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INVESTIGATION OF COMPACT FINITE DIFFERENCE SOLUTIONS
OF STEFAN PROBLEM WITH DIFFERENT BOUNDARY
CONDITIONS

SEDA GULEN! AND TURGUT OZi$

ABsTRACT. In this work, two soybean hydration models are investigated as Stefan
problem. Both models have variable diffusivity coefficient but have distinct surface
boundary conditions. These models solved by Variable Space Grid (VSG) method
with sixth order compact finite difference scheme (CFD6) and examined effect of
method on the models and compared solutions between the models.

1. INTRODUCTION

Many physical problems which include volume variation or movement of system bound-
aries are modeled as Stefan problem which is a particular kind of boundary value problems,
adapted the case the one of the boundary is moving and its motion is depend on time. One
of the applications of Stefan problem is soybean hydration process. In this process, when
the water enters the system the increase in size of the grain occurs. The models which
take into account soybean hydration process can be dealt with two categories. These
categories can be classified as having constant diffusivity and having variable diffusivity
which varies exponentially with moisture content of soybean. In addition, these models
are investigated with distinct surface boundary condition and as a result one obtains dif-
ferent model for soybean hydration process. In this study two models which have variable
diffusivity are investigated as Stefan problem. In the first model the boundary condition
reaches equilibrium moisture content at the beginning of the soaking and in the second
model the boundary condition represents that diffusive flux is equal to convective flux at
the surface.

Many authors have dedicated to the model has the boundary condition that reaches
equilibrium moisture content at the beginning of soaking [1, 2, 3].

Yiizgeg et al. [4] solved the model has boundary condition that equality of diffusive
and convective fluxes at the surface of drying of granular baker’s yeast.

Engels et al. [5] proposed a diffusion model for rice hydration and solved the system
with three different boundary conditions at the surface.
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The authors are mentioned above did not take into account the model as Stefan Prob-
lem. On the other hand Barry and Caunce [6], Davet et al. [7], McGuinness et al. [§],
Nicolin et al. [9] and Nicolin et al. [10] consider the swelling problems as a Stefan problem.

Nicolin et al. [9] solved the model have variable diffusivity and the boundary condition
that equilibrium moisture is instantly reached at the surface. They solved problem two
type of soybean by using Variable Space Grid (VSG) method with finite difference scheme
and compared solutions with experimental data. Again Nicolin et al. [10] solved the model
with boundary condition that diffusive flux is equal to convective flux at the surface by
the same method in Nicolin et al. [9].

In this work, we improved VSG by using sixth order compact finite difference scheme
for two models and investigate effect of the method on the models and compared solutions
between the models.

2. MATHEMATICAL MODELS

The model was obtained by transient mass balance on differential volume element of
soybean grains. Since the geometry of soybeans are assumed spherical and equation (2.1)
represents water absorbtion by soybean is developed in spherical coordinates based on
Fick’s law of diffusion. It is assumed that diffusion takes place only in radial direction,

2
o X (205, 2X)
ot r Or or?
where X is the moisture content of the grain, r is the radial coordinate, D is the diffusion
coefficient and ¢ is the time coordinate.

Equation (2.1) is second order partial differential equation. For solving the model
one initial condition and two boundary conditions which are adopted for the center and
the surface are required. Equation (2.2) gives the initial condition which is uniform
throughout the dry solid at time ¢t = 0,

(2.2) X(rt)=Xo, t=0

and equation (2.3) defines symmetry of the problem in the center of the grain in any
instant of time,

X
B =
In this study, two cases are investigated for surface boundary conditions. For the first

model, equation (2.4) represents moisture content on the solid-fluid (r = R(¢)) and it
reaches equilibrium moisture content at the beginning of the soaking,

(2.4) X=X, r=R(E), t>0

(2.3) 0, r=0, t>0.

where, X, is equilibrium moisture content which is obtained by experimental data.

In the second model, equation (2.5) is surface boundary condition where the diffusive
flux is equal to the convective flux, which is represented by the driving force given by the
difference between surface and equilibrium moisture content.

