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EXTENDED TRAVELING WAVE SOLUTIONS FOR SOME
NONLINEAR EQUATIONS

SERIFE MUGE EGE

ABsTrACT. The extended Kudryashov method (EKM) is executed to find the trav-
eling wave solutions for the Benjamin-Bona-Mahony (m,n) and Sharma-Tasso-Olver
equations. The effciency of this method for finding exact solutions and traveling wave
solutions has been demonstrated and compared with the solutions obtained by clas-
sical method. It has been shown that the proposed method is effective, direct and
can be used for many other nonlinear evolution equations (NLEEs) in mathematical
physics.

1. INTRODUCTION

The study of nonlinear evolution equations has an intense period over the last decades
and has continued to attract attention in more recent years. These equations are math-
ematical models of various physical phenomena that arise in many fields such as engi-
neering, applied mathematics, dynamics, electromagnetic theory, nonlinear physics and
so on. Thus, it is very important to search for exact traveling wave solutions of nonlinear
evolution equations. Furthermore, when an original nonlinear equation is directly solved,
the solution will preserve the actual physical characters of the equations.

In the past several decades many useful methods and techniques have been developed
for finding exact traveling wave solutions to nonlinear evolution equations such as G’ /G
expansion method [2, 14], sine-cosine method [3, 12], exp-fuction method [4, 15], sub-
equation method [5], functional variable method [7], multiple exp-function method [§],
trial equation method [9], modified simple equation method [17], extended tanh method
[24] and others.

In this study, we present an extended method by inspring of modified Kudryashov
method which was first introduced by Kudryashov [19] and other similar methods re-
fining the initial idea [6, 10, 11, 18, 21]. The advantage of this method over the other
classical methods is that gives more solutions with some parameters which effects both
(either) speed and (or) amplitude of waves. By choosing convenient parameter, solutions
can be turned into certain solutions obtained by existing methods. It originated from the
well-known the homogeneous balance principle.
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The paper is organized as follows: In section 2,we give the algorithm of the method. In
section 3, we apply the method to the Benjamin-Bona-Mahony (m,n) and Sharma-Tasso-
Olver equations. At the end, conclusions are given.

2. ALGORITHM OF THE METHOD

The features of this method can be presented as follows. Let us consider the nonlinear
evolution equation (NEE) in several independent variables as:

(2.1) P (u, Up,y Uy, Uy Uz, Uy, Uy, Ugszy o) = 0.

where the subscript denotes partial derivative, P is some function and u = u(¢, z,y, z, . . .)
is called a dependent variable or unknown function to be determined.
Step 1. We investigate the traveling wave solutions of equation (2.1) of the form:

u(x,y,z,...,t) =u(§), E=k(zx+ct) or {=2x—ct,

where k and ¢ are arbitrary constants. Then equation (2.1) reduces to a nonlinear ordinary
differential equation of the form:

(2.2) G(u, ug, uge, ugee, - - -) = 0.

Step 2. We suppose that the solution of equation (2.2) has the following form:

(2.3) u(€) = Z a;:Q"(¢)

where Q = +—= and the function @ is the solution of equation

Vi
Qe =la(Q’—Q).

Step 3. In the view of the method, we presume that the solution of equation (2.2) can
be pointed out in the form:

The positive integer N in formula (2.4) that is the pole order for the general solution of Eq.
(2.2). In order to calculate the value of N we consider the homogenous balance between
the highest order nonlinear terms in Eq. (2.2). Supposing u!(&)u®(¢) and (u'(¢))" are
the highest order nonlinear terms of Eq. (2.2) and balancing the highest order nonlinear
terms we have:

2(s —rp)

N = .
r—1—1

Step 4. Substituting equation (2.3) into equation (2.2) and equating the coefficients of
Q' to zero, we obtain a system of algebraic equations. By solving this system with the
aid of Mathematica, we get the traveling wave solutions of equation (2.2).
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3. APPLICATIONS

3.1. Benjamin Bona Mahony (m,n) Equation. We first apply the method to Ben-
jamin Bona Mahony (m.n) equation in the form:

(31) (ul)t + a(ul)z + k(um)z - b(un)zzt =0.

where o, k, b are constants and v is the function of (x,¢).

This equation was first derived to characterize an approximation for surface long waves
in nonlinear dispersive media. It can also describe the hydromagnetic waves in cold
plasma, acoustic gravity waves in compressible fluids and acoustic waves in harmonic
crystals [7, 13, 16, 20, 24].

