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ABSTRACT. In this survey we aim to emphasize the efficient role of the special func-
tions and their properties for obtaining some mapping, distortion and other character-
ization properties of the operators of the generalized fractional calculus, when acting
on the class of the univalent functions in the unit disk and some of its subclasses.
Thus we provide an unified approach to attack similar problems for all particular
cases of our operators of generalized fractional integration. The results surveyed here
extend the corresponding ones for many known linear integral operators considered
in geometric function theory by various authors, as well as our previous results.

1. INTRODUCTION

Let A(n), A := A(1) denote the classes of functions of the form

(oo} oo
(11) f2)=z+ > az® (neN={1,2,3,...}), f(z)=z+) az® (n=1),
k=n-+1 k=2
which are analytic in the unit disk U = {2z : |z| < 1}. By S(n) C A(n) it is denoted
the subclass of univalent functions in U. In geometric function theory various their
subclasses have been studied. We give the denotations of those touched in this survey:

- T(n) C S(n): functions with negative coeflicients,
[e.e]
fz)=2z- Z apz®, ax > 0;
k=n-+1
- S8%(n) C S(n): functions starlike of order o, 0 < o < 1, iff

1
%{zf (Z)} >a, fora=0: S5(n), or S*(a), resp. S* if n=1;

- K4(n) C S(n): functions convez of order o, 0 < o < 1, iff
"
8%{1 + z}‘l(iz))} >a, fora=0: Ky(n), or K(a), resp. K ifn=1,
—Ta(n) == Sa N T(n); La(n):=Ka(n)NT(n);
— note that f(z) € K,(n) if and only if zf'(z) € Sk(n);
— note that for any 0 < a < 1: S%(n) C S§(n), Ka(n) C Ko(n), Ka(n) C Ski(n).
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162 V. KIRYAKOVA

In the geometric function theory (GFT), also the notion of Hadamard product (con-
volution) of two analytic functions f, ¢ in U is used, defined as:

(1.2) flz)= Z arz®, g Z bpz® = frg(z Z apbrz®.
k=0

k=0

In this survey we aim to emphasize the efficient role of the spec1a1 functions and their
properties for obtaining some mapping, distortion and other characterization properties
of the operators of the generalized fractional calculus (GFC) in A(n),S(n),T(n) etc.
subclasses. We demonstrate an unified approach to attack similar problems for all men-
tioned particular cases of our operators of generalized fractional integration. The results
surveyed here extend the corresponding ones for many known linear integral operators
considered in classes of univalent functions by various authors, as well as our previous
results.

2. DEFINITIONS OF SOME SPECIAL FUNCTIONS
We need to remind briefly the definitions of some special functions used in this paper.

For details and properties, see the basic contemporary handbooks as e.g. [7], [24], [29],
[12], etc., also Appendix of [14].

Definition 2.1. The Wright generalized hypergeometric functions ,¥4(z), called also
Foz-Wnright functions are defined as:

(o1,A1),...,(p, A ] a1 +kA) ... T(ap + kAp) 2*
2.1 v —.
21 | Gy ZP Bi + kBy).. T(B, + kBy) M
When all Ay = --- = A, =1,B; = --- = By = 1, these are reduced to the more

popular generalized hypergeometric qu—functions, namely:

D,...,(ap,1 ~
¥ |: ((;.;1:1;”22571)) Z:| - 1pF:o(a17...7ap;ﬂ11~-~7ﬂq; 2)7

qu(a17~..7aP’ﬁ17"'7ﬁQ’ z)_l;)(ﬂl)k(ﬁqp)k k'’

with the Pochhammer symbol and the constant_w denoted as follows:

(a)g :=T(a+k)/T'(a), w:= “_[I‘,BJ /HI‘ az]

The series , ¥, are usually considered for parameters a;, 5; € C and A >0, B; > 0,:=

1,...,p;7=1,. ..,q,andthenumbersA:Zglej—ZleAi,'r: LA As i 1BJBJ',
uw= Z] 1B —> i 1 a;+(p—q)/2 play important role for its propertles as analytic func-

tions, see e.g. [12 p.56, Th. 1.5]. If A > —1, (2.1) is absolutely convergent series for all
z € C, and if A = —1, then it is absolutely convergent for |z| < r and R (u) > 1/2. For
example, the , F-function, when p < g, A > 0, is an entire function. But if p=¢+1, it
is absolutely convergent in the unit disk U = {z : |z| < 1} (r = 1), and diverges for all
z#0ifp>qg+ 1. In the case z =1, for q+1F we require the condition (see [7], §4.1)

%{Zﬁj Za1}>0

For the considered operators of GFC the related generalized hypergeometric functions
(m+1%Ym, m+t1Fm) have all real parameters ;, 8; (so omit the sign ), p=¢+1, r=1.
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The p,¥4- and ,F,; functions are special cases of the more general special functions
known as Fox’s H-functions and Meijer’s G-functions.

