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EXTENDED TRAVELING WAVE SOLUTIONS FOR SOME

NONLINEAR EQUATIONS

SERIFE MUGE EGE

Abstrat. The extended Kudryashov method (EKM) is exeuted to �nd the trav-

eling wave solutions for the Benjamin-Bona-Mahony (m,n) and Sharma-Tasso-Olver

equations. The e�ieny of this method for �nding exat solutions and traveling wave

solutions has been demonstrated and ompared with the solutions obtained by las-

sial method. It has been shown that the proposed method is e�etive, diret and

an be used for many other nonlinear evolution equations (NLEEs) in mathematial

physis.

1. Introdution

The study of nonlinear evolution equations has an intense period over the last deades

and has ontinued to attrat attention in more reent years. These equations are math-

ematial models of various physial phenomena that arise in many �elds suh as engi-

neering, applied mathematis, dynamis, eletromagneti theory, nonlinear physis and

so on. Thus, it is very important to searh for exat traveling wave solutions of nonlinear

evolution equations. Furthermore, when an original nonlinear equation is diretly solved,

the solution will preserve the atual physial haraters of the equations.

In the past several deades many useful methods and tehniques have been developed

for �nding exat traveling wave solutions to nonlinear evolution equations suh as G′/G
expansion method [2, 14℄, sine-osine method [3, 12℄, exp-fution method [4, 15℄, sub-

equation method [5℄, funtional variable method [7℄, multiple exp-funtion method [8℄,

trial equation method [9℄, modi�ed simple equation method [17℄, extended tanh method

[24℄ and others.

In this study, we present an extended method by inspring of modi�ed Kudryashov

method whih was �rst introdued by Kudryashov [19℄ and other similar methods re-

�ning the initial idea [6, 10, 11, 18, 21℄. The advantage of this method over the other

lassial methods is that gives more solutions with some parameters whih e�ets both

(either) speed and (or) amplitude of waves. By hoosing onvenient parameter, solutions

an be turned into ertain solutions obtained by existing methods. It originated from the

well-known the homogeneous balane priniple.
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The paper is organized as follows: In setion 2,we give the algorithm of the method. In

setion 3, we apply the method to the Benjamin-Bona-Mahony (m,n) and Sharma-Tasso-

Olver equations. At the end, onlusions are given.

2. Algorithm of the method

The features of this method an be presented as follows. Let us onsider the nonlinear

evolution equation (NEE) in several independent variables as:

(2.1) P (u, ut, ux, uy, uz, uxy, uyz, uxz, .....) = 0.

where the subsript denotes partial derivative, P is some funtion and u = u(t, x, y, z, . . .)
is alled a dependent variable or unknown funtion to be determined.

Step 1. We investigate the traveling wave solutions of equation (2.1) of the form:

u(x, y, z, . . . , t) = u(ξ), ξ = k(x+ ct) or ξ = x− ct ,

where k and c are arbitrary onstants. Then equation (2.1) redues to a nonlinear ordinary
di�erential equation of the form:

(2.2) G(u, uξ, uξξ, uξξξ, . . .) = 0.

Step 2. We suppose that the solution of equation (2.2) has the following form:

(2.3) u(ξ) =
N
∑

i=0

aiQ
i(ξ)

where Q = ± 1√
1±a2ξ

and the funtion Q is the solution of equation

Qξ = ln a(Q3 −Q) .

Step 3. In the view of the method, we presume that the solution of equation (2.2) an

be pointed out in the form:

(2.4) u(ξ) = aNQN + · · · .

The positive integer N in formula (2.4) that is the pole order for the general solution of Eq.

(2.2). In order to alulate the value of N we onsider the homogenous balane between

the highest order nonlinear terms in Eq. (2.2). Supposing ul(ξ)us(ξ) and (ul(ξ))r are

the highest order nonlinear terms of Eq. (2.2) and balaning the highest order nonlinear

terms we have:

N =
2(s− rp)

r − l − 1
.

