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Abstract. We consider series de�ned by means of the Mittag-Le�er functions and
their Prabhakar generalizations and study the behaviour of such series on the periph-
eries of their convergence domains. Analogues of the classical theorems for the power
series like overconvergence, as well as Hadamard type theorems are proposed.

1. Introduction

The special functions, de�ned in the whole complex plane C by the power series

(1.1) E�(z) =

1X
k=0

zk

�(�k + 1)
; E�;�(z) =

1X
k=0

zk

�(�k + �)
;

with �; � 2 C; Re(�) > 0; are known as Mittag-Le�er (M-L) functions ([1], Section

18.1). The �rst was introduced by Mittag-Le�er (1902-1905) who investigated some of

its properties, while the other �rst appeared in a paper of Wiman (1905). Prabhakar [12]

generalizes (1.1) by introducing the function E


�; � of the form

(1.2) E


�; �(z) =

1X
k=0

(
)k
�(�k + �)

zk

k!
; �; �; 
 2 C; Re(�) > 0;

where (
)k is the Pochhammer symbol ([1], Section 2.1.1)

(
)0 = 1; (
)k = 
(
 + 1) : : : (
 + k � 1):

For 
 = 1 this function coincides with E�; � , while for 
 = � = 1 with E�.

In the previous papers [9, 10], the author considered series in systems of Mittag-

Le�er type functions and, resp. in [11], series in the multi-index (2m-indices) analogues
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of the M-L functions and some of their special cases, as representatives of the Special

Functions of Fractional Calculus [4]. Their convergence in the complex plane C is studied

and Cauchy-Hadamard, Abel, Tauberian and Fatou type theorems are proved. In this

paper the overconvergence of series in Mittag-Le�er functions and their three-parametric

Prabhakar generalizations are also studied. Such a kind of results are provoked by the

fact that the solutions of some fractional order di�erential and integral equations can be

written in terms of series (or series of integrals) of Mittag-Le�er type functions (as for

example, in Kiryakova [3] and Sandev, Tomovski and Dubbeldam [13]).

2. Previous results

Consider now the �rst of the functions (1.1) for positive indices � = n 2 N and also

generalized Mittag-Le�er functions (1.2) for indices of the kind � = n; n = 0; 1; 2; ::: ,

namely:

(2.1)

En(z) =

1X
k=0

zk

�(nk + 1)
; n 2 N;

E

�; n(z) =

1X
k=0

(
)k
�(�k + n)

zk

k!
; �; 
 2 C; Re(�) > 0; n 2 N0:

In this section we give some results related to the asymptotic formula for "large" values

of indices of the functions (2.1) that can be seen e.g. in [9], [10]. Furthermore we need

them to prove the main theorems.

Remark 2.1. Given a number 
, suppose that some coe�cients in (2.1) are equal

to zero, that is, there exists a number p 2 N0, such that the representation (2.1) can

be written as follows:

E

�;n(z) = zp

1X
k=p

(
)k
�(�k + n)

zk�p

k!
�

More precisely, as it is given in [10], if 
 is di�erent from zero, then p = 0 for each

positive integer n and p = 1 for n = 0.

Further, asymptotic formulae for "large" values of the indices n are given for z; �; 
 2

C; 
 6= 0; Re(�) > 0. Namely, there exist entire functions �n and �


�; n such that the

functions (2.1), have the following asymptotic formulae:

En(z) = 1 + �n(z) (n 2 N); and �n(z)! 0 as n!1;

E

�;n(z) =

(
)p
�(�p+ n)

zp
�
1 + �
�; n(z)

�
(n 2 N0); and �
�; n(z)! 0 as n!1;

with the corresponding p, depending on 
. Moreover, on the compact subsets of the

complex plane C, the convergence is uniform and

(2.2) �n(z) = O

�
1

n!

�
; �
�; n(z) = O

�
1

nRe(�)

�
(n 2 N):

Remark 2.2. If 
 = 0, the functions (2.1) take the simplest form E0
�; n(z) =

1

�(n)
for n 2 N, and E0

�; n(z) = 0 for n = 0.
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Now, let us specify the families of Mittag-Le�er type functionsn eEn(z)
o1
n=0

;
n eE 


�; n(z)
o1
n=0

; �; 
 2 C; Re(�) > 0;

as follows below, namely:eE0(z) = 1; eEn(z) = znEn(z); eE0
�; 0(z) = 0; eE0

�; n(z) = �(n) znE0
�; n(z); n 2 N;

eE

�; n(z) =

�(�p+ n)

(
)p
zn�pE


�; n(z); 
 6= 0; n 2 N0;

and let us consider series in these functions of the form:

(2.3)

1X
n=0

an eEn(z);

1X
n=0

an eE

�; n(z);

with complex coe�cients an (n = 0; 1; 2; :::).

