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Abstra
t. The extended Kudryashov method (EKM) is exe
uted to �nd the trav-

eling wave solutions for the Benjamin-Bona-Mahony (m,n) and Sharma-Tasso-Olver

equations. The e�
ien
y of this method for �nding exa
t solutions and traveling wave

solutions has been demonstrated and 
ompared with the solutions obtained by 
las-

si
al method. It has been shown that the proposed method is e�e
tive, dire
t and


an be used for many other nonlinear evolution equations (NLEEs) in mathemati
al

physi
s.

1. Introdu
tion

The study of nonlinear evolution equations has an intense period over the last de
ades

and has 
ontinued to attra
t attention in more re
ent years. These equations are math-

emati
al models of various physi
al phenomena that arise in many �elds su
h as engi-

neering, applied mathemati
s, dynami
s, ele
tromagneti
 theory, nonlinear physi
s and

so on. Thus, it is very important to sear
h for exa
t traveling wave solutions of nonlinear

evolution equations. Furthermore, when an original nonlinear equation is dire
tly solved,

the solution will preserve the a
tual physi
al 
hara
ters of the equations.

In the past several de
ades many useful methods and te
hniques have been developed

for �nding exa
t traveling wave solutions to nonlinear evolution equations su
h as G′/G
expansion method [2, 14℄, sine-
osine method [3, 12℄, exp-fu
tion method [4, 15℄, sub-

equation method [5℄, fun
tional variable method [7℄, multiple exp-fun
tion method [8℄,

trial equation method [9℄, modi�ed simple equation method [17℄, extended tanh method

[24℄ and others.

In this study, we present an extended method by inspring of modi�ed Kudryashov

method whi
h was �rst introdu
ed by Kudryashov [19℄ and other similar methods re-

�ning the initial idea [6, 10, 11, 18, 21℄. The advantage of this method over the other


lassi
al methods is that gives more solutions with some parameters whi
h e�e
ts both

(either) speed and (or) amplitude of waves. By 
hoosing 
onvenient parameter, solutions


an be turned into 
ertain solutions obtained by existing methods. It originated from the

well-known the homogeneous balan
e prin
iple.
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The paper is organized as follows: In se
tion 2,we give the algorithm of the method. In

se
tion 3, we apply the method to the Benjamin-Bona-Mahony (m,n) and Sharma-Tasso-

Olver equations. At the end, 
on
lusions are given.

2. Algorithm of the method

The features of this method 
an be presented as follows. Let us 
onsider the nonlinear

evolution equation (NEE) in several independent variables as:

(2.1) P (u, ut, ux, uy, uz, uxy, uyz, uxz, .....) = 0.

where the subs
ript denotes partial derivative, P is some fun
tion and u = u(t, x, y, z, . . .)
is 
alled a dependent variable or unknown fun
tion to be determined.

Step 1. We investigate the traveling wave solutions of equation (2.1) of the form:

u(x, y, z, . . . , t) = u(ξ), ξ = k(x+ ct) or ξ = x− ct ,

where k and c are arbitrary 
onstants. Then equation (2.1) redu
es to a nonlinear ordinary
di�erential equation of the form:

(2.2) G(u, uξ, uξξ, uξξξ, . . .) = 0.

Step 2. We suppose that the solution of equation (2.2) has the following form:

(2.3) u(ξ) =
N
∑

i=0

aiQ
i(ξ)

where Q = ± 1√
1±a2ξ

and the fun
tion Q is the solution of equation

Qξ = ln a(Q3 −Q) .

Step 3. In the view of the method, we presume that the solution of equation (2.2) 
an

be pointed out in the form:

(2.4) u(ξ) = aNQN + · · · .

The positive integer N in formula (2.4) that is the pole order for the general solution of Eq.

(2.2). In order to 
al
ulate the value of N we 
onsider the homogenous balan
e between

the highest order nonlinear terms in Eq. (2.2). Supposing ul(ξ)us(ξ) and (ul(ξ))r are

the highest order nonlinear terms of Eq. (2.2) and balan
ing the highest order nonlinear

terms we have:

N =
2(s− rp)

r − l − 1
.

Step 4. Substituting equation (2.3) into equation (2.2) and equating the 
oe�
ients of

Qi
to zero, we obtain a system of algebrai
 equations. By solving this system with the

aid of Mathemati
a, we get the traveling wave solutions of equation (2.2).



