functions in U with negative coe�cients, respectively:

f 2 S� \ T (1) =) jeIf(z)j � jzj �
�(2)

2
jzj2; jeIf(z)j � jzj+

�(2)

2
jzj2

f 2 K \ T (1) =) jeIf(z)j � jzj �
�(2)

4
jzj2; jeIf(z)j � jzj+

�(2)

4
jzj2

with the multiplier

�(2) =

mY
i=1

�(i + 1 + 2=�i)�(i + �i + 1 + 1=�i)

�(i + �i + 1 + 2=�i)�(i + 1 + 1=�i)
:

Remark. The case m = 1 gives corresponding estimates for the classical Erdélyi-Kober

operators (3.3).

As applications of the above general results, we can derive the same kind for the

operators of Saigo and Hohlov as well as for the fractional integrals involving the Appell's

F3-function, etc. special cases in Section 5.

Now we consider some su�cient conditions for the operators of generalized frac-

tional calculus to produce starlike and convex functions. From Silverman's results

[27], one can formulate the following auxiliary lemmas.
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Lemma 4.2. ([27]) If the function f(z) 2 A(n) satis�es the condition

(4.7)

1X
k=n+1

kjakj � 1;

then f(z) 2 S�(n). The equality in (4.7) is attained by the function

g1(z) = z + "(n+ 1)

1X
k=n+1

zk

k2(k + 1)
(" = const; j"j = 1; z 2 U):

Lemma 4.3. ([27]) If the function f(z) 2 A(n) satis�es the condition

(4.8)

1X
k=n+1

k2jakj � 1;

then f(z) 2 K(n). The equality in (4.8) is attained by the function

g2(z) = z + "(n+ 1)

1X
k=n+1

zk

k3(k + 1)
(" = const; j"j = 1; z 2 U):

Then, for the generalized fractional integrals (3.6) we obtain the following su�cient

conditions.

Theorem 4.3. Under the condition (3.5), if the function f(z) 2 A(n) de�ned by

(1.1) satis�es

(4.9)

1X
k=n+1

kjakj �
1

�(n+ 1)
;

then eI(i);(�i)(�i);m
f(z) belongs to the class S�(n).

Proof. We use again the inequality (3.9) for �(k), Proposition 3.1, b). Then, for the

function eIf(z) = z +

1X
k=n+1

bkz
k with coe�cients bk = �(k)ak;

we obtain
1X

k=n+1

kbk � �(n+ 1)

1X
k=n+1

kak � 1: �

Analogously, using Lemma 4.3, we obtain

Theorem 4.4. Under condition (3.5), if the function f(z) 2 A(n) satis�es

(4.10)

1X
k=n+1

k2jakj �
1

�(n+ 1)
;

then eI(i);(�i)(�i);m
f(z) belongs to the class K(n).

Details can be found in Kiryakova et al. [21].

Remark. Examples of functions satisfying conditions (4.9), (4.10) are the functions

g3(z) = z +
1

�(k0)

zk0

k0
and g4(z) = z +

1

�(k0)

zk0

k20
; resp., with some k0 > n+ 1:

Another circle of rather general results are theorems about preserving the univalency

of functions, under operators of GFC. For simplicity, we consider univalent functions from

the class A (n = 1).



THE ROLE OF SPECIAL FUNCTIONS AND GENERALIZED FRACTIONAL CALCULUS. . . 171

Theorem 4.5. Let eIf(z) = eI(i);(�i)(�i);m
f(z) = h(z) � f(z), with convolution function

h(z) being the Wright hypergeometric function (3.13), be the normalized generalized

fractional integration operator (3.6) in the class A. Suppose that its parameters

i; �i; �i; i = 1; : : : ;m satisfy conditions (3.5) and additionally,
mP
i=1

�i > 3, i.e.