Step 4. Substituting equation (2.3) into equation (2.2) and equating the oe�ients of

Qi
to zero, we obtain a system of algebrai equations. By solving this system with the

aid of Mathematia, we get the traveling wave solutions of equation (2.2).
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3. Appliations

3.1. Benjamin Bona Mahony (m,n) Equation. We �rst apply the method to Ben-

jamin Bona Mahony (m.n) equation in the form:

(3.1) (ul)t + α(ul)x + k(um)x − b(un)xxt = 0 .

where α, k, b are onstants and u is the funtion of (x, t).
This equation was �rst derived to haraterize an approximation for surfae long waves

in nonlinear dispersive media. It an also desribe the hydromagneti waves in old

plasma, aousti gravity waves in ompressible �uids and aousti waves in harmoni

rystals [7, 13, 16, 20, 24℄.

By onsidering the traveling wave transformation:

u(x, t) = u(ξ), ξ = s(x− ωt) ,

where s, ω 6= 0 are onstants, equation (3.1) an be redued to the following ordinary

di�erential equation:

(3.2) (α− ω)ul + kum + bms2(un)′′ = 0 .

For l = n and m 6= n, we use the transformation u(ξ) = v
1

m−n (ξ) , whih will onvert

equation (3.2) into

(3.3) (α− ω)(m− n)2v2 + k(m− n)2v3 + ωbs2[n(2n−m)(v′)2 + n(m− n)vv′′] = 0 .

Also we take v(ξ) =

N
∑

i=0

aiQ
i , where Q(ξ) = ± 1

(1±a2ξ)1/2
. We note that the funtion Q

is the solution of Qξ = ln a(Q3 −Q) . Balaning the linear term of the highest order with

the highest order nonlinear term in equation (3.3), we ompute N = 4 . Thus, we have

(3.4) v(ξ) = a0 + a1Q(ξ) + a2Q
2(ξ) + a3Q

3(ξ) + a4Q
4(ξ)

and substituting derivatives of v(ξ) with respet to ξ in equation (3.4) The required

derivatives in equation (3.3) are obtained

vξ = ln a(Q3 −Q)(a1 + 2a2Q+ 3a3Q
2 + 4a4Q

3),(3.5)

vξξ = ln a(Q3 −Q)
[

24a4Q
5 + 15a3Q

4 + (8a2 − 16a4)Q
3

+(3a1 − 9a3)Q
2 − 4a2 − a1

]

Substituting equation (3.4) and equation (3.5) into equation (3.3) and olleting the

oe�ient of eah power of Qi
, setting eah of oe�ient to zero, solving the resulting

system of algebrai equations we obtain the following solutions:

Case 1:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2,(3.6)

α =
[(m− n)2 − 4sn2s2(ln a)2]ω

(m− n)2
, k =

8bn(m+ n)s2ω(ln a)2

(n−m)2a2
.

Inserting equation (3.6) into equation (3.4), we obtain the following solutions of equation

(3.3):

v1(ξ) =
a2

5cFs2ξ
, v2(ξ) = − a2

5sFs2ξ
.

Thus, we obtain new exat solutions to equation (3.1):
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u1(x, t) =

(

a2
5cFs2(s(x − ωt))

)
1

m−n

,

u2(x, t) =

(

a2
5sFs2(s(x − ωt))

)
1

m−n

.

Case 2:

a0 = 0, a1 = 0, a2 =
8bnαs2(m+ n)(ln a)2

k[(m− n)2 − 4bn2s2(ln a)2]
, a3 = 0,(3.7)

a4 = − 8bnαs2(m+ n)(ln a)2

k[(m− n)2 − 4bn2s2(ln a)2]
, ω =

(m− n)2α

(m− n)2 − 4bn2s2(ln a)2
.

Inserting equation (3.7) into equation (3.4), we get the following solutions of equation

(3.3):

v3(ξ) =
8bnαs2(m+ n)(ln a)2

5k[(m− n)2 − 4bn2s2(ln a)2]

1

cFs2ξ
,

v4(ξ) = − 8bnαs2(m+ n)(ln a)2

5k[(m− n)2 − 4bn2s2(ln a)2]

1

cFs2ξ
.

Traveling wave solutions to equation (3.1) are in the form:

u3(x, t) =





8bnαs2(m+ n)(ln a)2

5k[(m− n)2 − 4bn2s2(ln a)2]

1

cFs2
(

s(x−
(

(m−n)2α
(m−n)2−4bn2s2(ln a)2

)

t
)





1

m−n

,

u4(x, t) =





8bnαs2(m+ n)(ln a)2

5k[(m− n)2 − 4bn2s2(ln a)2]

1

sFs2
(

s(x−
(

(m−n)2α
(m−n)2−4bn2s2(ln a)2

)

t
)





1

m−n

.