EXTENDED TRAVELING WAVE SOLUTIONS FOR . . . 181

3. Appli
ations

3.1. Benjamin Bona Mahony (m,n) Equation. We �rst apply the method to Ben-

jamin Bona Mahony (m.n) equation in the form:

(3.1) (ul)t + α(ul)x + k(um)x − b(un)xxt = 0 .

where α, k, b are 
onstants and u is the fun
tion of (x, t).
This equation was �rst derived to 
hara
terize an approximation for surfa
e long waves

in nonlinear dispersive media. It 
an also des
ribe the hydromagneti
 waves in 
old

plasma, a
ousti
 gravity waves in 
ompressible �uids and a
ousti
 waves in harmoni



rystals [7, 13, 16, 20, 24℄.

By 
onsidering the traveling wave transformation:

u(x, t) = u(ξ), ξ = s(x− ωt) ,

where s, ω 6= 0 are 
onstants, equation (3.1) 
an be redu
ed to the following ordinary

di�erential equation:

(3.2) (α− ω)ul + kum + bms2(un)′′ = 0 .

For l = n and m 6= n, we use the transformation u(ξ) = v
1

m−n (ξ) , whi
h will 
onvert

equation (3.2) into

(3.3) (α− ω)(m− n)2v2 + k(m− n)2v3 + ωbs2[n(2n−m)(v′)2 + n(m− n)vv′′] = 0 .

Also we take v(ξ) =

N
∑

i=0

aiQ
i , where Q(ξ) = ± 1

(1±a2ξ)1/2
. We note that the fun
tion Q

is the solution of Qξ = ln a(Q3 −Q) . Balan
ing the linear term of the highest order with

the highest order nonlinear term in equation (3.3), we 
ompute N = 4 . Thus, we have

(3.4) v(ξ) = a0 + a1Q(ξ) + a2Q
2(ξ) + a3Q

3(ξ) + a4Q
4(ξ)

and substituting derivatives of v(ξ) with respe
t to ξ in equation (3.4) The required

derivatives in equation (3.3) are obtained

vξ = ln a(Q3 −Q)(a1 + 2a2Q+ 3a3Q
2 + 4a4Q

3),(3.5)

vξξ = ln a(Q3 −Q)
[

24a4Q
5 + 15a3Q

4 + (8a2 − 16a4)Q
3

+(3a1 − 9a3)Q
2 − 4a2 − a1

]

Substituting equation (3.4) and equation (3.5) into equation (3.3) and 
olle
ting the


oe�
ient of ea
h power of Qi
, setting ea
h of 
oe�
ient to zero, solving the resulting

system of algebrai
 equations we obtain the following solutions:

Case 1:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2,(3.6)

α =
[(m− n)2 − 4sn2s2(ln a)2]ω

(m− n)2
, k =

8bn(m+ n)s2ω(ln a)2

(n−m)2a2
.

Inserting equation (3.6) into equation (3.4), we obtain the following solutions of equation

(3.3):

v1(ξ) =
a2

5cFs2ξ
, v2(ξ) = − a2

5sFs2ξ
.

Thus, we obtain new exa
t solutions to equation (3.1):
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u1(x, t) =

(

a2
5cFs2(s(x − ωt))

)
1

m−n

,

u2(x, t) =

(

a2
5sFs2(s(x − ωt))

)
1

m−n

.

Case 2:

a0 = 0, a1 = 0, a2 =
8bnαs2(m+ n)(ln a)2

k[(m− n)2 − 4bn2s2(ln a)2]
, a3 = 0,(3.7)

a4 = − 8bnαs2(m+ n)(ln a)2

k[(m− n)2 − 4bn2s2(ln a)2]
, ω =

(m− n)2α

(m− n)2 − 4bn2s2(ln a)2
.

Inserting equation (3.7) into equation (3.4), we get the following solutions of equation

(3.3):

v3(ξ) =
8bnαs2(m+ n)(ln a)2

5k[(m− n)2 − 4bn2s2(ln a)2]

1

cFs2ξ
,

v4(ξ) = − 8bnαs2(m+ n)(ln a)2

5k[(m− n)2 − 4bn2s2(ln a)2]

1

cFs2ξ
.

