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Abstra
t. In this work, two soybean hydration models are investigated as Stefan

problem. Both models have variable di�usivity 
oe�
ient but have distin
t surfa
e

boundary 
onditions. These models solved by Variable Spa
e Grid (VSG) method

with sixth order 
ompa
t �nite di�eren
e s
heme (CFD6) and examined e�e
t of

method on the models and 
ompared solutions between the models.

1. Introdu
tion

Many physi
al problems whi
h in
lude volume variation or movement of system bound-

aries are modeled as Stefan problem whi
h is a parti
ular kind of boundary value problems,

adapted the 
ase the one of the boundary is moving and its motion is depend on time. One

of the appli
ations of Stefan problem is soybean hydration pro
ess. In this pro
ess, when

the water enters the system the in
rease in size of the grain o

urs. The models whi
h

take into a

ount soybean hydration pro
ess 
an be dealt with two 
ategories. These


ategories 
an be 
lassi�ed as having 
onstant di�usivity and having variable di�usivity

whi
h varies exponentially with moisture 
ontent of soybean. In addition, these models

are investigated with distin
t surfa
e boundary 
ondition and as a result one obtains dif-

ferent model for soybean hydration pro
ess. In this study two models whi
h have variable

di�usivity are investigated as Stefan problem. In the �rst model the boundary 
ondition

rea
hes equilibrium moisture 
ontent at the beginning of the soaking and in the se
ond

model the boundary 
ondition represents that di�usive �ux is equal to 
onve
tive �ux at

the surfa
e.

Many authors have dedi
ated to the model has the boundary 
ondition that rea
hes

equilibrium moisture 
ontent at the beginning of soaking [1, 2, 3℄.

Yüzgeç et al. [4℄ solved the model has boundary 
ondition that equality of di�usive

and 
onve
tive �uxes at the surfa
e of drying of granular baker's yeast.

Engels et al. [5℄ proposed a di�usion model for ri
e hydration and solved the system

with three di�erent boundary 
onditions at the surfa
e.
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The authors are mentioned above did not take into a

ount the model as Stefan Prob-

lem. On the other hand Barry and Caun
e [6℄, Davet et al. [7℄, M
Guinness et al. [8℄,

Ni
olin et al. [9℄ and Ni
olin et al. [10℄ 
onsider the swelling problems as a Stefan problem.

Ni
olin et al. [9℄ solved the model have variable di�usivity and the boundary 
ondition

that equilibrium moisture is instantly rea
hed at the surfa
e. They solved problem two

type of soybean by using Variable Spa
e Grid (VSG) method with �nite di�eren
e s
heme

and 
ompared solutions with experimental data. Again Ni
olin et al. [10℄ solved the model

with boundary 
ondition that di�usive �ux is equal to 
onve
tive �ux at the surfa
e by

the same method in Ni
olin et al. [9℄.

In this work, we improved VSG by using sixth order 
ompa
t �nite di�eren
e s
heme

for two models and investigate e�e
t of the method on the models and 
ompared solutions

between the models.

2. Mathemati
al Models

The model was obtained by transient mass balan
e on di�erential volume element of

soybean grains. Sin
e the geometry of soybeans are assumed spheri
al and equation (2.1)

represents water absorbtion by soybean is developed in spheri
al 
oordinates based on

Fi
k's law of di�usion. It is assumed that di�usion takes pla
e only in radial dire
tion,

(2.1)

∂X

∂t
= D

(

2

r

∂X

∂r
+

∂2X

∂r2

)

where X is the moisture 
ontent of the grain, r is the radial 
oordinate, D is the di�usion


oe�
ient and t is the time 
oordinate.

Equation (2.1) is se
ond order partial di�erential equation. For solving the model

one initial 
ondition and two boundary 
onditions whi
h are adopted for the 
enter and

the surfa
e are required. Equation (2.2) gives the initial 
ondition whi
h is uniform

throughout the dry solid at time t = 0,

(2.2) X(r, t) = X0, t = 0

and equation (2.3) de�nes symmetry of the problem in the 
enter of the grain in any

instant of time,

(2.3)

∂X

∂r
= 0, r = 0, t > 0 .