Definition 2.2. By a Foz’s H-function we mean a generalized hypergeometric func-
tion defined by means of the Mellin-Barnes type contour integral

[T T(bk — Bus) [I T (1 — a; + s4;)

H 1 = i—
(2.2) H® |:0' ((Zk’gk;; ] =5 pk : ? lq o° ds,
: ) by
Sk 2 11 T(aj—sA;) I T(1—bg+sBy)
j=n+1 k=m-+1
one can see more in [24], [29], [12]. When A1 =...=A,=1,B1=...=B;=1, (2.2)

turns into the simpler Meijer’s G-function Gpy", see [7, Vol.1, Ch.5], [14, Appendix].

Here £ is a suitable contour in C, the orders (m,n,p,q) are integers 0 < m < g, 0 <
n < p and the parameters a; € R, 4; >0 (7 =1,...,p), by €ER, By >0(k=1,...,9)
are such that A;(b; +1) # By(a; —I'—1) (,I' =0,1,2,...). For various type of contours
and conditions for existence and analyticity of these special functions inside or outside
disks C C with radii p = ?:1 A;Aj F Bf’c > 0, see the mentioned handbooks.
The H- and G-functions are analytic functions of z with a branch point at the origin.
Especially, the kernel functions HZZZ;% and ijgn (n =0,m = p = gq) of the operators of
generalized fractional calculus that we consider, are analytic functions in the unit disc U
and vanish identically outside it (for |z| > 1).

We like to emphasize that the H- and G-functions encompass almost all the elementary
and special functions as particular cases, and thus the knowledge on them is very useful,

see some long lists of examples in Kiryakova [14, Appendix], etc. Specially,

l1—aq,...,1—a
pFalar, ..., apiby, ..., kl_[lrbk/nra-’ pq+l 0,1—b1,...,1—gq]’

(a’17A1)7 EERE} (aP7A17)

7 U} B i T(a1 + kA1) .. .T(ap + k4p) oF
PR\ (by,By),...,(by, By) " £ T(by +kBy)...T(b + kBy) k!
gt |yl (—andh),. ( — ap, Ap)
patt (0’1) ( blaBl) ( bq’BQ) .

3. OPERATORS OF GENERALIZED FRACTIONAL CALCULUS

In the papers on classes of univalent functions, various linear integral or differ-integral
operators have been introduced by different authors which are variations or generaliza-
tions of the operators of the fractional calculus, even if not announced or observed to be
of this kind. On the other hand, several generalizations of the classical fractional calculus
have been introduced since the 70’s of last century by means of various special functions
as kernel-functions, on the place of the elementary functions there, see some details in
[16], [14], and other Kiryakova's papers cited here. It was Kalla who in 1970 proposed
the most general form of the operators of generalized fractional integration, as

z

(3.1) Tf(z) = 277*1/ (t/z)t" f(t) /<I> )o7 f(zo)do,
0

0
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with an arbitrary continuous (or analytic in a disk € C) kernel-function (o), instead
of the kernels (1 — 0)%07/T'(8) of the Erdélyi-Kober (E-K), or resp. of the Riemann-
Liouwille (R-L, v = 0) operators of integration of arbitrary (noninteger) order § > 0.

