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ABSTRACT. We define new general integral operator and new function of product of
p-valent meromorphic functions. By studying the function of product of p-valent
meromorphic functions on defined subclasses of p-valent meromorphic functions , we
deduce the properties of the general integral operator. Various known and new results
are derived as special cases.

1. INTRODUCTION

Let X, denote the class of meromorphic functions of the form

f(z):zip+ > anz™ (pEN={1,2,---}),

n=p+1
which are analytic and p -valent in the punctured unit disc:

Ur={z€C:0<|z] <1} =U-{0}.

A function f € 3, is said to be in the class E;(é), of meromorphic p -valent starlike
of order 6 (0 < § < p) if it satisfies the following inequality:
zf’(z)>
—R > 6.
( f(z)
A function f € ¥, is the meromorphic p -valent convex function of order § (0 < 6 < p),
if f satisfies the following inequality:

() -

and we denote this class by £/, (4).
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184 A. MOHAMMED AND M. DARUS

Define a linear operator D¥, as following (cf., e.g., [1], [2]):
Daf(z) = (1 +pA)f(2) + Azf'(2), A>-p,f €T,
DRf(2) = f(2)

(1.1) D3 f(2) = Drf(2)
D f(2) = DA(D3 f(2)),
and in general for £ =0, 1,2, ..., we can write

1 (o)
D} f(2) = 7+ > (1+pr+nr)anz, (k€No=NU{0},peN).
n=p+1

It is easy to see that for f € 3, we have
(12) Az (Df(2) = DY f(2) — (1 + PN DES(2), (k€ No,p€N).

Meromorphically multivalent functions have been extensively studied by several au-
thors, see for example, Uralegaddi and Somanatha ([10] and [11]), Liu and Srivastava
([13] and [14]), Mogra ([15]and [16]), Srivastava et al.[17], Aouf et al. ([19] and [20]),
Joshi and Srivastava [21], Owa et al. [22] and Kulkarni et al. [23].

Now, for f € &,, and by using the linear operator D¥, we define the following new
subclasses.

Definition 1.1. Let a function f € L, be analytic in U*. Then f is in the class
X5 (8,0,2) of, and only if, f satisfies

S8R ) I |
bl D)
where § € [0,p),b € C\{0}, A > —p,k € Np.
Putting A = k = 0, in Definition 1.1 and by using (1.2), we have,

Definition 1.2. Let a function f € L, be analytic in U*. Then f is in the class
Z5 (8,b)tf, and only if, f satisfies

R CERDIEL

where 6§ € [0,p),b € C\{0}.
Putting A = —%, k = 0 in Definition 1.1, we have,

Definition 1.3. Let a function f € X, be analytic in U*. Then f s in the class
LI, (6,b) of, and only if, f satisfies

wle=3 (Fa wo+1)} >0
where § € [0,p),b € C\{0}.
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We note that f € 5/, (8,b) if, and only if, —2LC) € % (5,5).

Putting A = 1, £ = 0 in Definition 1.1, we have,

Definition 1.4. Let a function f € L, be analytic in U*. Then f is in the class
L F1(0,b) of, and only if, f satisfies

- R )

where 6 € [0,p),b € C\{0}.
We note that f € ¥,7; (6,b) if, and only if, 2f'(2) + (p + 1) f(2) € Z; (5,) .

Remark 1.5. For p = 1 in Definitions 1.2, 1.3 and 1.4, respectively, we get the classes
L3 (8), Bk, (6) , and BF; (6, b) [[6], Definitions 1.1, 1.2 and 1.7, respectively].

Definition 1.6. Let a function f € L, be analytic in U*. Then f is in the class

L,US (a,6,b,A) if, and only of, f satisfies
| [ 2(DE2)

b Dy f(2)

>al- | ————— ,
P o T

where o >0, § € [-1,p), a+6 >0, be C\{0}, A > —p, k€ Np.
Putting A = & = 0, in Definition 1.6, we have,

Definition 1.7. Let a function f € X, be analytic in U*. Then f s in the class
23U (@,6,b) if, and only ¢, f satisfies

R p—1 zfl(z)+p >oz1 Zfl(z)+p +9,
tos G o)} >l (e +2)

where o > 0,6 € [-1,p),a+ 6 >0, b€ C\{0}.