Traveling wave solutions to equation (3.1) are in the form:

u3(x, t) =





8bnαs2(m+ n)(ln a)2

5k[(m− n)2 − 4bn2s2(ln a)2]

1

cFs2
(

s(x−
(

(m−n)2α
(m−n)2−4bn2s2(ln a)2

)

t
)





1

m−n

,

u4(x, t) =





8bnαs2(m+ n)(ln a)2

5k[(m− n)2 − 4bn2s2(ln a)2]

1

sFs2
(

s(x−
(

(m−n)2α
(m−n)2−4bn2s2(ln a)2

)

t
)





1

m−n

.

Case 3:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2,(3.8)

α =
2ω(m+ n)− kna2

2(m+ n)
, b =

k(m− n)2a2
8nωs2(m+ n)(ln a)2

.

Inserting equation (3.8) into equation (3.4), we obtain the following solutions of equation

(3.3)

v5(ξ) =
a2

5cFs2ξ
, v6(ξ) = − a2

5sFs2ξ
.

We get the traveling wave solutions of equation (3.1):

u5(x, t) =

(

a2
5cFs2(s(x − ωt))

)
1

m−n

,

u6(x, t) =

(

a2
5sFs2(s(x − ωt))

)
1

m−n

.

Case 4:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2,(3.9)

k = −2(m+ n)(α− ω)

na2
, b = − (m− n)2(α− ω)

4n2s2ω(ln a)2
.
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Inserting equation (3.9) into equation (3.4), we obtain the following solutions of equation

(3.3):

v7(ξ) =
a2

5cFs2ξ
, v8(ξ) = − a2

5sFs2ξ
.

Hen
e we obtain new exa
t solutions to equation (3.1):

u7(x, t) =

(

a2
5cFs2(s(x − ωt))

)
1

m−n

, u8(x, t) =

(

− a2
5sFs2(s(x − ωt))

)
1

m−n

.

Case 5:

a0 = 0, a1 = 0, a2 =
8bn(m+ n)s2w(ln a)2

k(n−m)2
, a3 = 0,(3.10)

a4 = −8bn(m+ n)s2w(ln a)2

k(n−m)2
, α =

w
(

(m− n)2 − 4bn2s2(ln a)2
)

(m− n)2
.

Inserting equaion (3.10) into equation (3.4), we obtain the following solutions of equation

(3.3):

v9(ξ) =
8bn(m+ n)s2w(ln a)2

5k(n−m)2
1

cFs2ξ
, v10(ξ) = −8bn(m+ n)s2w(ln a)2

5k(n−m)2
1

sFs2ξ
.

Thus, we obtain the solutions to equation (3.1)

u9(x, t) =

(

8bn(m+ n)s2w(ln a)2

5k(n−m)2
1

cFs2(s(x− ωt))

)
1

m−n

,

u10(x, t) =

(

−8bn(m+ n)s2w(ln a)2

5k(n−m)2
1

cFs2(s(x − ωt))

)
1

m−n

.

Case 6:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2(3.11)

ω =
(m− n)2α

(m− n)2 − 4bn2s2(ln a)2
, k = − 8bn(m+ n)s2α(ln a)2

((m− n)2 − 4bn2s2(ln a)2) a2
.

Inserting equation (3.11) into equation (3.4), we obtain the following solutions of equation

(3.3):

v11(ξ) =
a2

5cFs2ξ
, v12(ξ) = − a2

5sFs2ξ
.

Hen
e we get the traveling wave solutions to equation (3.1)

u11(x, t) =





a2

5cFs2
(

s
(

x−
(

(m−n)2α
(m−n)2−4bn2s2(ln a)2

)

t
))





1

m−n

,

u12(x, t) =



− a2

5sFs2
(

s
(

x−
(

(m−n)2α
(m−n)2−4bn2s2(ln a)2

)

t
))





1

m−n

.

For l 6= n and m = n, we use the transformation

u(ξ) = v
1

l−n (ξ)

whi
h will 
onvert equation (3.2) into

(3.12) (α− ω)(l − n)2v3 + k(l − n)2v2 + ωbs2[n(2n− l)(v′)2 + n(l − n)vv′′] = 0 .
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Also we take

v(ξ) =

N
∑

i=0

aiQ
i ,

where Q(ξ) = ± 1

(1± a2ξ)1/2
. We note that the fun
tion Q is the solution of the equation

Qξ = ln a(Q3 −Q) . Balan
ing the linear term of the highest order with the highest order

nonlinear term in equation (3.12), we 
ompute N = 4 . Thus, we have

(3.13) v(ξ) = a0 + a1Q(ξ) + a2Q
2(ξ) + a3Q

3(ξ) + a4Q
4(ξ) ,

and substituting derivatives of v(ξ) with respe
t to ξ in equation (3.13). The required

derivatives in equation (3.12) are obtained

vξ = ln a(Q3 −Q)(a1 + 2a2Q+ 3a3Q
2 + 4a4Q

3),(3.14)

vξξ = ln a(Q3 −Q)
[

24a4Q
5 + 15a3Q

4 + (8a2 − 16a4)Q
3

+ (3a1 − 9a3)Q
2 − 4a2 − a1

]

.