In Kiryakova [14], see also paper [13] and next ones, we have introduced operators of the
form (3.1) but with very suitable choice of the special functions: to be G- and H-functions
of peculiar orders (m, 0, m,m) that allow to develop a full theory with applications of the
so-called generalized fractional calculus. The generalized fractional integrals there are
based on commutable compositions of E-K operators (depending each on 3 parameters
§ > 0,~ and additional one f > 0) but instead of by repeated integrals, defined by means
of equivalent single integral operators involving H;?,’Pn— and G%j?n— kernel functions with
vector parameters (6;)7, (7:)7, (B:)7

Definition 3.1. Let m > 1 be an integer; 6; > 0,7 € R, > 0 (z = 1,...,m).
We consider § = (61,...,0m) as a multi-order of fractional integration, resp., v =
(V1,---,Ym) as multi-weight, = (B1,...,Pm) as additional parameter. The integral
operators defined by'

m,0 ’n+5i+1—1/ﬁi,1/ﬁi)rln} om |
/H [ ‘ (i +1—1/8:i,1/8)™ f(zo)do, of ;5z>o,

or as the identity I((g; Si )f(z) = f(2), f 6, =63 =--- =6, =0, are said to be mul-
tiple (m-tuple) Erdélyi-Kober fractional integration operators. And more generally,
all the operators of the form

If(z) = 21380 f(2) with 6 >0,

are called briefly generalized (m-tuple) fractional integrals.

(3.2) I (ﬁ ) N

The corresponding generalized fractional derivatives are denoted by Dggi;ﬁ’) and de-
fined by means of explicit differintegral expressions (see [14]), similarly to the idea for the
classical Riemann-Liouville derivative. For m = 1 operators (3.2) turn into the Erdély:-
Kober fractional integrals Iv’ , widely used in the applied mathematical analysis and
to the classical Riema,nn—qumlle fractional integrals I° (with v = 0):

o [0 e [1=o)
(3.3) Ig‘sf(z)_O/N(s)a f(z0*P)do, I5f(z)_z50/l_‘(6)f(za)da,

namely: 13°5@) = (), P5(2) = D152,

for m = 2 —into the hypergeometric fractional integrals (Love, Saigo, Hohlov, etc.); and
for various other special choices of m > 1 and of parameters, to many other generalized
integration and differentiation operators used in analysis, including in univalent functions
theory, integral transforms and special functions, differential and integral equations, etc.
The main feature of the generalized (m-tuple) fractional integrals is that single integrals
(3.2) involving H-functions (or G-functions in the simpler case of all equal 8, = § >
0,:7=1,...,m) can be equivalently represented by means of commutative compositions
of finite number (m) of Erdelyz Kober mtegrals (3.3), namely:

IG5 f(2)= [ﬁfgi’ék] / / ,)1071}f<wfl. Uml>d01 . dom.

=1



THE ROLE OF SPECIAL FUNCTIONS AND GENERALIZED FRACTIONAL CALCULUS... 165

This decomposition formula is the key to numerous applications of (3.2), while the simple
but quite effective tools of the G- and H-functions make essentially easier their study.

Using the simple properties of the Fox H-function, evaluating the integral in (3.2)
according to our formula (E.21) from [14, App.], see also in [20], Lemma 0, one easily
obtains the following.

Lemma 3.1. Foré$, > 0,7, € R,5;, >0(:=1 ...,m), and each p > max [—f;(v; + 1)],
rsoucs (v +14+p/B:)

3.4 2P Ap 2P with A, = > 0.

(&4 feom 127 = : HP%M +1+p/B:)

Then under the conditions

(3.5) 6 >0, yw>-1, Bi>0, i=1,...,m,

the image (3.4) holds for eachp > 0, 1.e. in the classes A, A(n) and their subclasses.

In view of formula (3.4), to stay in the classes A(n), S(n), T(n), it is suitable to
normalize the operators (3.2) by the multiplier constant N := [A\;]™! (p = 1). Therefore,
further we consider the generalized fractional integrals (using the same name for the

normalized version, but stressing this fact by an additional “tilde” in the denotation:
Fri):(8:) A 1_7(%) +(84)
lipim” = Pal " (g m"), a8
T PO+ 8+ 14+ 1/B:i) (v:).(5:) (7:),(82)
3.6 I NI .
( ) (ﬁ)m f() H P(7i+1+1/,6i) (8:),m f() (B:),m f(Z)

i=1

Before to proceed with next statements for the properties of the operators (3.2)-(3.6),

we first provide some auxiliary results for the multiplier sequence (k) that appears in

their representation as Hadamard products with the specific special functions. As these
are used essentially in the further proofs, we formulate them as a separate proposition.