Putting A = —%, k = 0 in Definition 1.6, we have,

Definition 1.8. Let a function f € ¥, be analytic in U*. Then f s in the class
L,KU (a,6,b) if, and only f, f satisfies

1 (2f"(2) )} ‘1(ﬂ@
id p—< - +p+1 >al|z - +p+1]|+3,
{ b\ f(2) b\ f'(2)
where a > 0,8 € [—1,p),a + 8 > 0,b € C\{0}.
We note that f € Z,KU (a, 4, b) if, and only if, —# € 53U (@,6,b) .

Putting A = 1, ¥ = 0 in Definition 1.6, we have,

Definition 1.9. Let a function f € X, be analytic in U*. Then f s in the class
L, KFs (a,6,b) of, and only f, f satisfies

*eos (e e 7))

; (Z (2f"(2) + (p+ 2)f'(2))

b\ 2f(2) + (o + DS () *@P@

b
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where o > 0,6 € [-1,p),a+ 6 > 0,b € C\{0}.
We note that f € X,KF; (,4,b) if, and only if, zf'(2) + (p + 1) f(2) € Z;U (@, 6,b) .

Remark 1.10. For p = 1 in Definitions 1.7, 1.8 and 1.9, respectively, we get the classes
U (o, 8,b), ZKU (o, 6,b) and BF; («, 8, b) [[6], Definitions 1.3, 1.4 and 1.8, respectively].

By using the differential operator given by (1.1), we introduce the following integral
operator and another function of product p-valent meromorphic functions.

Definition 1.11. Let y; > 0,1 < j < n and A > —p. One defines the integral operator
Tp By — Tp,

(1.4) To2) = /H (uP'DkJrl ))vi du,

where f1,..., fn € 3, and D¥™! is define as (1.2).

Remark 1.12.The integral operator J, generalizes many operators which were intro-
duced and studied recently.
(i) For A=k =0 and for A = —l, k = 0 respectively, we have the integral operators

(1.5) Fors., (2) = = /H (uP fi(u

and

Zn uPH1 i
(1.6) Grry e () = /H ( Filu )) .

introduced and studied by Mohammed and Darus ([7]), (see also [8]).
(ii) For p =1, in (1.14) and (1.15) respectively, we have the integral operators

(1.7) Hn(z) = z%/n(uf ()" du
o J=1

and

(1.8) Hypooo (2) = %/H (2! (w)™ du,
7=1

introduced and studied by Mohammed and Darus ([3], [5], respectively), (see also [6] ).

Definition 1.13. Let v; > 0, 1 < j <n and A > —p. One defines the function of product
p-valent meromorphic functions £, :37 — Iy,

n

(1.9) Ly(z) = Zip I1 (zPD’;“fj(z))” ,

Jj=1

where fq,..., fn € Zp and D’;\’H is define as (1.2).
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Remark 1.14. The function £,(2) generalizes many known and new functions.
(i)For A =k =0 and for A = *71, k = 0 respectively, we obtain the functions,

n

(1.10) #(2) = — [ [ (£

Jj=1

and

n p+1 ¢/ Vi
(1.11) 1pl_[<z+f()> ,

introduced and studied by Mohammed and Darus [7].

(ii) For 43 = --» =, =1, in (1.10) and (1.11), we get the following two functions,
1 n
(1.12) = S 1G5
j=1
and

(113) ipﬁ < 2PLf( )>,

studied by Srivastava et al. [18].

For p =1in (1.12) and (1.13), respectively, we get the functions,
1 ,
(1.14) F(z) = . H (zfi(2))",

and

(1.15) G(z) = % [T(=2%£2))",

187

It is clear that from Definitions 1.11 and 1.13, the relation between J, and £, is given

by
Lp(2) = (p+1)Tp + 2T5(2),
where J, and £, define in (1.4) and (1.9), respectively.

In addition, from Remarks 1.12 and 1.14, we deduce the following identities,

¢(Z) ( +1) by, ( )+ZF;I771 (Z),
T(z) = (p+ 1)Gpm, ()+2G;71 (2),
F(z) = (p+1)H + 21 (2),

G(z) =(p+1)Hy, .. 4. (2) + an'h’ - (2).
The last identities play important rules in our investigation.