i > �1; �i � 0; �i > 0; i = 1; : : : ;m; �1 + �2 + :::+ �m > 3;

as well as the inequality

m+1	m

�
(3; 1); (i + 1 + 3=�i; 1=�i)

m
1

(i + �i + 1 + 3=�i; 1=�i)
m
1

���� 1�+3m+1	m

�
(2; 1); (i + 1 + 2=�i; 1=�i)

m
1

(i + �i + 1 + 2=�i; 1=�i)
m
1

���� 1�
(4.11)

+m+1	m

�
(1; 1); (i + 1 + 1=�i; 1=�i)

m
1

(i + �i + 1 + 1=�i; 1=�i)
m
1

���� 1� < 2�1 = 2

mY
i=1

u
�(i + 1 + 1=�i)

�(i + �i + 1 + 1=�i)
:

Then for each univalent function f in A, the image eIf is also univalent, that is,eI : S 7! S.

Proof. The details of the proof have been given in [20], and for the more general case

of the Dziok-Srivastava operator with convolution function p	q (arbitrary p � q + 1)

in [18], [19]. It is based on a result of Avhadiev and Aksent'ev [2] that for the image-

function eIf(z) = z +
1P
k=2

�(k)akz
k to be univalent function, it is su�cient to have �1 =

1P
k=2

�(k)ak < 1, and on using the well-known estimate (de Branges' theorem [5]) for the

coe�cients of the univalent function f(z) = z +
1P
k=2

akz
k 2 A, namely: jakj � k.

The point we like to stress is that all rest of the proof uses algebra with the �- and

factorial functions, and properties of the Wright hypergeometric function m+1	m and

its values at the boundary point z = 1, as these in (4.11). For the mentioned Dziok-

Srivastava operator ([8], [9]) the function p	q is concerned, while in the simpler case of

G-function operator (3.14) with all equal �i=�>0, the function is m+1Fm. �

A similar theorem provides conditions, again in terms of the values of m+1	m(1), foreI : K 7! S, that is for mapping the convex functions in univalent functions.

5. Special cases of the generalized fractional integrals used often in GFT

The results from Sections 3, 4 and the others from our papers [17], [18], [19], [20], [21],

etc., can be specialized for a great number of linear integral operators used in Geometric

Function Theory, starting from the classical operators of Biernacki, Libera, Bernardi,

Komatu, Rusheweyh, Saigo, Hohlov, Srivastava and Owa, and going to the more

general operators studied recently by di�erent authors, say Dziok-Srivastava operators

[8], [9], [28]. To this end it is enough to choose suitable particular parameters m;i; �i; �i
(i = 1; :::;m) for the operators (3.6) of the generalized fractional calculus (GFC).

We list below examples, and their presentation in the denotations of (3.2)-(3.6).

For m = 1, we have the examples (see longer list and more details in [14], [16], [17]):

Biernacki operator : ([4]) Bf(z) = I
�1;1
1;1 f(z) = log(

1

1� z
) � f(z) =

zZ
0

f(�)

�
d�;
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Libera operator : Lf(z) = 2I
0;1
1;1f(z) = z 2F1(1; 2; 3; z) � f(z) =

2

z

zZ
0

f(�)d�;

Generalized Libera operator : ([23]) Bcf(z) = (c+1)I
c�1;1
1;1 f(z)=

c+1

zc

zZ
0

�c�1f(�)d�

= zc+12F1(1; c+1; c+2; z)�f(z); For integer c 2 N; it is called Bernardi operator ([3]);

Carlson-Sha�er operator : L(a; c)f(z) =
�(c)

�(a)
I
a�2;c�a
1;1 f(z) = z 2F1(1; a; c; z) � f(z)

=
�(c)

�(a)�(c� a)

1Z
0

(1� �)c�a�1�a�2f(z�)d�:

Examples of GFC operators for m = 2 are the so-called hypergeometric integral op-

erators of Hohlov and Saigo. Let us pay here some more attention on them.