Substituting equation (3.13) and equation (3.14) into equation (3.12) and 
olle
ting

the 
oe�
ient of ea
h power of Qi
, setting ea
h of 
oe�
ient to zero, solving the resulting

system of algebrai
 equations we obtain the following solutions:

Case 1:

a0 = 0, a1 = 0, a2 = −8bn(l+ n)s2ω2(ln a)2

(n− l)2(ω − α)
, a3 = 0 ,(3.15)

a4 =
8bn(l+ n)s2ω2(ln a)2

(n− l)2(ω − α)
, k − 4bn2s2ω(ln a)2

(l − n)2
.

Inserting equation (3.15) into equation (3.13), we obtain the following solutions of equa-

tion (3.1):

u1(x, t) =

(

− 8bn(l+ n)s2ω2(ln a)2

5(n− l)2(ω − α)cFs2 (s(x− ωt)))

)
1

l−n

,

u2(x, t) =

(

8bn(l+ n)s2ω2(ln a)2

5(n− l)2(ω − α)cFs2 (s(x − ωt)))

)
1

l−n

.

Case 2:

a0 = 0, a1 = 0, a2 = −2k(l+ n)

n(α− ω)
, a3 = 0,(3.16)

a4 =
2k(l+ n)

n(α− ω)
, s = − i

√
k

2n
√
bω(ln a)

Inserting equation (3.16) into equation (3.13), we get the following solutions of equation

(3.1)

u3(x, t) =



− 2k(l+ n)

5n(α− ω)cFs2
(

− i
√
k

2n
√
bω(lna)

(x− ωt)
)





1

l−n

,

u4(x, t) =





2k(l+ n)

5n(α− ω)sFs2
(

− i
√
k

2n
√
bω(ln a)

(x− ωt)
)





1

l−n

.
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Case 3:

a0 = 0, a1 = 0, a2 = −2k(l+ n)

n(α− ω)
, a3 = 0,(3.17)

a4 =
2k(l+ n)

n(α− ω)
, s =

i
√
k

2n
√
bω(ln a)

.

Inserting equation (3.17) into equation (3.13), we obtain the following solutions of equa-

tion (3.1):

u3(x, t) =



− 2k(l+ n)

5n(α− ω)cFs2
(

i
√
k

2n
√
bω(ln a)

(x− ωt)
)





1

l−n

,

u4(x, t) =





2k(l+ n)

5n(α− ω)sFs2
(

i
√
k

2n
√
bω(lna)

(x − ωt)
)





1

l−n

.

Case 4:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2 ,(3.18)

s =
i
√
k(l − n)

2n
√
bω(ln a)

, α = −2k(l+ n+ nωa2)

na2
.

Inserting equation (3.18) into equation (3.13), we get the following solutions of equation

(3.1):

u7(x, t) =





a2

5cFs2
(

i
√
k(l−n)

2n
√
bω(ln a)

(x− ωt)
)





1

l−n

,

u8(x, t) =



− a2

5sFs2
(

i
√
k(l−n)

2n
√
bω(lna)

(x − ωt)
)





1

l−n

.

Case 5:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2 ,(3.19)

α = −
ω
(

8bn(l+ n)s2(ln a)2 + (l − n)2a2
)

(l − n)2a2
, k = −4bn2s2ω(ln a)2

(n− l)2
.

Inserting equation (3.19) into equation (3.13), we obtain the following solutions of equa-

tion (3.1):

u9(x, t) =

(

a2
5cFs2 (s(x− ωt))

)
1

l−n

,

u10(x, t) =

(

− a2
5sFs2 (s(x− ωt))

)
1

l−n

.

Case 6:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = −a2 ,(3.20)

α =
−2k(l+ n) + nωa2

na2
, b = −k(l − n)2

4n2s2ω
(ln a)2 .
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Inserting equation (3.20) into equation (3.13), we get the following solutions of equation

(3.1):

u11(x, t) =

(

a2
5cFs2 (s(x− ωt))

)
1

l−n

,

u12(x, t) =

(

− a2
5sFs2 (s(x− ωt))

)
1

l−n

.

