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Abstra
t. In this paper, using majorization theorems and Hermite's interpolating

polynomials we obtain results 
on
erning Jensen's and Jensen-Ste�ensen's inequalities

and their 
onverses in both the integral and the dis
rete 
ase. We give bounds for

identities related to these inequalities by using �eby²ev fun
tionals. We also give

Grüss type inequalities and Ostrowsky type inequalities for these fun
tionals.

1. Introdu
tion

Majorization makes pre
ise the vague notion that the 
omponents of a ve
tor x are

"less spread out" or "more nearly equal" than the 
omponents of a ve
tor y. For �xed

m ≥ 2 let

x = (x1, ..., xm) , y = (y1, ..., ym)

denote two m-tuples. Let

x[1] ≥ x[2] ≥ ... ≥ x[m], y[1] ≥ y[2] ≥ ... ≥ y[m],

x(1) ≤ x(2) ≤ ... ≤ x(m), y(1) ≤ y(2) ≤ ... ≤ y(m)

be their ordered 
omponents.

Majorization: (see [14, p. 319℄) x is said to majorize y (or y is said to be majorized by

x), in symbol, x ≻ y, if

(1.1)

l∑

i=1

y[i] ≤
l∑

i=1

x[i]

holds for l = 1, 2, ...,m− 1 and

m∑

i=1

x[i] =

m∑

i=1

y[i].
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Note that (1.1) is equivalent to

m∑

i=m−l+1

y(i) ≤
m∑

i=m−l+1

x(i)

holds for l = 1, 2, ...,m− 1.
There are several equivalent 
hara
terizations of the majorization relation x ≻ y in addi-

tion to the 
onditions given in the de�nition of majorization. One is a
tually the answer

of the question posed and answered in 1929 by Hardy, Littlewood and Polya in [8℄ and

[9℄: x majorizes y if

m∑

i=1

F (yi) ≤
m∑

i=1

F (xi)

for every 
ontinuous 
onvex fun
tion F . Another interesting 
hara
terization of x ≻ y,

also by Hardy, Littlewood and Polya in [8℄ and [9℄, is that y = Px for some double sto-


hasti
 matrix P. In fa
t, the previous 
hara
terization implies that the set of ve
tors x

that satisfy x ≻ y is the 
onvex hull spanned by the n! points formed from the permuta-

tions of the elements of x.

The following theorem is well-known as the majorization theorem and a 
onvenient ref-

eren
e for its proof is given by Marshall and Olkin in [12, p. 14℄ (see also [14, p. 320℄):

Theorem 1. Let x = (x1, ..., xm) , y = (y1, ..., ym) be two m-tuples su
h that xi, yi ∈
[a, b] , i = 1, ...,m. Then

m∑

i=1

F (yi) ≤
m∑

i=1

F (xi)

holds for every 
ontinuous 
onvex fun
tion F : [a, b] → R i� x ≻ y holds.

The following theorem 
an be regarded as a generalization of Theorem 1 known as

Weighted Majorization Theorem and is proved by Fu
hs in [7℄ (see also [12, p. 580℄ and

[14, p. 323℄).

Theorem 2. Let x = (x1, ..., xm) , y = (y1, ..., ym) be two de
reasing real m-tuples with

xi, yi ∈ [a, b] , i = 1, ...,m, let w = (w1, ..., wm) be a real m-tuple su
h that

(1.2)

l∑

i=1

wiyi ≤
l∑

i=1

wixi, for l = 1, ...,m− 1

and

(1.3)

m∑

i=1

wiyi =

m∑

i=1

wixi.

Then for every 
ontinuous 
onvex fun
tion F : [a, b] → R, we have

(1.4)

m∑

i=1

wiF (yi) ≤
m∑

i=1

wiF (xi) .

The following integral version of Theorem 2 is a simple 
onsequen
e of Theorem 12.14.

in [13℄ (see also [14, p. 328℄).

