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Abstrat. In this work, two soybean hydration models are investigated as Stefan

problem. Both models have variable di�usivity oe�ient but have distint surfae

boundary onditions. These models solved by Variable Spae Grid (VSG) method

with sixth order ompat �nite di�erene sheme (CFD6) and examined e�et of

method on the models and ompared solutions between the models.

1. Introdution

Many physial problems whih inlude volume variation or movement of system bound-

aries are modeled as Stefan problem whih is a partiular kind of boundary value problems,

adapted the ase the one of the boundary is moving and its motion is depend on time. One

of the appliations of Stefan problem is soybean hydration proess. In this proess, when

the water enters the system the inrease in size of the grain ours. The models whih

take into aount soybean hydration proess an be dealt with two ategories. These

ategories an be lassi�ed as having onstant di�usivity and having variable di�usivity

whih varies exponentially with moisture ontent of soybean. In addition, these models

are investigated with distint surfae boundary ondition and as a result one obtains dif-

ferent model for soybean hydration proess. In this study two models whih have variable

di�usivity are investigated as Stefan problem. In the �rst model the boundary ondition

reahes equilibrium moisture ontent at the beginning of the soaking and in the seond

model the boundary ondition represents that di�usive �ux is equal to onvetive �ux at

the surfae.

Many authors have dediated to the model has the boundary ondition that reahes

equilibrium moisture ontent at the beginning of soaking [1, 2, 3℄.

Yüzgeç et al. [4℄ solved the model has boundary ondition that equality of di�usive

and onvetive �uxes at the surfae of drying of granular baker's yeast.

Engels et al. [5℄ proposed a di�usion model for rie hydration and solved the system

with three di�erent boundary onditions at the surfae.
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The authors are mentioned above did not take into aount the model as Stefan Prob-

lem. On the other hand Barry and Caune [6℄, Davet et al. [7℄, MGuinness et al. [8℄,

Niolin et al. [9℄ and Niolin et al. [10℄ onsider the swelling problems as a Stefan problem.

Niolin et al. [9℄ solved the model have variable di�usivity and the boundary ondition

that equilibrium moisture is instantly reahed at the surfae. They solved problem two

type of soybean by using Variable Spae Grid (VSG) method with �nite di�erene sheme

and ompared solutions with experimental data. Again Niolin et al. [10℄ solved the model

with boundary ondition that di�usive �ux is equal to onvetive �ux at the surfae by

the same method in Niolin et al. [9℄.

In this work, we improved VSG by using sixth order ompat �nite di�erene sheme

for two models and investigate e�et of the method on the models and ompared solutions

between the models.

2. Mathematial Models

The model was obtained by transient mass balane on di�erential volume element of

soybean grains. Sine the geometry of soybeans are assumed spherial and equation (2.1)

represents water absorbtion by soybean is developed in spherial oordinates based on

Fik's law of di�usion. It is assumed that di�usion takes plae only in radial diretion,

(2.1)

∂X

∂t
= D

(

2

r

∂X

∂r
+

∂2X

∂r2

)

where X is the moisture ontent of the grain, r is the radial oordinate, D is the di�usion

oe�ient and t is the time oordinate.

Equation (2.1) is seond order partial di�erential equation. For solving the model

one initial ondition and two boundary onditions whih are adopted for the enter and

the surfae are required. Equation (2.2) gives the initial ondition whih is uniform

throughout the dry solid at time t = 0,

(2.2) X(r, t) = X0, t = 0

and equation (2.3) de�nes symmetry of the problem in the enter of the grain in any

instant of time,

(2.3)

∂X

∂r
= 0, r = 0, t > 0 .

In this study, two ases are investigated for surfae boundary onditions. For the �rst

model, equation (2.4) represents moisture ontent on the solid-�uid (r = R(t)) and it

reahes equilibrium moisture ontent at the beginning of the soaking,

(2.4) X = Xeq, r = R(t), t > 0

where, Xeq is equilibrium moisture ontent whih is obtained by experimental data.

In the seond model, equation (2.5) is surfae boundary ondition where the di�usive

�ux is equal to the onvetive �ux, whih is represented by the driving fore given by the

di�erene between surfae and equilibrium moisture ontent.

(2.5) −ρDSD
∂X

∂r
= KC(XS −Xeq), r = R(t), t > 0

where Xs is the moisture at the surfae of the grain, KC is the oe�ient of onvetive

mass transfer and ρDS density of the dry solid.
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The position of moving boundary, radius, is given mass balane equation known as

Stefan ondition,

(2.6)

dR(t)

dt
= α

∂X

∂r
, r = R(t)

subjet to initial ondition, R(0) = R0 . For soybeaan hydration model, α = D
ρDS

ρH2O

is

obtained by Niolin et al [9℄, where ρDS is the density of the dry solid, ρH2O is the density

of the water and R0 is the initial radius.