By considering the traveling wave transformation:

u(z,t) = u(€), &=s(zx—wt),

where s,w # 0 are constants, equation (3.1) can be reduced to the following ordinary
differential equation:

(3.2) (o — w)u! + ku™ + bms?(u™)” = 0.
For | = n and m # n, we use the transformation u(§) = vﬁ(f), which will convert
equation (3.2) into
(3.3)  (a—w)(m —n)*v? + k(m —n)*0® + wbs*[n(2n — m)(v")? + n(m — n)v”’] = 0.
N
Also we take v(§) = Z a;Q", where Q(¢) = im . We note that the function @
i=0

is the solution of Q¢ = Ina(Q?® — Q). Balancing the linear term of the highest order with
the highest order nonlinear term in equation (3.3), we compute N = 4. Thus, we have

(3.4) v(€) = ap + a1Q(€) + a2Q*(€) + asQ*(€) + a1 Q*(€)

and substituting derivatives of v(£) with respect to £ in equation (3.4) The required
derivatives in equation (3.3) are obtained

(3.5) ve = Ina(@Q®—Q)(ar + 2a2Q + 3a3Q* + 4a4Q®),
vee = Ina(Q® — Q) [24a4Q® + 15a3Q" + (8az — 16a4)Q*
+(3a1 — 9a3)Q* — 4ay — al]
Substituting equation (3.4) and equation (3.5) into equation (3.3) and collecting the

coefficient of each power of Q?, setting each of coefficient to zero, solving the resulting
system of algebraic equations we obtain the following solutions:

Case 1:
(3.6) ap =0, a1 =0, ap=az, a3=0, a4=—ay,
o [(m —n)? —4sn?s%(Ina)?]w b 8bn(m + n)s%w(In a)?
(m - n)2 ’ (7’L — m)2a2

Inserting equation (3.6) into equation (3.4), we obtain the following solutions of equation
(3.3):
as az

vl(f)im, vz(f):*m-

Thus, we obtain new exact solutions to equation (3.1):
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1

wed = (srane—ay)

1

wa(@t) = (55F52(sa(zwt)))mn ‘

Case 2:
8bnas®(m +n)(Ina)?
3.7 =0 =0 = =0
SR @ k[(m — n)? — 4bn2s2(Ina)?]’ s ’
8bnas?(m +n)(Ina)? (m —n)3a
a = - = .
* k[(m — n)? — 4bn2s2(Ina)?|’ (m —n)? — 4bn?s?(In a)?

Inserting equation (3.7) into equation (3.4), we get the following solutions of equation
(3.3):

B 8bnas?(m + n)(lna)? 1
1)3(5) - Sk[(m _ n)2 _ 4bn282(ln G/)Q] CFSQE ’
8bnas?(m +n)(Ina)? 1
va(§) =

 5k[(m — n)? — 4bn2s2(In a)?] cFs2¢

Traveling wave solutions to equation (3.1) are in the form:

(2,1) 8bnas?(m + n)(lna)? 1 o
us\x, =
5k[(m —n)? — 4bn?s%(Ina)?] .pg2 (s(x _ ( (m—n)2a ) t)
(m—n)2—4bn2s2(Ina)?
(5,1) 8bnas?(m + n)(lna)? 1 o
ua(z, =
* 5k[(m —n)? — 4bn?s?(Ina)?] (pe2 (s(ac -~ (( )(277%4—1771)2%;(l )2) t)
Case 3:
(3-8) ap = 0, a1=0, a2=uaz, a3=0, a4=—as,
2w(m + n) — knas k(m —n)%as
« = = .
2(m+n) ’ 8nws?(m + n)(Ina)?

Inserting equation (3.8) into equation (3.4), we obtain the following solutions of equation

(3.3) ] )
2 2
U5(€):ma U6(£):_m'

We get the traveling wave solutions of equation (3.1):

us(x,t) =

(5CF52(:(1 - wt))) o

wet) = (Grace—m)

Case 4:
(39) a0 = 0’ ar = 07 az = az, as = 07 a4 = —az,
Lo_ 2min)a-—w)  (m—n)(a—w)
- nasg ’ N 4n2s?w(lna)?
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Inserting equation (3.9) into equation (3.4), we obtain the following solutions of equation
(3.3):
as az

v7(§) = BeFSZE vg(§) = T hsFs

Hence we obtain new exact solutions to equation (3.1):

1

weed = (srme—am) 0 0= (sreeoy)

Case 5:

8bn(m + n)s?w(lna)?

(310) apg = 0, a1 =0, a9 = k(n — m)2 , a3z =0,
8bn(m + n)s?w(Ina)? w ((m —n)? — 4bn?s?(Ina)?)
ay = - , Q= .
k(n—m)? (m—n)?