Case 3:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2,(3.8)

α =
2ω(m+ n)− kna2

2(m+ n)
, b =

k(m− n)2a2
8nωs2(m+ n)(ln a)2

.

Inserting equation (3.8) into equation (3.4), we obtain the following solutions of equation

(3.3)

v5(ξ) =
a2

5cFs2ξ
, v6(ξ) = − a2

5sFs2ξ
.

We get the traveling wave solutions of equation (3.1):

u5(x, t) =

(

a2
5cFs2(s(x − ωt))

)
1

m−n

,

u6(x, t) =

(

a2
5sFs2(s(x − ωt))

)
1

m−n

.

Case 4:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2,(3.9)

k = −2(m+ n)(α− ω)

na2
, b = − (m− n)2(α− ω)

4n2s2ω(ln a)2
.
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Inserting equation (3.9) into equation (3.4), we obtain the following solutions of equation

(3.3):

v7(ξ) =
a2

5cFs2ξ
, v8(ξ) = − a2

5sFs2ξ
.

Hene we obtain new exat solutions to equation (3.1):

u7(x, t) =

(

a2
5cFs2(s(x − ωt))

)
1

m−n

, u8(x, t) =

(

− a2
5sFs2(s(x − ωt))

)
1

m−n

.

Case 5:

a0 = 0, a1 = 0, a2 =
8bn(m+ n)s2w(ln a)2

k(n−m)2
, a3 = 0,(3.10)

a4 = −8bn(m+ n)s2w(ln a)2

k(n−m)2
, α =

w
(

(m− n)2 − 4bn2s2(ln a)2
)

(m− n)2
.

Inserting equaion (3.10) into equation (3.4), we obtain the following solutions of equation

(3.3):

v9(ξ) =
8bn(m+ n)s2w(ln a)2

5k(n−m)2
1

cFs2ξ
, v10(ξ) = −8bn(m+ n)s2w(ln a)2

5k(n−m)2
1

sFs2ξ
.

Thus, we obtain the solutions to equation (3.1)

u9(x, t) =

(

8bn(m+ n)s2w(ln a)2

5k(n−m)2
1

cFs2(s(x− ωt))

)
1

m−n

,

u10(x, t) =

(

−8bn(m+ n)s2w(ln a)2

5k(n−m)2
1

cFs2(s(x − ωt))

)
1

m−n

.

Case 6:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2(3.11)

ω =
(m− n)2α

(m− n)2 − 4bn2s2(ln a)2
, k = − 8bn(m+ n)s2α(ln a)2

((m− n)2 − 4bn2s2(ln a)2) a2
.

Inserting equation (3.11) into equation (3.4), we obtain the following solutions of equation

(3.3):

v11(ξ) =
a2

5cFs2ξ
, v12(ξ) = − a2

5sFs2ξ
.

Hene we get the traveling wave solutions to equation (3.1)

u11(x, t) =





a2

5cFs2
(

s
(

x−
(

(m−n)2α
(m−n)2−4bn2s2(ln a)2

)

t
))





1

m−n

,

u12(x, t) =



− a2

5sFs2
(

s
(

x−
(

(m−n)2α
(m−n)2−4bn2s2(ln a)2

)

t
))





1

m−n

.

For l 6= n and m = n, we use the transformation

u(ξ) = v
1

l−n (ξ)

whih will onvert equation (3.2) into

(3.12) (α− ω)(l − n)2v3 + k(l − n)2v2 + ωbs2[n(2n− l)(v′)2 + n(l − n)vv′′] = 0 .
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Also we take

v(ξ) =

N
∑

i=0

aiQ
i ,

where Q(ξ) = ± 1

(1± a2ξ)1/2
. We note that the funtion Q is the solution of the equation

Qξ = ln a(Q3 −Q) . Balaning the linear term of the highest order with the highest order

nonlinear term in equation (3.12), we ompute N = 4 . Thus, we have

(3.13) v(ξ) = a0 + a1Q(ξ) + a2Q
2(ξ) + a3Q

3(ξ) + a4Q
4(ξ) ,

and substituting derivatives of v(ξ) with respet to ξ in equation (3.13). The required

derivatives in equation (3.12) are obtained

vξ = ln a(Q3 −Q)(a1 + 2a2Q+ 3a3Q
2 + 4a4Q

3),(3.14)

vξξ = ln a(Q3 −Q)
[

24a4Q
5 + 15a3Q

4 + (8a2 − 16a4)Q
3

+ (3a1 − 9a3)Q
2 − 4a2 − a1

]

.