The boundary ondition is de�ned by equation (2.3) auses an indeterminay in the

equation (2.1) sine the equation (2.1) is not de�ned at the enter of the grain. Therefore,

L' Hospital rule was applied to equation (2.1) to obtain the solution for the enter [9℄.

(2.7)

∂X

∂t
= 3D

∂2X

∂r2
.

3. Compat Finite Differene Sheme

Compat �nite di�erene shemes (CFD) an be dealt with two kind of ategories.

These are expliit ompat �nite di�erenes whih omputes the numerial derivatives at

eah grid by using large stenils and impliit ompat �nite di�erenes whih evaluates

the numerial derivatives through solving a system of linear equation by using smaller

stenil [11, 12, 13℄.

Spatial derivatives are omputed by the ompat �nite di�erene sheme. A uniform

1D mesh onsisting of N points: r1 < r2 < ... < rN . The mesh size ∆r = ri+1 − ri
is equal at any instant of time. The �rst derivatives are for all interior points (ri, t

j),
2 ≤ i ≤ N − 1 is given by equation (3.1) [14℄.

αX ′(ri+1, t
j) +X ′(ri, t

j) + αX ′(ri−1, t
j) = b

X(ri+2, t
j)−X(ri−2, t

j)

4∆rj
(3.1)

+a
X(ri+1, t

j)−X(ri+1,tj )

2∆rj

whih provides one parameter α-family of fourth order tridiagonal shemes with

a =
2

3
(α+ 2) b =

1

3
(4α− 1) .

In this study we use sixth order ompat �nite di�erene sheme. For α =
1

4
sixth

order tridiagonal sheme as in the system (3.2)

X ′

i + 5X ′

i+1 =
1

∆r

(

−
197

60
Xi −

5

12
Xi+1 + 5Xi+2 −

5

3
Xi+3(3.2)

+
5

12
Xi+4 −

1

20
Xi+5

)

, i = 1 ;
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2

11
X ′

i−1 +X ′

i +
2

11
Xi−1 =

1

∆r

(

−
20

33
Xi−1 −

35

132
Xi +

34

33
Xi+1 −

7

33
Xi+2

+
2

33
Xi+3 −

1

132
Xi+4

)

, i = 2 ;

1

3
X ′

i−1 +X ′

i +
1

3
X ′

i+1 =
1

4∆r

(

1

9
Xi+2 −

1

9
Xi−2

)

+
1

2∆r

(

14

9
Xi+1 −

14

9
Xi−1

)

, i = 3, 4, ..., N − 2 ;

2

11
X ′

i−1 +X ′

i +
2

11
Xi+1 =

1

∆r

(

20

33
Xi+1 +

35

132
Xi −

34

33
Xi−1

+
7

33
Xi−2 −

2

33
Xi−3 +

1

132
Xi−4

)

, i = N − 1 ;

5X ′

i−1 +X ′

i =
1

∆r

(

197

60
Xi +

5

12
Xi−1 − 5Xi−2

+
5

3
Xi−4 +

1

20
Xi−5

)

, i = N .

The system (3.2) an be expressed by vetor-matrix form:

AX ′ =
1

∆r
BX ,

where X = (X1, X2, ..., XN)T . The seond order derivative terms are obtained by apply-

ing the �rst operator twie,

AX ′′ =
1

(∆r)2
BX ′ ,

where

A =
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4. Numerial solution

In numerial solution of the soybean hydration model, three-point sixth order ompat

�nite di�erene sheme and expliit �nite di�erene sheme are used for derivatives of

radial oordinate where the interval [0, R(t)]. The time derivatives are disretized by

forward �nite di�erene sheme.

To solve the model the radial oordinate was divided into N points (i = 1, 2, .., N).
The number of time intervals is determined by amount of absorbation water. When the

whole grain reahes 99% of the equilibrium moisture ontent, the proess is ut o�.

Disretization of equation (2.2), equation (2.3) and equation (2.7) as below,

X1
i = X0, ∀r, t > 0, i = 1, 2, ..., N ;

Xj
2 = Xj

0 , r = 0, t > 0 ;

Xj+1

1 = Xj
1 +

6D∆t

(∆rj)2
(Xj

2 −Xj
1), at r = 0 .

For interior points (i = 2, ..., N − 1),

(4.1) Xj+1

i = Xj
i +

(

∆trji v
j

Rj∆rj
+

2D∆t

rji

)

Xj
ri +

D∆t

(∆rj)2
Xj

rri

is obtained. The term vj whih appears in equation (4.1) represents motion of the bound-

ary, is radius. The veloity of motion of the radius is represented by equation (2.6) and

disretization of it is given by equation (4.2).

(4.2) vj =

(

dR

dt

)j

=
ρDS

ρwater

DXj
rri, r = R(t) .

The position of radius at the next time step is alulated by the following approximation:

Rj+1 = Rj +∆tvj .