Proposition 3.1. Let us introduce and consitder the following auziliary function of
the indez k, k=n+1,n+2,---:
(3.7)
m m
Plyi+di+1+1/8) T(vi+1+Ek/Bi) T(yi +1+k/Bi)
o(k)=]] [ ] N H
=1

HUT(w+1+1/8) Tu+6+1+k/8) T(vi+6&+1+k/B:)
Ewidently,

(3.8) f(1)=1 and 6(k) >0 forall k.

The following properties hold:

a)
lim |6(k)[** = 1;
k—o0

b) 6(k) ts nonincreasing function of k, therefore

(3.9) 0<8(k)<8(n+1) foreach k>n+1.

Proof. For brevity, denote

(3.10) a;=7%+6+1, b =v+1, K,i:k/ﬁi, t=1,....m k=n+1,...,
from where and according to (3.5), we have a; > b;, and k; — o0 as k — oco. To prove
a), we use the known asymptotic formula for the I-function ([7, §1.18, (4)]):

T+K) b i T+ )17 aNYE ey
mwn as kK — 00, which yields [W N(/{i ) _(k ) -g;
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with ¢; = ,3 , and the limit equalities klim k/E =1, hm ql/k =1 for g¢; = const,
—00
give:
) N1/k ) N11/k
lim M =1, and also 11 M =1, 1=1,...,m.
Ki—00 I‘(ai + K,i) (b + 1/:31)
We have then Lk
. . T'(b; + &)
1/k _ 1/k | LTS =1-1=
kli)rf)lo|9(k)| kli,IEON 11 oon {F(ai n "fi):| 1-1=1.

To verify b), we start with the fact that the digamma function ¥(z) = I' (z)/I'(z) is in-
creasing for all > 0, since \I/’(x) >0foralz+# —j3,7=0,1,2,..., see the representation
of ¥()(z), [7, §1.16,(9)], [24, 1I, §3/eq.4 on p.723]. Therefore,

Mz+e) T'(z)

Y(z+e)= Tz te) I(z) =¥(z) for €>0,

or, the auxiliary function

has a positive derivative

B(2) = I'(z + s)F(xl_)‘Zzwl;‘(a: +&)M(z)

Then, f(az) is also an increasing function, and so,
Nez+e) _ TNy+e)

M) ~ Ty)
From this, by the replacement ¢ — 1/8;,z — a; + k/B;,y — b; + k/B; (according to

the notations assumed in beginning of the proof) and by a; > b, > 0, we have for each
1=1,...,m

>0 for z>0,¢e>0.

whenever z >y > 0.

P(ai + (k+1)/8:) _ T(bi + (k+1)/8:)
T(ai +&/B:) T'(b; +k/B:)
Thus the required nonincreasing property for (k) follows:
(b:+k/B)  Dlai+(k+1)/8)
Hl"b +(k+1)/8:) ['(a; + k/B:) 2L

>

k+1
and
0<8(k)<8(n+1) foreach k>n-+1

O

Then, we continue with properties of the generalized fractional integrals in the
considered classes of analytic functions.

Theorem 3.1. Under the parameters’ conditions (3.5), the generalized fractional

integral f};’))( 2 maps the class A(n) into itself, and the tmage of a power series

(1.1) has the form

(3.11) Tf(z) = f}g@,ﬁj){w 3 akzk}:z+ S" 6(k) axz® € A(n),

k=n-+41

with multipliers’ sequence (k) as defined in (3.7).
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Proof. Under the assumptions of the theorem, Lemma 3.1 guarantees that

. ), (5 Ak
TGz =2 and IGT0{*}= 2% = o(h) 2*

and term-by-term integration of power series (1.1) glves serles (3.11). By virtue of the
Cauchy-Hadamard formula, the radius of convergence of the first series, as an analytic

~1
function in the unit disk, is R = {klim |ak|1/k} > 1, and that of the latter series is
—00

calculated, in view of Proposition 3.1, a), as

-1 —
R= {,}im [Jax | |e<k>|”’“1} - {khm |ak|”k} —Rzh

Therefore the image ]—&n; fnz)f(z) given by series (3.11) is analytic in the unit disc, too.