In this paper we study some sufficient conditions for the function £,(z) which define in
(1.9) and by using the above identities we state some properties of the integral operator
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defined in (1.4). In addition some corollaries as special cases for the integral operators
and functions mentioned in Remarks 1.12 and 1.14 are also presented.

2. MAIN RESULTS

Our first theorem is the following:

Theorem 2.1. For j € {1,...,n}, letv; >0 and f; € I5(6;,b,A) (0<6; <1). If

0<> w(p—&)<p,
i=1

then the function Ly(z) define by (1.9) 1s in the class Ty(p,b), p=p— v (p—6;).

j=1
Proof. By differentiating ( 9) logarithmically, with respect to z we get,
2 n Dk+1 ) /
Ep(z) z Dy fi(z) z
By multiplying (2.1) with z yield
zﬁl Z": Dk+1f] (2)) tp).
= DkaJ (2)
This is equivalent to
L (2(2) | 2(DYT fi(2)) &
(2~2)P—( F =2 S gp)r+p |1
b\ Lp(z) D} f4(2) ; ’
Taking real parts of both sides of (2.2), we obtain

(2.3)
oL o)) - S {<>} £

Since f; € B3(d5,b,A), for 5 € {1,...,n}, we receive

1 (5 0)) oo Frew

j=1

n
That is £(z) define by (1.9) is in the class Z5(u,b), p=p— > 7;(p—§;). O

Jj=1

Corollary 2.2. For j € {1,...,n}, lety; >0 and f; € (6;,b,2) (0<6; <1). If

0<> mp—6)<p,
7j=1
then the integral operator Jp(z) define by (1.4) s in the class T, F; (4, b), p =
n
p—2 7 (P—46).

Jj=1
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Proof. From the fact that
fEBF1(85,0) <= 2f'(2) + (p + 1) f(2) € 5, (65,b),
and since,
Lp(2) = 2T5(2) + (p + 1) Tp(2),
by replacing £,(z) by 27,(2) + (p+1)Jp(z) in Theorem 2.1, we get the desired result. O

Now, we prove a sufficient condition for the function £,(z) defined by (1.9) to belong
to the class 23U (o, 6,b) .

Theorem 2.3. Let « > 0,8 € [-1,p),a+ 6 > 0 and b € C\{0}, A > —p. Suppose that
n
Y o<1, 1<j<n,

j=1

If fj € BUSk (,65,b,A) (1 <37 <n)), then the function L£,(z) define by (1.9) is in the
class Z;U (@, 6,b) .

Proof. Since f; € B,USg (a,6,b,2) (1 <7 <n)), by (1.3) we have

o)1 z(D§+1fj(z))'+ . Z(D§+1fj(z))'+ Ny
P2 | T org TP o | pEtgz) P '

Considering Definition 1.7 and with the help of (2.3) we obtain

2o (5 +2)) - (“’fﬂ’)\—é

fi(2)
=p- pZ%wLZv]ﬂ? p—f D’““f]( )) +p

Jj=1

1 Dk+1 z

—+ -
Yo\ T oG F

Jj=1

!
n n k41 ¢
1 (2(P552)
>p=p) i+ VR{P— | i TP
Zl ; b DY £5(2)

L (2 (D8 )
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!
n n k+1 ¢
1 (2(P5)
>p—p) Wit viyelr | —mm o tP||td
2L | e

_airy. 1 Z<D,;\+1fj(2))+p _5
=1 T|b DY £5(2)

n

=p-9[1->_v] >0

i=1

This completes the proof. d

Next, by using the relation
f €L KF2 (a,6,b) <= 2f'(2) + (p+ 1) f(2) € Z;U (o, 6,b),
and by setting
Lp(2) = 2T,(2) + (p + 1) Tp(2),

in Theorem 2.3, we have the following corollary.

Corollary 2.4. Let « > 0,6 € [-1,p),aa+ 6 > 0 and b € C\{0}, A > —p. Suppose that
n
>on<l 1<j<n
=1

J:
If f; € 5pUSk (,0,b,A) (1 <3 < n)), then the integral operator J,(z) define by (1.4) is
in the class Z,CF; (o, 8,b) .