Disretization of surfae onditions, for the �rst model is given by equation (4.3):

(4.3) Xj+1

N = Xeq, r = R(t) ,

and for the seond model is given by equation (4.4):

(4.4) Xj+1

N =
−ρDSDXj

ri +∆rjKcXeq

ρDSDXj
ri +∆rjKc

, r = R(t) .

To ompare our numerial results with available experimental data (from [15℄), the aver-

aging over the volume of the grain as below [9℄,

(4.5) Xm =

∫ R

0
X.r2dr

∫ R

0
r2dr

.
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5. Results

The soybean hydration models are solved by sixth order ompat �nite di�erene

sheme in radial oordinate and forward �nite di�erene in time oordinate.

The omputations are performed using the software MATLAB R2012a on ASUS ma-

hine with Intel Core i7 2.4 GHz and 6 GB memory.

Di�erent numbers of uniform mesh point are used for numerial alulations. Constants

in the models at 10o C are given as below [15℄,

X0 = 0.126(kgwater/kgDS)
Xeq = 1.651(kgwater/kgDS)
D = 3.277.10−11(m2/sn) Model 1

D = 3.514.10−11(m2/sn) Model 2

ρDS = 1.057(kgDS/m
3)

ρwater = 1.000(kgwater/m
3)

Kc = 1.286.10−3(kg/m2s)
R0 = 0.003m

Figure 1. Moisture pro�les as a funtion of variable radius for various

values of time (left) and moisture pro�les as a funtion of time for various

radial positions (right)

5.1. Solution of the First Model. The number of divisions of the radius is performed

for N = 60, 80 and 100. As it seen in �gure 1 (left and right), there is no signi�ant

di�erene among the pro�les obtained for 60 ≤ N ≤ 100.
Figure 1 (right) represents moisture pro�les as a funtion of time for di�erent N values.

Moisture pro�les are lose eah other for these N values. As time inreases, moisture

ontent inside the soybean inrease and reahes the equilibrium moisture value.

It is seen that in �gure 2 average moisture ontent pro�les whih is alulated by

equation (4.5) and available experimental data (from [15℄) are in good agrement.

In �gure 3 the inrease of size of the grain alulated by CFD6 for N = 60, 80, 100
is shown. Niolin et al. [9℄ demonstrated experimentally Rmax has the 40.6% inrease

and numerially Rmax has the 37.4% inrease. We obtain 37.46% inrease by the present

method.

5.2. Solution of the Seond Model. Similar proedures apply to the �rst model are

applied to the seond model.
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Figure 2. Average moisture ontent pro�les and experimental data

Figure 3. Grain radius as a funtion of time

Figure 4. Moisture pro�les as a funtion of variable radius for various

values of time (left) and Moisture pro�les as a funtion of time for various

radial positions (right)

5.3. Comparison of the �rst model and the seond model. In �gure 7, at the

beginning of hydration the two models show similar predition of the moisture ontent

behavior as a funtion of radius, espeially at the enter and at the surfae of the grain.
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Figure 5. Average moisture ontent pro�les and experimental data

Figure 6. Grain radius as a funtion of time

Figure 7. Moisture pro�les as a funtion of variable radius for various

values of time

After approximatelly 19000 s the desription of the moisture ontent variation with the

radius given by the �rst model varied greatly the other model.
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Figure 8. Moisture pro�les as a funtion of time for various radial positions

Figure 9. Average moisture ontents and experimental data

Figure 8 represents moisture pro�les as a funtion of time for various radial positions

for the �rst model and seonf model and in �gure 9, it is shown relation between obtained

numerial solution and experimental data.

Figure 10 represents the seond model reahes the equilibrium point faster than the

�rst model.

Table 1. Equilibrium times and CPU times at di�erent N values for

the �rst model

Niolin et al.[15℄ CFD6

N teq CPU teq CPU

60 234662 293.124552 234148 10.052013

80 234507 329.169541 234145 18.794400

100 234423 368.56395 234144 22.644993
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Figure 10. Grain radius as a funtion of time

Present method (CFD6) reahes equilibrium time faster with high auray and om-

putational e�ort is less than ompared method as seen in Table 1 and Table 2.

Table 2. Equilibrium times and CPU times at di�erent N values for

the seond model

Niolin et al.[15℄ CFD6

N teq CPU teq CPU

60 218845 12.886249 218362 12.002812

80 218700 18.145747 218360 21.673539

100 218623 19.624960 218360 25.643130

Table 3. Grain radius for the �rst model and the seond model

First Model Seond Model

N R R

60 0.0041242019 0.0041242432

80 0.0041241798 0.0041242235

100 0.0041241688 0.0041242148

It is seen that the inrease in size of the grain is muh the same for two model.

6. Conlusion

In �rst model, sixth order ompat �nite di�erene (CFD6) solution has less ompu-

tational time than expliit solution [9, 10, 15℄ and it reahes equilibrium time faster with

same auray. For the seond model sixth order ompat �nite di�erene solution and

expliit solution [9, 10, 15℄ have about the same omputational time but in this ase

equilibrium time is shorter than expliit solution.
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