Note that due to positiveness of the multipliers 8(k), see (3.8), series with positive (like
in A(n)) and negative (like in T'(n)) coefficients map into series of the same kind. O

Theorem 3.2. In the class A(n) the generalized fractional integral (3.6) can be
represented by the Hadamard product (1.2) in U as

(3.12) ?g’;fs)f( )= (hxf)(z), with the function h(z)=2z+ Z )2* € A(n),
k=n+1

expressed by the Wright generalized hypergeometric function (2.1):
L1),(v+1+(n+1)/8,1/B8)T

3.13 h — N n+1 I ( » ) ) 1 ,

e33)  a =i [ e |

where the normalizing constant N = 1/)\; s as in (3.6).

Proof. In the expression for h(z) we change the index of summation k to 7 via k

7+ (n + 1), using the denotations from (3.10) and for briefness, put additionally c;

+(n+1)/Bi,di=bi+(n+1)/Bi,2=1,...,m; k=n+1,.... Thus we get

ontl > ontl e

z):z—f—kzﬂe(k)z =z+ )\ Z)‘J+("+1)Z =z+ N { (1+7)

de L6012 "“Mxpm[ (020 1A (£ 1/60) H

=2z +
Cz +]/ﬂ )\1 Clvl/ﬁl)v"w(cm)l/ﬁm)
accordlng to the definition (2.1), which gives (3.13). O

Remark. If we ignore the requirement for the convolution function h(z) to be in same
class A(n), we can look for a function analytic in U of the form h(z) = by +byz+b222 +....
with the only condition by = 6(k), i.e. by =1, but by #0,k=0,1,2,...,n,n+1,.... Thus

?g’) fj )f( )= (iz * £)(2) = agby + a1b1z + asboz® + ... + apbpz™ + angp1bp12™ T+

= z+an+1bn+1zn+1+..., having in mind that ¢y =0,a; = 1,a0 = ... = a, =0, forn > 2,

since f € A(n). Then h(z) is represented much simpler as the Wright function
B(z) = Nmi1¥m (1,1), (v +1,1/8)7
(vi+6i+1,1/6)T

Corollary 3.1. For n = 1 the representation of the “convolution function” h(z) n
(3.12) wn the classes A, S and T szm;zlzﬁe)s (as / 16
L), (w+1+2/8;,1/8;

h(z) = z + Nz* %
(Z) yA 2" m+1¥m (’yz_'_(s +1+2/ﬁ;,1/ﬁ;)

z|, analyticin U.

z} € A.
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Corollary 3.2. When all ; = >0 (2 = 1,...,m), and especially for shortness of
denotations it 1s taken B = 1, for the generalized fractional integrals with Meijer’s
G-function in the kernel,

1 )\02 ) m k3 +5l I
(18)  TO5) =100, / ozt o] Ot | S

we get the simpler reprygzsentatzon of multzplze'rs sequence 6(k) :

(7i +2)k—1
0(k) = ——— >0, k= 1 2y
() H(7z+5 +2)k1> ’ n+ ,'I’L+ ) )

with (a)r = I'(a+k)/T'(a) denoting the known Pochhammer symbol, and respectively,
for the convolutwn function h(z) as follows:

(Yi+2n a1 L(y+2+n)
Z+Ilfn+5+2)z afm | s 2 eny |7 €A™

Forn =1 (i.e. in the classes A, S,T), h(z) stimplifies to a mi1Fm-generalized hyper-
geometric function: 1 (v 4 3)™

h(z) =z + 2% i1 Fm » (9 + )1m

(7 +6: + 3);

z] € A.

4. DISTORTION INEQUALITIES AND SOME CHARACTERIZATION THEOREMS

Here we provide some examples of distortion inequalities in terms of the generalized
fractional integration operators (3.6). We use the following auxiliary results.

Lemma 4.1. (Chatterjea [6]) Let the function f(z) € A(n). Then f(z) s in the class
Tn(n), resp. in Lo(n), if and only if

> k—a 2 k(k-a)
(4.1) Z 1o W <1, resp. Z g <1.
k=n-+1 k=n-+1

Applying Lemma 4.1 and Theorem 3.1, we obtain the following distortion theorems.