Substituting equation (3.13) and equation (3.14) into equation (3.12) and olleting

the oe�ient of eah power of Qi
, setting eah of oe�ient to zero, solving the resulting

system of algebrai equations we obtain the following solutions:

Case 1:

a0 = 0, a1 = 0, a2 = −8bn(l+ n)s2ω2(ln a)2

(n− l)2(ω − α)
, a3 = 0 ,(3.15)

a4 =
8bn(l+ n)s2ω2(ln a)2

(n− l)2(ω − α)
, k − 4bn2s2ω(ln a)2

(l − n)2
.

Inserting equation (3.15) into equation (3.13), we obtain the following solutions of equa-

tion (3.1):

u1(x, t) =

(

− 8bn(l+ n)s2ω2(ln a)2

5(n− l)2(ω − α)cFs2 (s(x− ωt)))

)
1

l−n

,

u2(x, t) =

(

8bn(l+ n)s2ω2(ln a)2

5(n− l)2(ω − α)cFs2 (s(x − ωt)))

)
1

l−n

.

Case 2:

a0 = 0, a1 = 0, a2 = −2k(l+ n)

n(α− ω)
, a3 = 0,(3.16)

a4 =
2k(l+ n)

n(α− ω)
, s = − i

√
k

2n
√
bω(ln a)

Inserting equation (3.16) into equation (3.13), we get the following solutions of equation

(3.1)

u3(x, t) =



− 2k(l+ n)

5n(α− ω)cFs2
(

− i
√
k

2n
√
bω(lna)

(x− ωt)
)





1

l−n

,

u4(x, t) =





2k(l+ n)

5n(α− ω)sFs2
(

− i
√
k

2n
√
bω(ln a)

(x− ωt)
)





1

l−n

.
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Case 3:

a0 = 0, a1 = 0, a2 = −2k(l+ n)

n(α− ω)
, a3 = 0,(3.17)

a4 =
2k(l+ n)

n(α− ω)
, s =

i
√
k

2n
√
bω(ln a)

.

Inserting equation (3.17) into equation (3.13), we obtain the following solutions of equa-

tion (3.1):

u3(x, t) =



− 2k(l+ n)

5n(α− ω)cFs2
(

i
√
k

2n
√
bω(ln a)

(x− ωt)
)





1

l−n

,

u4(x, t) =





2k(l+ n)

5n(α− ω)sFs2
(

i
√
k

2n
√
bω(lna)

(x − ωt)
)





1

l−n

.

Case 4:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2 ,(3.18)

s =
i
√
k(l − n)

2n
√
bω(ln a)

, α = −2k(l+ n+ nωa2)

na2
.

Inserting equation (3.18) into equation (3.13), we get the following solutions of equation

(3.1):

u7(x, t) =





a2

5cFs2
(

i
√
k(l−n)

2n
√
bω(ln a)

(x− ωt)
)





1

l−n

,

u8(x, t) =



− a2

5sFs2
(

i
√
k(l−n)

2n
√
bω(lna)

(x − ωt)
)





1

l−n

.

Case 5:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2 ,(3.19)

α = −
ω
(

8bn(l+ n)s2(ln a)2 + (l − n)2a2
)

(l − n)2a2
, k = −4bn2s2ω(ln a)2

(n− l)2
.

Inserting equation (3.19) into equation (3.13), we obtain the following solutions of equa-

tion (3.1):

u9(x, t) =

(

a2
5cFs2 (s(x− ωt))

)
1

l−n

,

u10(x, t) =

(

− a2
5sFs2 (s(x− ωt))

)
1

l−n

.

Case 6:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2 ,(3.20)

α =
−2k(l+ n) + nωa2

na2
, b = −k(l − n)2

4n2s2ω
(ln a)2 .
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Inserting equation (3.20) into equation (3.13), we get the following solutions of equation

(3.1):

u11(x, t) =

(

a2
5cFs2 (s(x− ωt))

)
1

l−n

,

u12(x, t) =

(

− a2
5sFs2 (s(x− ωt))

)
1

l−n

.