In [10],[11] Hohlov introduced the hypergeometric operator F(a,b,c) (we call it as

Hohlov operator) de�ned in the class A by means of the Hadamard product with the

Gauss hypergeometric function 2F1(a; b; c; z):

(5.1) F(a; b; c)f(z) = fz 2F1(a; b; c; z)g � f(z):

We can write (5.1) in terms of the GFC operators (3.2)-(3.6) with m = 2, as:

F(a; b; c) =
�(c)

�(a)�(b)
I
(a�2;b�2);(1�a;c�b)
1;2 = eI(a�2;b�2);(1�a;c�b)1;2 :

Another class of hypergeometric fractional integration operators has been introduced

by Saigo [25] (see [15]) for solving the Euler-Darboux equation, and studied from view

of univalent functions' theory in series of papers by Srivastava, Saigo and Owa, as for

example [30]. This linear integral operator, named as Saigo operator, can be represented

also as a generalized fractional integral in the sense of (3.2) with m = 2 (details in [15]):

I
�;�;�
0;z f(z)=

z����

�(�)

zZ
0

(z��)��12F1

�
�+�;��

�

���� 1� �

z

�
f(�)d�=z��I

(���;0);(��;�+�)
1;2 f(z):

To preserve the class A, the Saigo operator is normalized by the constant N , in this case

as eI�;�;�0;z f(z) :=
�(2� �)�(2 + �+ �)

�(2� � + �)
z� I

�;�;�
0;z f(z):

Operators (3.2)-(3.6) with �multiplicity� m > 2 have been not so popular. Such one

is the Saigo operator (see in [14], [15]) with the Appel F3-function in the kernel, that is,

an operator (3.2) with m = 3:

I(�;�0; �; �0; )f(z) = z��
zZ

0

(z � �)�1

�()
���

0

F3

�
�;�0; �; �0; ; 1�

�

z
; 1�

z

�

�
f(�)d�

= z����
0+

1Z
0

G
3;0
3;3

�
�

���� �� �0 + �;  � 2�0;  � �0 � �0

�� �0; � � �0;  � 2�0 � �0

�
f(z�)d�

= z����
0+ I

(���0;���0;�2�0
��0);(�;��0

��;�0)
1;3 f(z):
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A typical example of (3.2) with arbitrary m > 2 is given by the integral operator

L = z�I
(1;:::;m);(1;1;:::1)
(�;:::;�);m which is the linear right inverse to the so-called hyper-Bessel

di�erential operator, introduced by Dimovski (see in [14, Ch.3]), having the form

B = z�0
d

dz
z�1

d

dz
: : :

d

dz
z�m = z��

mY
i=1

�
z
d

dz
+ �k

�
; � > 0; �i; i 2 R:

In this relation, let us mention the Salagean di�erential operator ([26], e.g. [22]), de�ned

in A for functions f(z) of the form (1.1) and for m = 1; 2; 3; ::: by the recurrence relation

S0f(z)=f(z);S1f(z)=zf
0

(z); : : : ; Smf(z)=S1 (Sm�1f(z))=z +

1X
k=2

kmakz
k:

This operator can be seen as an interesting case of hyper-Bessel di�erential operator with

� = 1 and all k = �1; �k = 1, k = 1; :::;m. Its linear right inverse operator is the

integral operator of Alexander ([1], see e.g. [22]): Am, m = 1; 2; 3:::,

A0f(z)=f(z); A1f(z)=

1Z
0

f(�)

�
d�; ::: ; Amf(z)=A1(Am�1f(z))=z +

1X
k=2

1

km
akz

k;

which can be written in the form of generalized fractional integral, namely:

Amf(z)=I
(�1;�1;:::;�1);(1;1;:::;1)
(1;:::;1);m f(z); put �(k) = 1=km=[�(k)=�(1+k)]

m
in (3.7):

The above list of examples of operators of classical and generalized fractional calculus,

that are special cases also of the more general Dziok-Srivastava operator (we treated

similarly in [18]), shows that great amount of results in GFT � some of them mentioned

here, in other our papers, as well as from many papers of di�erent authors, can be obtained

from the considered general case by suitable choice of parameters for each particular

operator. Once again, we emphasize that these results � in the mentioned general

case, are obtained by the e�cient use of the special functions as tools, thus providing

an uni�ed approach.
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