Theorem 4.1. Let conditions (3.5) be satisfied and f(z) defined by (1.1) belong to
the class To(n). Then the following inequalities hold for eachn > 1 and z € U :

F1SORCOITIN BTN Sl nt1
2) a1 2 1ol = =2 o(n+ 1)

TG00 1) < 1- nt1
(4.3) TG @) < lel+ =2 on+ 1) =A™,

where the multiplier H(n + 1) s defined as in (3. 7), namely:

(i +1+(n+1)/B)T(vi + 6 +1+1/8:)
Hr

(ri+0+1+(m+1)/B)T(vi +1+1/6:)
Equalities in (4.2) and ( .3) are attained by the function
f(2)=2— -

B n+l-a ’

Theorem 4.2. Let conditions (3.5) be satisfied and the function f(z) defined by (1.1)
belong to the class Lo(n). Then the following inequalities hold forn > 1 and z € U :

(4.4) f(n + 1) > 0.
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7). (8) ‘ l—a 0(n+1) .41
4.
(4.5) Iigym F(2)| 2 12| - nil—a ntl |z|
and

7). (8) ‘< l-a 6n+1), ni
(4.6) Iigiym f(2) _|2|+n+1_a o) |2

where the multiplier 8(n + 1) s defined as above, (4.4). Equalities in (4.5) and (4.6)
are attained by the function
l-«a

fz)=z- (n+1)(n+1—a)zn+l'

Proof of Theorems 4.1 and 4.2. The main point in this proof is that the multiplier
function #(k) is nonincreasing, see Proposition 3.1, b), that is,

0<f(k)<8(n+1) foreach k>n-+1
Then, for f(2) € To(n) with image of the form (3.11) with negative coefficients,

Z 0(k akz

~(71) (5)f( ‘ > |z|

Tpiym
k=n-+1
e 1—a
>|z| -6 1)|z|™ ! >|z| -6 1)]z|" Tt ————
> |2| - 6(n + 1)|2| k:§n+jlak_|zl (n+Dl2™ o

since in view of Lemma 4.1 (see (4. 1)) we have also
l1-«a
Z o < n+l—-a
k=n-+1
Thus, inequality (4.2) is obtained. The next inequality (4.3) can be proved similarly, and

Theorem 4.2 follows in analogous way by application of the same lemma, but the second
inequality in (4.1). Details can be found in Kiryakova et al. [21]. O

Corollary 4.1. Settingn =1 and a = 0, we obtain for the subclasses of starlike and
convez functions in U with negative coefficients, respectively:

fesnT) = @2l - 22 e, T < 12+ 22 e

X op X2 op
4

FEKNT() = |If(2)| > |2| - 4

with the multiplier
6(2) =

, TF@) < el +

T Dy + 14+ 2/B)T (v + 6 + 1+ 1/8))
D(yi+6+14+2/8)T (v +1+1/8:)

Remark. The case m = 1 gives corresponding estimates for the classical Erdélyi-Kober
operators (3.3).

As applications of the above general results, we can derive the same kind for the
operators of Saigo and Hohlov as well as for the fractional integrals involving the Appell’s
F3-function, etc. special cases in Section 5.

Now we consider some sufficient conditions for the operators of generalized frac-
tional calculus to produce starlike and conver functions. From Silverman’s results
[27], one can formulate the following auxiliary lemmas.
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Lemma 4.2. ([27]) If the function f(z) € A(n) satisfies the condition

(4.7) > ke <1,

k=n+1
then f(z) € S*(n). The equality in (4.7) s attained by the function

g1(z) =z+e(n+1) Z 2

z
——— (e =const, |¢|]=1, z€U).
(k+1)
k=n-+1

Lemma 4.3. ([27]) If the function f(z) € A(n) satisfies the condition

o0
(4.8) > Kax| <1,

k=n-+1
then f(z) € K(n). The equality in (4.8) is attained by the function
e k
g@2(2)=z+4+¢e(n+1) ;1 m (e =comnst, e|=1, z € U).

Then, for the generalized fractional integrals (3.6) we obtain the following sufficient
conditions.

Theorem 4.3. Under the condition (3.5), if the function f(z) € A(n) defined by
(1.1) satisfies -
1
(4.9) > Ko £ o—,
o f(n+1)
then f}g;g)f(z) belongs to the class S*(n).
Proof. We use again the inequality (3.9) for 8(k), Proposition 3.1, b). Then, for the

function

Tf(z) =z + Z brz" with coefficients by = 8(k)as,

. k=n-+1
we obtain

Z kbe < 6(n+1) Z ka, < 1. O
k=n-+1 k=n-+1

Analogously, using Lemma 4.3, we obtain

Theorem 4.4. Under condition (3.5), if the function f(z) € A(n) satisfies

¢ 1
(4.10) > Kol < o——,
Wi f(n+1)
then j}gj;%)]‘(z) belongs to the class K(n).