3.2. Sharma-Tasso-Olver Equation. Next, we onsider the following Sharma-Tasso-

Olver equation:

(3.21) ut + α(u3)x +
3

2
α(u2)xx + αuxxx = 0 ,

where α is a real parameter and u(x, t) is the unknown funtion that depends on the

temporal variable t and the spatial variable x . The STO equation ontains both linear

dispersive term αuxxx and the double nonlinear terms α(u3)x and

3
2α(u

2)xx. This equa-
tion is well known as a model equation desribing the propagation of nonlinear dispersive

waves in inhomogeneous media. The STO equation attrated great interest among math-

ematiians and physiists due to its appearane in sienti� appliations [1, 14, 22, 23℄.

By using the traveling wave transformation:

u(x, t) = u(ξ), ξ = x− ct ,

where c 6= 0 is onstant, equation (3.21) an be redued to the following ordinary di�er-

ential equation:

(3.22) −cu+ αu3 + 3αuu′ + αu′′ = 0.

Also we take

u(ξ) =

N
∑

i=0

aiQ
i ,

where Q(ξ) = ± 1

(1± e2ξ)1/2
. Take in onsideration that the funtion Q is the solution of

Q′ = Q3 −Q. Balaning the the linear term of the highest order with the highest order

nonlinear term in equation (3.22), we ompute N = 2 . Thus,

(3.23) u(ξ) = a0 + a1Q(ξ) + a2Q
2(ξ) ,

and substituting derivatives of u(ξ) with respet to ξ in equation (3.23) we obtain

u′(ξ) = 2a2Q
4(ξ) + a1Q

3(ξ) − 2a2Q
2(ξ)− a1Q(ξ),

u′′(ξ) = 8a2Q
6(ξ) + 3a1Q

5(ξ)− 12a2Q
4(ξ)− 4a1Q

3(ξ) + 4a2Q
2(ξ) + a1Q(ξ).

Substituting the derivatives into equation (3.22) and olleting the oe�ient of eah

power of Qi
, setting eah of oe�ient to zero, solving the resulting system of algebrai

equations we obtain the following solutions:

Case 1:

a0 = 2, a1 = 0, a2 = −4, c = 4α .(3.24)
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Inserting equation (3.24) into equation (3.23), we obtain the following solutions of equa-

tion (3.21):

u1(x, t) = 2 tanh(x− 4αt) ,

u2(x, t) = 2 coth(x − 4αt) .

Case 2:

a0 = 1, a1 = 0, a2 = −2, c = α .(3.25)

Inserting equation (3.25) into equation (3.23), we get the following solutions of equation

(3.21):

u3(x, t) = tanh(x− αt) ,

u4(x, t) = coth(x − αt) .

Case 3:

a0 = 2, a1 = 0, a2 = −2, c = 4α .(3.26)

Inserting equation (3.26) into equation (3.23), the following solutions of equation (3.21):

u5(x, t) = 2

(

1− 1

1 + cosh(2x− 8αt) + sinh(2x− 8αt)

)

,

u6(x, t) = 2

(

1− 1

1− (cosh(2x− 8αt) + sinh(2x− 8αt))

)

,

are obtained.

Case 4:

a0 = 0, a1 = 0, a2 = −2, c = 4α .(3.27)

Inserting equation (3.27) into equation (3.23), we obtain the following solutions of equa-

tion (3.21):

u7(x, t) = tanh(x − 4αt)− 1 ,

u8(x, t) = coth(x− 4αt)− 1 .

4. Conlusion

In this work, extended Kudryashov method is proposed to onstrut exat solutions

of evolution equations with onstant oe�ients. By using the proposed method we have

suessfully obtained analytial solutions of the BBM(m,n) equation and the Sharma

Tasso Olver (STO) equation.Besides the Kudryashov method, more traveling wave so-

lution ases are obtained. In addition, hange in the parameters e�ets both the wave

length and speed of the wave. The obtained solutions may have importane for some

speial physial phenomena. It an be onluded that this method is standard, e�etive

and also allows to solve ompliated algebrai alulation.
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