X
(25) 7pDSDaa—r = KC(XS - Xeq)7 r= R(t), t>0

where X is the moisture at the surface of the grain, K¢ is the coefficient of convective
mass transfer and ppg density of the dry solid.
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The position of moving boundary, radius, is given mass balance equation known as
Stefan condition,
dR(t X
(2.6) % = ozaa—r, r = R(t)

DLES g
PH>O
obtained by Nicolin et al [9], where ppg is the density of the dry solid, pg,o is the density

of the water and Ry is the initial radius.

The boundary condition is defined by equation (2.3) causes an indeterminacy in the
equation (2.1) since the equation (2.1) is not defined at the center of the grain. Therefore,
L’ Hospital rule was applied to equation (2.1) to obtain the solution for the center [9].

subject to initial condition, R(0) = Ry . For soybeaan hydration model, o =

oxX . 02X
ot or? ’

2.7)

3. CoMPACT FINITE DIFFERENCE SCHEME

Compact finite difference schemes (CFD) can be dealt with two kind of categories.
These are explicit compact finite differences which computes the numerical derivatives at
each grid by using large stencils and implicit compact finite differences which evaluates
the numerical derivatives through solving a system of linear equation by using smaller
stencil [11, 12, 13].

Spatial derivatives are computed by the compact finite difference scheme. A uniform
1D mesh consisting of N points: 7 < ry < ... < ry. The mesh size Ar = r;41 — 1y
is equal at any instant of time. The first derivatives are for all interior points (r;,t’),
2 <i < N —1is given by equation (3.1) [14].

X(ri+2, tj) — X(Tifg, tj)
4ArI
X(rig1,t?) — X(rig1.09)
a .
2A7rI

(31) OZX/(TiJrl,tj)+X/(7’Z',tj)+OZX/(Ti,1,tj) = b

which provides one parameter a-family of fourth order tridiagonal schemes with

a=2(at2) b:%(ﬁla—l).

[SCAR )

1
In this study we use sixth order compact finite difference scheme. For a = 1 sixth

order tridiagonal scheme as in the system (3.2)

5
(3.2) X' +5X 41 ~ = X1 +5Xiy2 — > Xips

L/ 197 5
60 " 12 3

) 1
—Xita — =X, =13
TNt T 5y +5> [
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The system (3.2) can be expressed by vector-matrix form:

1
AX' = —BX
Ar ’
where X = (X1, Xa, ..., Xn)T. The second order derivative terms are obtained by apply-

ing the first operator twice,

1
AX" = BX'
SE
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4. NUMERICAL SOLUTION

In numerical solution of the soybean hydration model, three-point sixth order compact
finite difference scheme and explicit finite difference scheme are used for derivatives of
radial coordinate where the interval [0, R(t)]. The time derivatives are discretized by
forward finite difference scheme.

To solve the model the radial coordinate was divided into N points (i = 1,2,.., N).
The number of time intervals is determined by amount of absorbation water. When the
whole grain reaches 99% of the equilibrium moisture content, the process is cut off.

Discretization of equation (2.2), equation (2.3) and equation (2.7) as below,

X} =X, ¥r, t>0, i=1,2,..,N;

X=X, r=0, t>0;

6DAt
(Ard)?

X =X 4 (X3 - XJ), at r=0.

For interior points (i = 2,..., N — 1),

J
(A?"j )2 eri

i\ A T
1

, , Atrivi 2DAt , DAt
(4.1 Xf*lX”( —> e

is obtained. The term v/ which appears in equation (4.1) represents motion of the bound-
ary, is radius. The velocity of motion of the radius is represented by equation (2.6) and
discretization of it is given by equation (4.2).

j 4
(4.2) v = (dR) = Pbs pxi

rrY)
dt pwate'r‘

r=R(t).

The position of radius at the next time step is calculated by the following approximation:
Rt = RI + At/ .

Discretization of surface conditions, for the first model is given by equation (4.3):

(4.3) X5 = Xeg, =R,

and for the second model is given by equation (4.4):

—ppsDX], + ATV K X,
PDSDXﬂi + Aijc

(4.4) X = , r=R().

To compare our numerical results with available experimental data (from [15]), the aver-
aging over the volume of the grain as below [9],

fOR X.r2dr

fOR r2dr

(4.5) Xy =
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5. RESULTS

The soybean hydration models are solved by sixth order compact finite difference
scheme in radial coordinate and forward finite difference in time coordinate.