Inserting equaion (3.10) into equation (3.4), we obtain the following solutions of equation

(3.3):
8bn(m +n)s*w(lna)® 1 8bn(m +n)s?w(lna)® 1
’Ug(f) = ) 2¢ ’U10(€) == 2 2¢ "
5k(n —m) cF's?¢ 5k(n —m) sF's2¢
Thus, we obtain the solutions to equation (3.1)

[ 8bn(m+n)s*w(lna)? 1 -
’U,Q(.T,t) - ( 5k(n—m)2 CFSQ(S(:L'wt))) )

1

8bn(m + n)s?w(ln a)? 1 e
’ulo(l', t) = - > 3 .
5k(n —m) cFs?(s(x — wt))
Case 6:
(3.11) apg = O, ay = 0, a2 = ag, az = 0, ay = —az
w - (m _ 8bn(m+ n)s?a(lna)?
 (m—n)? 4bn2 2(111 a)?’  ((m—n)? —4bn2s2(Ina)?)ay '
Insertlng equation (3.11) into equation (3.4), we obtain the following solutions of equation
. as _ as
vn(§) = 5cFs2¢’ v12(€) 5sFs2¢ "

Hence we get the traveling wave solutions to equation (3.1)

a2

ui(v,t) = e ;
5CFS2 (S (SC - ((mfn)274bn252(lna)2) t))
L
a
ulQ(x7 t) - o : (m—n)3a
5sk's? (S (:L' B ((m—n)2—4bn2s2(ln a)z) t))

For | # n and m = n, we use the transformation

u(§) = v (§)
which will convert equation (3.2) into

(3.12) (@ —w)(l —n)*v® + k(l —n)*v? + wbs?[n(2n — 1) (v")? +n(l —n)ww"] =0.
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Also we take
N
v(€) =) Q'
i=0

1
. We note that the function @ is the solution of the equation

Where Q(é—) = im
Q¢ =1In a(Q* — Q) . Balancing the linear term of the highest order with the highest order
nonlinear term in equation (3.12), we compute N = 4. Thus, we have

(3.13) 0(€) = ap + a1Q(§) + a2Q*(€) + asQ®(&) + asQ*(€)

and substituting derivatives of v(§) with respect to £ in equation (3.13). The required
derivatives in equation (3.12) are obtained

(3.14) ve = Ina(Q®—Q)(a1 + 2a2Q + 3a3Q* + 4a4Q?),
vee = Ina(Q®—Q)[24a4Q° + 15a3Q" + (8az — 16a4)Q*
+ (3(11 — 9&3)@2 - 4(12 — al] .

Substituting equation (3.13) and equation (3.14) into equation (3.12) and collecting
the coeflicient of each power of Q)°, setting each of coefficient to zero, solving the resulting
system of algebraic equations we obtain the following solutions:

Case 1:
2,,2 2
(3.15) G = 0. a1=0, a5 _8bn(l +n)s*w?(Ina)  as=0,
(=12~ o)
0 = 8bn(l + n)s?w?(lna)? b 4bn?s?w(Ina)?
(n—1)Pw—a) ’ (I —n)?

Inserting equation (3.15) into equation (3.13), we obtain the following solutions of equa-
tion (3.1):

1

a 8bn(l + n)s’w?(Ina) o
et = (e e
B 8bn(l + n)s’w?(Ina) =
us(z,t) = <5(n—l )2(w — a)cFs? (s (ZE—Wt)))> .
Case 2:
(316) ayg = 0, ap = 0, az = %, az = 07
2%k(l4+n) ik

as =

A L7/ S —
n(a —w) 2nvbw(In a)

Inserting equation (3.16) into equation (3.13), we get the following solutions of equation
(3.1

_ 2k(l+n)
us(mi) = _5 — Fs2(——ivk (5 _ t ,
o eFs? (5 e )
==
2k(1
ug(x,t) = (i+n)

Sn(a — w)sFs? ( 2n\/lb\7§1n 5 (x — wt))
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Case 3:
2
(317) apg = O, a; = 0, as = —M, asz = 0,
nla —w)
W = 2K(An) ik
* nla —w)’ 2nvbw(lna)

Inserting equation (3.17) into equation (3.13), we obtain the following solutions of equa-
tion (3.1):

2k(l+n
us(z,t) = |- 5 ( z'\/)E ;
5n(a —w)cF's (m(x — wt))
1
[=r
2k(l+n)
’[,L4(1',t) = 2 7,\/%
Sn(a —w)sF's (m(x - wt))
Case 4:
(3.18) ag = 0, a1=0, as=as, a3=0, a4=—as,
ivVk(l —n) 2k(l + n + nwas)
= — a=- .
2nvbw(lna) nas

Inserting equation (3.18) into equation (3.13), we get the following solutions of equation
(3.1):

u7($7t) = \/E((llf ) y
Sek's? (2n\/w(ln a) (:E - wt))
=
ag
US('T’ t) = - -
ivVk(l—n
5sF's? (Qn\/%(ln 31) (:E - wt))
Case 5:
(319) ag = Oa a) = 0; az = az, as = 0; a4 = —az,
w (8bn(l 4+ n)s?(Ina)? + (I — n)?az) P 4bn?s’w(In a)?
o = — , - - " 7

(I —n)2as (n—1)?
Inserting equation (3.19) into equation (3.13), we obtain the following solutions of equa-
tion (3.1):

1
az

weed) = (srent—ay)

1

wolet) = (_55F52 (:(zwt)))ﬁ .