Details can be found in Kiryakova et al. [21].
Remark. Examples of functions satisfying conditions (4.9), (4.10) are the functions
1 2k 1 2k

fa d _ - 2
Blky) ko o4 9B =24 g 4

g3(z) =z + resp., with some kg > n + 1.

Another circle of rather general results are theorems about preserving the univalency
of functions, under operators of GFC. For simplicity, we consider univalent functions from
the class A (n =1).
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Theorem 4.5. Let 1f(z) = A}g:;’r(j’) (z) = h(z) * f(z), with convolution function
h(z) being the Wright hypergeometric function (3.13), be the normalized generalized

fractional integration operator (3.6) win the class A. Suppose that its parameters
m
Y, 0i, Biy t = 1,...,m satisfy conditions (3.5) and additionally, > 6; > 3, t.e.

’Yi>_]-7 6i207 :Bi>07 7’:171m1 61+62+z:1+6m>37
as well as the inequality

o { (3,1), (v +1+3/8:,1/8:)1 ‘1}‘_3 ¥ [ (2,1), (i +1+2/B:,1/8:)T ‘1]
PEEE A (i + 8+ 14+ 3/B5,1/Bi)7 I (i 6+ 14 2/6i,1/6)T
(4.11)

(1,1), (v + 1+ 1/B;,1/B;)™ ot Ti+1+1/8)
+”‘“\P’"{ (% +06:+1+1/6,1/B)7 H <2A1_211]1u1“(w+5i+1+1/ﬁi)'

Then for each univalent function f in A, the image Tf 18 also unwvalent, that is,
I:Sw 8.

Proof. The details of the proof have been given in [20], and for the more general case

of the Dziok-Srivastava operator with convolution function ,¥, (arbitrary p < g+ 1)

in [18], [19]. It is based on a result of Avhadiev and Aksent’ev [2] that for the image-
~ 0

function If(z) = z 4+ Y. 6(k)arz* to be univalent function, it is sufficient to have oy =

k=2
oo

> 8(k)ar < 1, and on using the well-known estimate (de Branges’ theorem [5]) for the
k=2

[ee]
coefficients of the univalent function f(z) = z+ 3. ax2z* € A, namely: |a;| < k.

The point we like to stress is that all rest of Iﬁfe proof uses algebra with the I'- and
factorial functions, and properties of the Wright hypergeometric function 1%, and
its values at the boundary point z = 1, as these in (4.11). For the mentioned Dziok-
Srivastava operator ([8], [9]) the function ,¥, is concerned, while in the simpler case of
G-function operator (3.14) with all equal 8, = >0, the function is p,41Fpm. O

A similar theorem provides conditions, again in terms of the values of 1%, (1), for
I: K+ S, that is for mapping the convex functions in univalent functions.

5. SPECIAL CASES OF THE GENERALIZED FRACTIONAL INTEGRALS USED OFTEN IN GFT

The results from Sections 3, 4 and the others from our papers [17], [18], [19], [20], [21],
etc., can be specialized for a great number of linear integral operators used in Geometric
Function Theory, starting from the classical operators of Biernack:, Libera, Bernards,
Komatu, Rusheweyh, Saigo, Hohlov, Sriwastava and Owa, and going to the more
general operators studied recently by different authors, say Dziok-Srivastava operators
[8], [9], [28]. To this end it is enough to choose suitable particular parameters m,y;, ;, 5
(=1,...,m) for the operators (3.6) of the generalized fractional calculus (GFC).

We list below examples, and their presentation in the denotations of (3.2)-(3.6).