In this study, two 
ases are investigated for surfa
e boundary 
onditions. For the �rst

model, equation (2.4) represents moisture 
ontent on the solid-�uid (r = R(t)) and it

rea
hes equilibrium moisture 
ontent at the beginning of the soaking,

(2.4) X = Xeq, r = R(t), t > 0

where, Xeq is equilibrium moisture 
ontent whi
h is obtained by experimental data.

In the se
ond model, equation (2.5) is surfa
e boundary 
ondition where the di�usive

�ux is equal to the 
onve
tive �ux, whi
h is represented by the driving for
e given by the

di�eren
e between surfa
e and equilibrium moisture 
ontent.

(2.5) −ρDSD
∂X

∂r
= KC(XS −Xeq), r = R(t), t > 0

where Xs is the moisture at the surfa
e of the grain, KC is the 
oe�
ient of 
onve
tive

mass transfer and ρDS density of the dry solid.
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The position of moving boundary, radius, is given mass balan
e equation known as

Stefan 
ondition,

(2.6)

dR(t)

dt
= α

∂X

∂r
, r = R(t)

subje
t to initial 
ondition, R(0) = R0 . For soybeaan hydration model, α = D
ρDS

ρH2O

is

obtained by Ni
olin et al [9℄, where ρDS is the density of the dry solid, ρH2O is the density

of the water and R0 is the initial radius.

The boundary 
ondition is de�ned by equation (2.3) 
auses an indetermina
y in the

equation (2.1) sin
e the equation (2.1) is not de�ned at the 
enter of the grain. Therefore,

L' Hospital rule was applied to equation (2.1) to obtain the solution for the 
enter [9℄.

(2.7)

∂X

∂t
= 3D

∂2X

∂r2
.

3. Compa
t Finite Differen
e S
heme

Compa
t �nite di�eren
e s
hemes (CFD) 
an be dealt with two kind of 
ategories.

These are expli
it 
ompa
t �nite di�eren
es whi
h 
omputes the numeri
al derivatives at

ea
h grid by using large sten
ils and impli
it 
ompa
t �nite di�eren
es whi
h evaluates

the numeri
al derivatives through solving a system of linear equation by using smaller

sten
il [11, 12, 13℄.

Spatial derivatives are 
omputed by the 
ompa
t �nite di�eren
e s
heme. A uniform

1D mesh 
onsisting of N points: r1 < r2 < ... < rN . The mesh size ∆r = ri+1 − ri
is equal at any instant of time. The �rst derivatives are for all interior points (ri, t

j),
2 ≤ i ≤ N − 1 is given by equation (3.1) [14℄.

αX ′(ri+1, t
j) +X ′(ri, t

j) + αX ′(ri−1, t
j) = b

X(ri+2, t
j)−X(ri−2, t

j)

4∆rj
(3.1)

+a
X(ri+1, t

j)−X(ri+1,tj )

2∆rj

whi
h provides one parameter α-family of fourth order tridiagonal s
hemes with

a =
2

3
(α+ 2) b =

1

3
(4α− 1) .

In this study we use sixth order 
ompa
t �nite di�eren
e s
heme. For α =
1

4
sixth

order tridiagonal s
heme as in the system (3.2)

X ′

i + 5X ′

i+1 =
1

∆r

(

−
197

60
Xi −

5

12
Xi+1 + 5Xi+2 −

5

3
Xi+3(3.2)

+
5

12
Xi+4 −

1

20
Xi+5

)

, i = 1 ;
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2

11
X ′

i−1 +X ′

i +
2

11
Xi−1 =

1

∆r

(

−
20

33
Xi−1 −

35

132
Xi +

34

33
Xi+1 −

7

33
Xi+2

+
2

33
Xi+3 −

1

132
Xi+4

)

, i = 2 ;

1

3
X ′

i−1 +X ′

i +
1

3
X ′

i+1 =
1

4∆r

(

1

9
Xi+2 −

1

9
Xi−2

)

+
1

2∆r

(

14

9
Xi+1 −

14

9
Xi−1

)

, i = 3, 4, ..., N − 2 ;

2

11
X ′

i−1 +X ′

i +
2

11
Xi+1 =

1

∆r

(

20

33
Xi+1 +

35

132
Xi −

34

33
Xi−1

+
7

33
Xi−2 −

2

33
Xi−3 +

1

132
Xi−4

)

, i = N − 1 ;

5X ′

i−1 +X ′

i =
1

∆r

(

197

60
Xi +

5

12
Xi−1 − 5Xi−2

+
5

3
Xi−4 +

1

20
Xi−5

)

, i = N .