Case 6:
(3-20) ap = 0, ap = 0, az = az, asz = 0, a4 = —az,
—2k(l + n) + nwas

a = b= ——rn—"
nas ’ 4n2s2w
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Inserting equation (3.20) into equation (3.13), we get the following solutions of equation
(3.1):
1

vl t) = <_5st2 (j(icm)))ﬁ .

3.2. Sharma-Tasso-Olver Equation. Next, we consider the following Sharma-Tasso-
Olver equation:

3
(321) Ut + OZ(US)z + §a(u2)mx + QUgzer = 05

where « is a real parameter and u(z,t) is the unknown function that depends on the

temporal variable ¢ and the spatial variable z . The STO equation contains both linear

dispersive term au,,, and the double nonlinear terms a(u®), and 3a(u?),,. This equa-

tion is well known as a model equation describing the propagation of nonlinear dispersive

waves in inhomogeneous media. The STO equation attracted great interest among math-

ematicians and physicists due to its appearance in scientific applications [1, 14, 22, 23].
By using the traveling wave transformation:

u(:c,t):u(f), fil‘*Ct,

where ¢ # 0 is constant, equation (3.21) can be reduced to the following ordinary differ-
ential equation:

(3.22) —cu ~+ au® 4+ 3oun’ + ou” = 0.
Also we take
N
U(é) = Z ain )
i=0
where Q(§) = im . Take in consideration that the function @ is the solution of

Q' = @* — Q. Balancing the the linear term of the highest order with the highest order
nonlinear term in equation (3.22), we compute N = 2. Thus,

(3.23) uw(€) = ap + a1Q(€) + a2Q*(¢),

and substituting derivatives of u(§) with respect to & in equation (3.23) we obtain
W(€) = 2aQ*(8) + a1Q*(€) — 2a2:Q°(€) — a1 Q(&),
u"(€) = 8a2Q°%(€) +3a1Q°(€) — 12a2Q" () — 4a1Q (&) + 4a2Q°(€) + a1 Q(£).

Substituting the derivatives into equation (3.22) and collecting the coefficient of each
power of @Q°, setting each of coefficient to zero, solving the resulting system of algebraic
equations we obtain the following solutions:

Case 1:

(3.24) ap=2, a1 =0, ay=-4, c=4a.
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Inserting equation (3.24) into equation (3.23), we obtain the following solutions of equa-
tion (3.21):

ui(x,t) = 2tanh(z —4at),
us(x,t) = 2coth(z —4at).
Case 2:
(3.25) ao=1 a1=0 a=-2, c=c.

Inserting equation (3.25) into equation (3.23), we get the following solutions of equation
(3.21):

us(xz,t) = tanh(x — at),
ug(z,t) = coth(zx — at).
Case 3:
(3.26) ap=2, a1 =0, a=-2, c=4au.

Inserting equation (3.26) into equation (3.23), the following solutions of equation (3.21):

1
t) = 2(1-—
us(®, ) < 1+ cosh(2z — 8at) 4 sinh(2z — 8at)> ’
@t = 2(1 L
weln = 1 — (cosh(2z — 8at) + sinh(2z — 8at)) )
are obtained.
Case 4:
(3.27) ap=0, a1 =0, ay=-2, c=4a.

Inserting equation (3.27) into equation (3.23), we obtain the following solutions of equa-
tion (3.21):

ur(xz,t) = tanh(x —4at) —1,
ug(x,t) = coth(x —4at) —1.

4. CONCLUSION

In this work, extended Kudryashov method is proposed to construct exact solutions
of evolution equations with constant coefficients. By using the proposed method we have
successfully obtained analytical solutions of the BBM(m,n) equation and the Sharma
Tasso Olver (STO) equation.Besides the Kudryashov method, more traveling wave so-
lution cases are obtained. In addition, change in the parameters effects both the wave
length and speed of the wave. The obtained solutions may have importance for some
special physical phenomena. It can be concluded that this method is standard, effective
and also allows to solve complicated algebraic calculation.
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