For m = 1, we have the examples (see longer list and more details in [14], [16], [17]):

Biernack: operator: ([4]) Bf(z) = Il_,ll’lf(z) = log(1 i z) x f(z) = /@da;
0
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Libera operator: Lf(z) = 2[?”11]‘( ) =22F1(1,2;3;2) % f(z /f

Generalized Libera operator: ([23]) B.f(z) = (c+ 1)If£1’1f(z): ctl /crc_lf(a)da

zC
0
= 2T Fi(1,c+1;c+2; 2)* f(2); For integer ¢ € N, it is called Bernardi operator ([3]);

P(C) Ia—2,c—a
I'(a) L1

1
= / 1—0) % g% 2f(z0)do.
0

Carlson-Shaffer operator: L(a,c)f(z) = f(z)=2z2F1(1,a;¢2) * f(2)

C—G,

Examples of GFC operators for m = 2 are the so-called hypergeometric integral op-
erators of Hohlov and Satgo. Let us pay here some more attention on them.

In [10],[11] Hohlov introduced the hypergeometric operator F(a,b,c) (we call it as
Hohlov operator) defined in the class A by means of the Hadamard product with the
Gauss hypergeometric function 5 Fy(a,b;c; 2):

(5.1) F(a,b,c)f(z) = {z 2 Fi(a,b;c; 2)} * f(z).
We can write (5.1) in terms of the GFC operators (3.2)-(3.6) with m = 2, as:
_ T @
F(a,b,c) = W 12
Another class of hypergeometric fractional integration operators has been introduced
by Saigo [25] (see [15]) for solving the Euler-Darboux equation, and studied from view
of univalent functions’ theory in series of papers by Srivastava, Saigo and Owa, as for

b—2),(1—a,c—b) _ ’I‘§a272,b72),(17a,c7b).

example [30]. This linear integral operator, named as Saigo operator, can be represented
also as a generalized fractional integral in the sense of (3.2) with m = 2 (details in [15]):

—a—,B F —
B0 ="y [em0am [ ST ] fQac e A 5,
0

To preserve the class A, the Saigo operator is normalized by the constant N, in this case

as

F@—ﬁﬁ@+a+m
T2-pF+n)

Operators (3.2)-(3.6) with “multiplicity” m > 2 have been not so popular. Such one

is the Saigo operator (see in [14], [15]) with the Appel F3-function in the kernel, that is,
an operator (3.2) with m = 3:
z

27 8() = E75(2).

' ' —a (z - 6)7_1 —a' ( / ' 13 Z)
I(a,a,ﬁ,ﬁ;fy)f(z):z 5 F3 ayaaﬂaﬁ;y;l_frl_i f(g)dg
1 / ') 2 ¢
= ziaialj&y / Gg:g |:U o ; f ojl_,ﬂﬂ7z ;/72: 7_72;1(1_ I;/IB :| f(ZU')dO'

0

— Zfafa'Jr'y Ifg*a B—a'y—2a'—p"),(B,y—0'— B, )f(Z)
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A typical example of (3.2) with arbitrary m > 2 is given by the integral operator

L = 2/3[((;1’ /;)y’”) (L11) which is the linear right inverse to the so-called hyper-Bessel
differential operator, introduced by Dzmovskz (see in [14, Ch.3]), having the form
d e d d o 5
B = z%° = 1££z =z H z——i—ﬁ’yk , B>0, 05,7 €R

In this relation, let us mention the Salagean dzﬁerentzal operator ([26], e.g. [22]), defined
in A for functions f(z) of the form (1.1) and for m = 1,2, 3, ... by the recurrence relation

Sof(2)=£(2); S1f(z)=2f (2),..., Smf(2) =51 (Sm-1f(2)) =2 + kaakz

This operator can be seen as an interesting case of hyper-Bessel dlfferentlal operator with
B =1and all v = —1,6;, = 1, &k = 1,...,m. Its linear right inverse operator is the
integral operator of Alewander ([1], see e.g. [22]): Am, m =1,2,3..,,

Aof(2)=f(z), A1 f(z /f 0, oo A f(2)=A1(Am—1f(2 _z+Z—akz )

which can be written in the form of generalized fractional integral, namely:

Anf(2)=IG 1 re D bDe() - put f(k) = 1/k™ =[T(k)/D(1+K)]™ i (3.7).

The above list of examples of operators of classical and generalized fractional calculus,
that are special cases also of the more general Dziok-Srivastava operator (we treated
similarly in [18]), shows that great amount of results in GFT — some of them mentioned
here, in other our papers, as well as from many papers of different authors, can be obtained
from the considered general case by suitable choice of parameters for each particular
operator. Once again, we emphasize that these results — in the mentioned general
case, are obtained by the efficient use of the special functions as tools, thus providing
an unified approach.
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