The system (3.2) 
an be expressed by ve
tor-matrix form:

AX ′ =
1

∆r
BX ,

where X = (X1, X2, ..., XN)T . The se
ond order derivative terms are obtained by apply-

ing the �rst operator twi
e,

AX ′′ =
1

(∆r)2
BX ′ ,

where

A =























1 5
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3
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3

.

.

.

.

.

.

.

.

.
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3
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3
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11

5 1























B =




















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
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4. Numeri
al solution

In numeri
al solution of the soybean hydration model, three-point sixth order 
ompa
t

�nite di�eren
e s
heme and expli
it �nite di�eren
e s
heme are used for derivatives of

radial 
oordinate where the interval [0, R(t)]. The time derivatives are dis
retized by

forward �nite di�eren
e s
heme.

To solve the model the radial 
oordinate was divided into N points (i = 1, 2, .., N).
The number of time intervals is determined by amount of absorbation water. When the

whole grain rea
hes 99% of the equilibrium moisture 
ontent, the pro
ess is 
ut o�.

Dis
retization of equation (2.2), equation (2.3) and equation (2.7) as below,

X1
i = X0, ∀r, t > 0, i = 1, 2, ..., N ;

Xj
2 = Xj

0 , r = 0, t > 0 ;

Xj+1

1 = Xj
1 +

6D∆t

(∆rj)2
(Xj

2 −Xj
1), at r = 0 .

For interior points (i = 2, ..., N − 1),

(4.1) Xj+1

i = Xj
i +

(

∆trji v
j

Rj∆rj
+

2D∆t

rji

)

Xj
ri +

D∆t

(∆rj)2
Xj

rri

is obtained. The term vj whi
h appears in equation (4.1) represents motion of the bound-

ary, is radius. The velo
ity of motion of the radius is represented by equation (2.6) and

dis
retization of it is given by equation (4.2).

(4.2) vj =

(

dR

dt

)j

=
ρDS

ρwater

DXj
rri, r = R(t) .

The position of radius at the next time step is 
al
ulated by the following approximation:

Rj+1 = Rj +∆tvj .

Dis
retization of surfa
e 
onditions, for the �rst model is given by equation (4.3):

(4.3) Xj+1

N = Xeq, r = R(t) ,

and for the se
ond model is given by equation (4.4):

(4.4) Xj+1

N =
−ρDSDXj

ri +∆rjKcXeq

ρDSDXj
ri +∆rjKc

, r = R(t) .

To 
ompare our numeri
al results with available experimental data (from [15℄), the aver-

aging over the volume of the grain as below [9℄,

(4.5) Xm =

∫ R

0
X.r2dr

∫ R

0
r2dr

.
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5. Results

The soybean hydration models are solved by sixth order 
ompa
t �nite di�eren
e

s
heme in radial 
oordinate and forward �nite di�eren
e in time 
oordinate.

The 
omputations are performed using the software MATLAB R2012a on ASUS ma-


hine with Intel Core i7 2.4 GHz and 6 GB memory.

Di�erent numbers of uniform mesh point are used for numeri
al 
al
ulations. Constants

in the models at 10o C are given as below [15℄,

X0 = 0.126(kgwater/kgDS)
Xeq = 1.651(kgwater/kgDS)
D = 3.277.10−11(m2/sn) Model 1

D = 3.514.10−11(m2/sn) Model 2

ρDS = 1.057(kgDS/m
3)

ρwater = 1.000(kgwater/m
3)

Kc = 1.286.10−3(kg/m2s)
R0 = 0.003m

Figure 1. Moisture pro�les as a fun
tion of variable radius for various

values of time (left) and moisture pro�les as a fun
tion of time for various

radial positions (right)

5.1. Solution of the First Model. The number of divisions of the radius is performed

for N = 60, 80 and 100. As it seen in �gure 1 (left and right), there is no signi�
ant

di�eren
e among the pro�les obtained for 60 ≤ N ≤ 100.
Figure 1 (right) represents moisture pro�les as a fun
tion of time for di�erent N values.