Our objective is to study the convergence of the series (2.3) in the complex plane and

to propose theorems, corresponding to the classical results for the power series. Beginning

with the domain of convergence of the series (2.3), we recall [9, 10] that it is the open

disk D(0;R) = fz : jzj < R; z 2 Cg with a radius of convergence

(2.4) R =

�
lim sup
n!1

( janj )
1=n

��1
:

More precisely, both series are absolutely convergent in the disk D(0;R) and they are

divergent in the domain jzj > R. The cases R = 0 and R = 1 fall in the general case.

Farther, analogously to the classical Abel lemma, if any of the series (2.3) converges

at the point z0 6= 0, then it is absolutely convergent in the disk D(0; jz0j). Moreover,

inside the disk D(0;R), i.e., on each closed disk jzj � r < R (R de�ned by (2.4)), the

series is uniformly convergent. Another interesting result is the Abel type theorem which

refers to the existence of the limit of the series sums at the point z0 from the boundary

@D(0;R) = C(0;R), when z belongs to a suitable angular domain with a vertex at the

point z = z0. Namely, the limit of the sum of these series, are equal to the corresponding

series sum at the point z0. A result, giving relation between the convergence (divergence)

of the series (2.3) at points on the boundary of its disk of convergence and the regularity

(singularity) of its sum at such points is formulated below. Analogical propositions have

been established also for series in the Laguerre and Hermite polynomilas by Rusev, as

well as in Mittag-Le�er type systems (see e.g. [11]). Here we give such a type of theorem

for the Mittag-Le�er systems (for the line of proof, see [11]) as follows.

Theorem 2.1 (of Fatou type). Let fang
1
n=0 be a sequence of complex numbers satis-

fying the conditions lim
n!1

an = 0, lim sup
n!1

( janj )
1=n = 1, and F (z) be the sum of any

of the series (2.3) in the unit disk D(0; 1). Let � be an arbitrary arc of the unit circle

C(0; 1) with all its points (including the ends) regular to the function F . Then the

series (2.3) converges, even uniformly, on the arc �.

3. Overconvergence theorem

Let fang
1
n=0 be a sequence of complex numbers with lim sup

n!1
(janj)

1=n = R�1, 0 < R <

1 and f(z) be the sum of the power series
1P
n=0

anz
n in the open disk D(0;R), i.e.
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(3.1) f(z) =

1X
n=0

anz
n; z 2 D(0;R):

In order to introduce the next two de�nitions ([6, Vol. 2, p. 500]) and to expose the

results, obtained in this section, we �rst set

sp(z) =

pX
k=0

akz
k; Sp(z) =

pX
k=0

ak eEk(z); or resp. Sp(z) =

pX
k=0

ak eE

�; k(z);

for all the values p = 0; 1; 2; : : : .

De�nition 3.1. A power series with a �nite radius of convergence 0 < R < 1 is

said to be overconvergent, if there exist a subsequence fspkg
1

k=0 of the partial-sums

sequence fspg
1

p=0 and a region G, containing the open disk D(0;R) as a regular part

(G \ @D(0;R) 6= ?), such that fspkg uniformly converges inside G. We say that

the function f (or the series (3.1)), possesses Hadamard gaps, if there exist two

sequences fpng
1
n=0 and fqng

1
n=0, having the properties qn�1 � pn � qn=(1+ �) (� > 0)

and ak = 0 for pn < k < qn (n = 0; 1; 2; : : : ).

Remark 3.1. To introduce the corresponding notions 'overconvergence' and 'gaps'

for the series (2.3), the expression zn has to be replaced by eEn(z), respectivelyeE

�;n(z), and the sequence fspkg by the corresponding sequence fSpkg.

Thus, beginning with the domain of convergence and series behaviour near its bound-

ary, passing through the possible uniform convergence on an arbitrary closed arc of the

boundary, we come to the natural question: �What type of conditions should be im-

posed on the power series that ensure the existence of subsequence fspkg, convergent

outside the disk of convergence?". The answer to this question is given in the early

20th century by Ostrowski [7], [8], see also [5]. Namely, his classical result states that a

given power series with Hadamard gaps and existing regular points on the boundary of

convergence disk is overconvergent. We draw the attention to the fact that merely the

existence of Hadamard gaps does not imply overconvergence. For example, the power

series
1P
n=0

aknz
kn with kn+1 � (1 + �)kn (� > 0) and lim sup

n!1
( jakn j )

1=kn = 1 possesses

Hadamard gaps but nevertheless it is not overconvergent. Its natural boundary of ana-

lyticity is the unit circle jzj = 1 and that is nothing but the theorem about the gaps,

belonging to Hadamard [2].

Theorem 3.1 (of overconvergence). Let fang
1
n=0 be a sequence of complex numbers

satisfying the condition lim sup
n!1

( janj )
1=n = 1, F (z) be the sum of the series (2.3) on

the unit disk D(0; 1), F (z) have at least one regular point, belonging to the circle

C(0; 1), and let F (z) possesse Hadamard gaps. Then the series (2.3) is overconver-

gent.