By adopting the same method and technique used in the proof of Theorems 2.1 and
2.3 and Corollaries 2.2 and 2.4, we receive the following corollaries.

Corollary 2.5. For j € {1,...,n}, let v; >0 and (0<6; <1). If
n
0< > 7(p—6;) <p.
j=1

Also let
n
p=p-> 7(@—6).

j=1
Then each of the following assertion holds true:
(1) If fj € B3(8;,b), then the function ¢(z) defined by (1.10) 1s in the class T3(u,b).
(2) If f; € BK,(6;,b), then the the function T(z) defined by (1.11) is in the class
Xy (u, b).
(1) If f; € £;5(65,b), then the integral operator Fp,, . (z) defined by (1.5) is in the
class ZpF1(u,b).
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(w) If f; € BK; (85,b), then the integral operator Gy, .., (z) defined by (1.6) is in
the class ZpF1 (u,b).

Corollary 2.6. Let o >0, 6 € [-1,p),a+ 6 > 0 and b € C\{0}. Suppose that
n
>on<l 1<i<n
j=1

Then each of the following assertion holds true:

(1) If f; € T;U(,6,b), then the function ¢(z) defined by (1.10) is in the class
53U (@,9,b).

() If f; € Z,KU («, 6,b), then the the function T(z) defined by (1.11) is in the class
23U (@,9,b).

(111) If fj € ZyU (@, 6,b), then the integral operator Fp ., .. (z) defined by (1.5) is in
the class ZpKFz(a,d,b).

(w) If f; € B,KU (@,6,b), then the integral operator Gy, .., (z) defined by (1.6) 1s
wn the class L, KFz (a,d,b).

Corollary 2.7. For € {1,...,n}, let y; >0 and (0<6; <1). If
0<Y 7m(1-8&)<1,
j=1

Also let .
p=1-Y 7(1-6).
j=1
Then each of the following assertion holds true:

(+) If f; € 5§(6;), then the function F(z) defined by (1.14) is in the class T (u).

(v2) If f; € BKy(6;), then the the function G(z) defined by (1.15) is in the class
Z5 (1)

(vir) If f; € &5(6;), then the integral operator Hy,(2) defined by (1.7) is in the class
LF; (p,b).

() If f; € BKCy (6;) , then the integral operator H,, _ (z) defined by (1.8) is in the
class BF; (u,b).

Corollary 2.8. Let o >0, 6 € [-1,p),a+ 6 > 0 and b € C\{0}. Suppose that

n
Y 1<l 1<j<n,
j=1

Then each of the following assertion holds true:

(x) If f; € Z*U («,8,b), then the function F(z) defined by (1.14) is in the class
U (a,6,b).

() If f; € ZKU (a,6,b), then the the function G(z) defined by (1.15) ts in the class
U (a,8,b).
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(i) If fj € Z*U (a, 6,b), then the integral operator H,(z) defined by (1.7) is in the
class EFy(e,6,b).

(w) If f; € KU (@,4,b), then the integral operator H,, _ (z) defined by (1.8) 1s in
the class TF»(a,6,b).

Corollary 2.9. Let 0<§; <1, 1 <5< n. If
n
0<np—) § <1

i=1

Also let

p=p(l-n)+> 5.

i=1

Then the following assertion holds true:

(¢) If f; € 5§(6;), then the function F,(z) defined by (1.12) is in the class Tj(u).

(w) If f; € BKy(8;), then the the function Gp(z) defined by (1.13) is in the class

(R

Corollary 2.10. Let > 0, 6 € [-1,p),a+ ¢ > 0 and b € C\{0}. Suppose that
1-n>0.

Then the following assertion holds true:

(1) If fj € Z;U(a,6,b), then the function Fp(z) defined by (1.12) is in the class
%3U (@,9,b).

() If f; € B,KU («,6,b), then the the function Gp(z) defined by (1.13) is in the
class T3U (,4,b) .

Remark 2.11. (i) Some of the above result presented in [5], [6] and [7], by using different
techniques.

(ii) We can obtain many other consequences for relatively more familiar subclasses of
meromorphically p— valent functions from the above result.

Other work that we can look at regarding differential and integral operators see ( [4], [9],

[12], [24], [25], [26], [27])-
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