The computations are performed using the software MATLAB R2012a on ASUS ma-
chine with Intel Core i7 2.4 GHz and 6 GB memory.

Different numbers of uniform mesh point are used for numerical calculations. Constants
in the models at 10° C are given as below [15],

Xo = 0'126(kgwater/ngS)

Xeq = 1-651(kgwater/ngS)

D =3.277.10"*(m?/sn)  Model 1

D =3.514.10""(m?/sn) Model 2

PDS = 1.057(l€gD5/m3)

Pwater = 1-000(kgwater/m3)

K. =1.286.10"3(kg/m?s)

Ry = 0.003m

1
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FIGURE 1. Moisture profiles as a function of variable radius for various
values of time (left) and moisture profiles as a function of time for various
radial positions (right)

5.1. Solution of the First Model. The number of divisions of the radius is performed
for N = 60,80 and 100. As it seen in figure 1 (left and right), there is no significant
difference among the profiles obtained for 60 < N < 100.

Figure 1 (right) represents moisture profiles as a function of time for different N values.
Moisture profiles are close each other for these N values. As time increases, moisture
content inside the soybean increase and reaches the equilibrium moisture value.

It is seen that in figure 2 average moisture content profiles which is calculated by
equation (4.5) and available experimental data (from [15]) are in good agrement.

In figure 3 the increase of size of the grain calculated by CFD6 for N = 60, 80, 100
is shown. Nicolin et al. [9] demonstrated experimentally R,,,, has the 40.6% increase
and numerically R,,q, has the 37.4% increase. We obtain 37.46% increase by the present
method.

5.2. Solution of the Second Model. Similar procedures apply to the first model are
applied to the second model.
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FIGURE 4. Moisture profiles as a function of variable radius for various
values of time (left) and Moisture profiles as a function of time for various
radial positions (right)

5.3. Comparison of the first model and the second model. In figure 7, at the
beginning of hydration the two models show similar prediction of the moisture content
behavior as a function of radius, especially at the center and at the surface of the grain.
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FIGURE 5. Average moisture content profiles and experimental data
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FIGURE 6. Grain radius as a function of time
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FIGURE 7. Moisture profiles as a function of variable radius for various
values of time

After approximatelly 19000 s the description of the moisture content variation with the
radius given by the first model varied greatly the other model.
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FIGURE 8. Moisture profiles as a function of time for various radial positions
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FIGURE 9. Average moisture contents and experimental data

Figure 8 represents moisture profiles as a function of time for various radial positions
for the first model and seconf model and in figure 9, it is shown relation between obtained
numerical solution and experimental data.

Figure 10 represents the second model reaches the equilibrium point faster than the
first model.

TABLE 1. Equilibrium times and CPU times at different N values for
the first model

Nicolin et al.[15] CFD6
N teq CPU teq CPU
60 234662 293.124552 234148 10.052013
80 234507 329.169541 234145 18.794400

100 234423 368.56395 234144 22.644993
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FIGURE 10. Grain radius as a function of time

Present method (CFD6) reaches equilibrium time faster with high accuracy and com-
putational effort is less than compared method as seen in Table 1 and Table 2.

TABLE 2. Equilibrium times and CPU times at different N values for
the second model

Nicolin et al.[15] CFD6
N teq CPU teq CPU
60 218845 12.886249 218362 12.002812
80 218700 18.145747 218360 21.673539
100 218623 19.624960 218360 25.643130

TABLE 3. Grain radius for the first model and the second model

First Model Second Model
N R R
60 0.0041242019 0.0041242432
80 0.0041241798 0.0041242235
100 0.0041241688 0.0041242148

It is seen that the increase in size of the grain is much the same for two model.

6. CONCLUSION

In first model, sixth order compact finite difference (CFD6) solution has less compu-
tational time than explicit solution [9, 10, 15] and it reaches equilibrium time faster with
same accuracy. For the second model sixth order compact finite difference solution and
explicit solution [9, 10, 15] have about the same computational time but in this case
equilibrium time is shorter than explicit solution.
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