Proof. Here we expose the proof for the second of the series (2.3) and we only note

that the other goes analogously. Without loss the generality we suppose that the point

z0 = 1 is regular to the function F . That means that F is analytically continuable in a
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neighbourhood U of the point 1. Denoting eU = U [D(0; 1), we de�ne the function  in

the region eU by the equality

 (z) = F (z); z 2 D(0; 1);

i.e.  is a single valued analytical continuation of F in the domain eU .
Letting � > 0 and taking fpng

1
n=0, fqng

1
n=0 with the properties qn � (1 + �)pn and

ak = 0 for pn < k < qn (n = 0; 1; 2; : : : ), we de�ne the auxiliary function

(3.2) 'n(z) =  (z)� Spn =  (z)�

pnX
k=0

ak eE

�; k(z)(z):

In order to prove that the sequence fSpng is uniformly convergent inside the region eU ,
we are going to apply the Hadamard theorem for the three disks [6, Vol. 2]. To this end,

taking 0 < � < 1=2 and 0 < ! < �, we consider the three circles C1; C2; C3, centered at

the point 1=2 and having respectively radii 1=2� �, 1=2 + !, 1=2 + �, such that C3 � eU
and after that set

Mn;j = max
z2Cj

j'n(z)j j = 1; 2; 3; M = max
z2C3

j (z)j:

Before evaluating j'n(z)j we come back to (2.2). Just mention that since lim
n!1

n�Re(�)

= 0, there exist number B such that j1 + �n(z)j � B for all the values of n 2 N on

an arbitrary compact subset of C. Now, letting 0 < � < �=2 implies the existence of

A = A(�) such that jakj � AB�1(1 � �)�k. To �nd an upper estimation of j'n(z)j we

intend to consider three di�erent cases.

1. First, let z 2 C1 � D(0; 1). In the unit disk, according to (3.2), we have

'n(z) =

1X
k=qn

ak eE

�; n(z):

Therefore,

j'n(z)j �

1X
k=qn

jan eE

�; n(z)j =

1X
k=qn

jakz
k(1 + �k(z))j =

1X
k=qn

jakjj1 + �k(z)jjz
kj

� A

1X
k=qn

(1� �)�k(1� �)k = A

�
1�

1� �

1� �

��1�
1� �

1� �

�qn

;

whence

(3.3) Mn;1 = O

��
1� �

1� �

�qn�
= O

 �
1� �

1� �

�(1+�)pn
!
:

2. Now, let z 2 C3. In this case

j'n(z)j = j (z)� Spn j = j (z)�

pnX
k=0

ak eE

�; k(z)j � j (z)j+

pnX
k=0

jak eE

�; k(z)j

�M +

pnX
k=0

jakjj1 + �k(z)jjz
kj �M + A

pnX
k=0

�
1 + �

1� �

�k

= O

��
1 + �

1� �

�pn�
;
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and therefore

(3.4) Mn;3 = O

��
1 + �

1� �

�pn�
:

3. Furthermore, let z 2 C2. Then, in view of (3.3) and (3.4) and according to the

Hadamard theorem for the three disks (for details see [6, Vol. 2, formula (3.2:2)]), we can

write

(3.5) Mn;2 = O

0@ �1� �

1� �

�(1+�) ln 1+2�
1+2!

�
1 + �

1� �

�ln 1+2!
1�2�

!pn
1A :

Note that the limit of the inner part of (3.5) is equal to

a = (1� �)(1+�) ln(1+2�)(1 + �)� ln(1�2�)

when ! and � tend to 0. Moreover, if � tends to 0 then a < 1. Indeed, taking the

logarithm of a, we have

ln a = (1 + �) ln(1 + 2�) ln(1� �)� ln(1� 2�) ln(1 + �)

= (1 + �)(2� +O(�2))(�� +O(�2))� (�2� +O(�2))(� +O(�2)) = �2��2 +O(�3):

Therefore ln a < 0 when � ! 0 and for this reason a < 1 if � tends to 0. That is why,

lim
n!1

Mn;2 = 0, whence fSpng is uniformly convergent inside the region eU . �

Theorem 3.2 (of Hadamard about the gaps). Let fakg
1

k=0 be a sequence of complex

numbers satisfying the condition lim sup
n!1

( jakn j )
1=kn = 1, kn+1 � (1 + �)kn (� > 0),

ak = 0 for kn < k < kn+1 and F (z) be the sum of any of the series (2.3) in the

unit disk D(0; 1). Then all the points of the unit circle C(0; 1) are singular for

the function F , i.e. the unit circle is a natural boundary of analyticity for the

corresponding series.

Proof. Let jz0j = 1 and z0 be regular for F , pn = kn, qn = kn+1. Therefore, in accordance

with Theorem 3.1, Sn uniformly converges in a neighbourhood of z0. But the radius of

convergence is R = 1 and we come to contradiction. �
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