3.2. Sharma-Tasso-Olver Equation. Next, we 
onsider the following Sharma-Tasso-

Olver equation:

(3.21) ut + α(u3)x +
3

2
α(u2)xx + αuxxx = 0 ,

where α is a real parameter and u(x, t) is the unknown fun
tion that depends on the

temporal variable t and the spatial variable x . The STO equation 
ontains both linear

dispersive term αuxxx and the double nonlinear terms α(u3)x and

3
2α(u

2)xx. This equa-
tion is well known as a model equation des
ribing the propagation of nonlinear dispersive

waves in inhomogeneous media. The STO equation attra
ted great interest among math-

emati
ians and physi
ists due to its appearan
e in s
ienti�
 appli
ations [1, 14, 22, 23℄.

By using the traveling wave transformation:

u(x, t) = u(ξ), ξ = x− ct ,

where c 6= 0 is 
onstant, equation (3.21) 
an be redu
ed to the following ordinary di�er-

ential equation:

(3.22) −cu+ αu3 + 3αuu′ + αu′′ = 0.

Also we take

u(ξ) =

N
∑

i=0

aiQ
i ,

where Q(ξ) = ± 1

(1± e2ξ)1/2
. Take in 
onsideration that the fun
tion Q is the solution of

Q′ = Q3 −Q. Balan
ing the the linear term of the highest order with the highest order

nonlinear term in equation (3.22), we 
ompute N = 2 . Thus,

(3.23) u(ξ) = a0 + a1Q(ξ) + a2Q
2(ξ) ,

and substituting derivatives of u(ξ) with respe
t to ξ in equation (3.23) we obtain

u′(ξ) = 2a2Q
4(ξ) + a1Q

3(ξ) − 2a2Q
2(ξ)− a1Q(ξ),

u′′(ξ) = 8a2Q
6(ξ) + 3a1Q

5(ξ)− 12a2Q
4(ξ)− 4a1Q

3(ξ) + 4a2Q
2(ξ) + a1Q(ξ).

Substituting the derivatives into equation (3.22) and 
olle
ting the 
oe�
ient of ea
h

power of Qi
, setting ea
h of 
oe�
ient to zero, solving the resulting system of algebrai


equations we obtain the following solutions:

Case 1:

a0 = 2, a1 = 0, a2 = −4, c = 4α .(3.24)
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Inserting equation (3.24) into equation (3.23), we obtain the following solutions of equa-

tion (3.21):

u1(x, t) = 2 tanh(x− 4αt) ,

u2(x, t) = 2 coth(x − 4αt) .

Case 2:

a0 = 1, a1 = 0, a2 = −2, c = α .(3.25)

Inserting equation (3.25) into equation (3.23), we get the following solutions of equation

(3.21):

u3(x, t) = tanh(x− αt) ,

u4(x, t) = coth(x − αt) .

Case 3:

a0 = 2, a1 = 0, a2 = −2, c = 4α .(3.26)

Inserting equation (3.26) into equation (3.23), the following solutions of equation (3.21):

u5(x, t) = 2

(

1− 1

1 + cosh(2x− 8αt) + sinh(2x− 8αt)

)

,

u6(x, t) = 2

(

1− 1

1− (cosh(2x− 8αt) + sinh(2x− 8αt))

)

,

are obtained.

Case 4:

a0 = 0, a1 = 0, a2 = −2, c = 4α .(3.27)

Inserting equation (3.27) into equation (3.23), we obtain the following solutions of equa-

tion (3.21):

u7(x, t) = tanh(x − 4αt)− 1 ,

u8(x, t) = coth(x− 4αt)− 1 .

4. Con
lusion

In this work, extended Kudryashov method is proposed to 
onstru
t exa
t solutions

of evolution equations with 
onstant 
oe�
ients. By using the proposed method we have

su

essfully obtained analyti
al solutions of the BBM(m,n) equation and the Sharma

Tasso Olver (STO) equation.Besides the Kudryashov method, more traveling wave so-

lution 
ases are obtained. In addition, 
hange in the parameters e�e
ts both the wave

length and speed of the wave. The obtained solutions may have importan
e for some

spe
ial physi
al phenomena. It 
an be 
on
luded that this method is standard, e�e
tive

and also allows to solve 
ompli
ated algebrai
 
al
ulation.
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