Moisture pro�les are 
lose ea
h other for these N values. As time in
reases, moisture


ontent inside the soybean in
rease and rea
hes the equilibrium moisture value.

It is seen that in �gure 2 average moisture 
ontent pro�les whi
h is 
al
ulated by

equation (4.5) and available experimental data (from [15℄) are in good agrement.

In �gure 3 the in
rease of size of the grain 
al
ulated by CFD6 for N = 60, 80, 100
is shown. Ni
olin et al. [9℄ demonstrated experimentally Rmax has the 40.6% in
rease

and numeri
ally Rmax has the 37.4% in
rease. We obtain 37.46% in
rease by the present

method.

5.2. Solution of the Se
ond Model. Similar pro
edures apply to the �rst model are

applied to the se
ond model.
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Figure 2. Average moisture 
ontent pro�les and experimental data

Figure 3. Grain radius as a fun
tion of time

Figure 4. Moisture pro�les as a fun
tion of variable radius for various

values of time (left) and Moisture pro�les as a fun
tion of time for various

radial positions (right)

5.3. Comparison of the �rst model and the se
ond model. In �gure 7, at the

beginning of hydration the two models show similar predi
tion of the moisture 
ontent

behavior as a fun
tion of radius, espe
ially at the 
enter and at the surfa
e of the grain.
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Figure 5. Average moisture 
ontent pro�les and experimental data

Figure 6. Grain radius as a fun
tion of time

Figure 7. Moisture pro�les as a fun
tion of variable radius for various

values of time

After approximatelly 19000 s the des
ription of the moisture 
ontent variation with the

radius given by the �rst model varied greatly the other model.
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Figure 8. Moisture pro�les as a fun
tion of time for various radial positions

Figure 9. Average moisture 
ontents and experimental data

Figure 8 represents moisture pro�les as a fun
tion of time for various radial positions

for the �rst model and se
onf model and in �gure 9, it is shown relation between obtained

numeri
al solution and experimental data.

Figure 10 represents the se
ond model rea
hes the equilibrium point faster than the

�rst model.

Table 1. Equilibrium times and CPU times at di�erent N values for

the �rst model

Ni
olin et al.[15℄ CFD6

N teq CPU teq CPU

60 234662 293.124552 234148 10.052013

80 234507 329.169541 234145 18.794400

100 234423 368.56395 234144 22.644993
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Figure 10. Grain radius as a fun
tion of time

Present method (CFD6) rea
hes equilibrium time faster with high a

ura
y and 
om-

putational e�ort is less than 
ompared method as seen in Table 1 and Table 2.

Table 2. Equilibrium times and CPU times at di�erent N values for

the se
ond model

Ni
olin et al.[15℄ CFD6

N teq CPU teq CPU

60 218845 12.886249 218362 12.002812

80 218700 18.145747 218360 21.673539

100 218623 19.624960 218360 25.643130

Table 3. Grain radius for the �rst model and the se
ond model

First Model Se
ond Model

N R R

60 0.0041242019 0.0041242432

80 0.0041241798 0.0041242235

100 0.0041241688 0.0041242148

It is seen that the in
rease in size of the grain is mu
h the same for two model.

6. Con
lusion

In �rst model, sixth order 
ompa
t �nite di�eren
e (CFD6) solution has less 
ompu-

tational time than expli
it solution [9, 10, 15℄ and it rea
hes equilibrium time faster with

same a

ura
y. For the se
ond model sixth order 
ompa
t �nite di�eren
e solution and

expli
it solution [9, 10, 15℄ have about the same 
omputational time but in this 
ase

equilibrium time is shorter than expli
it solution.
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