Theorem 3. Let x, y : [a, b] → [α, β] be de
reasing and w : [a, b] → R be 
ontinuous

fun
tions. If

(1.5)

∫ ν

a

w(t)y(t)dt ≤
∫ ν

a

w(t)x(t)dt, ν ∈ [a, b]
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and

(1.6)

∫ b

a

w(t)y(t)dt =

∫ b

a

w(t)x(t)dt

hold, then for every 
ontinuous 
onvex fun
tion F : [α, β] → R, we have

∫ b

a

w(t)F (y(t)) dt ≤
∫ b

a

w(t)F (x(t)) dt.

Consider the Greens's fun
tion G de�ned on [a, b]× [a, b] by

G(t, s) =

{
(t−b)(s−a)

b−a
, a ≤ s ≤ t,

(s−b)(t−a)
b−a,

, t ≤ s ≤ b.
(1.7)

The fun
tion G is 
onvex in s, it is symetri
, so it is also 
onvex in t. The fun
tion G

is 
ontinuous in s and 
ontinuous in t.

For any fun
tion F : [a, b] → R, F ∈ C2[a, b], we 
an easily show by integrating by

parts that the following is valid

(1.8) F (t) =
b− t

b− a
F (a) +

t− a

b− a
F (b) +

∫ b

a

G(t, s)F ′′(s)ds,

where the fun
tion G is de�ned as above in (1.7).

We follow here notations and terminology aboutHermite interpolating polynomial

from [2, p. 62℄:

Let −∞ < a < b < ∞ and a ≤ a1 < a2 ... < ar ≤ b, r ≥ 2 be given. For F ∈ Cn[a, b] a
unique polynomial PH(t) of degree (n−1), exists, ful�lling one of the following 
onditions:
Hermite 
onditions:

P
(i)
H (aj) = F (i)(aj); 0 ≤ i ≤ kj , 1 ≤ j ≤ r,

r∑

j=1

kj + r = n,

in parti
ular:

Simple Hermite or Os
ulatory 
onditions:

(n = 2m, r = m, kj = 1 for all j)

PO(aj) = F (aj), P ′
O(aj) = F ′(aj), 1 ≤ j ≤ m,

Lagrange 
onditions: (r = n, kj = 0 for all j)

PL(aj) = F (aj), 1 ≤ j ≤ n,

Type (m,n−m) 
onditions: (r = 2, 1 ≤ m ≤ n− 1, k1 = m− 1, k2 = n−m− 1)

P (i)
mn(a) = F (i)(a), 0 ≤ i ≤ m− 1,

P (i)
mn(b) = F (i)(b), 0 ≤ i ≤ n−m− 1,

Two-point Taylor 
onditions: (n = 2m, r = 2, k1 = k2 = m− 1)

P
(i)
2T (a) = F (i)(a), P

(i)
2T (b) = F (i)(b), 0 ≤ i ≤ m− 1.

Theorem 4. Let F ∈ Cn[a, b], and let PH be its Hermite interpolating polynomial. Then

F (t) = PH(t) + eH(t)

=

r∑

j=1

kj∑

i=0

Hij(t)F
(i)(aj) +

∫ b

a

GH,n(t, s)F
(n)(s)ds,
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where Hij are fundamental polynomials of the Hermite basis de�ned by

Hij(t) =
1

i!

ω(t)

(t− aj)kj+1−i

kj−i
∑

k=0

1

kj !

[
(t− aj)

kj+1

ω(t)

](k)

t=aj

(t− aj)
k,(1.9)

where

(1.10) ω(t) =

r∏

j=1

(t− aj)
kj+1,

and GH,n is the Green's fun
tion de�ned by

(1.11) GH,n(t, s) =

{ ∑l
j=1

∑kj

i=0
(aj−s)n−i−1

(n−i−1)! Hij(t), s ≤ t

−∑r
j=l+1

∑kj

i=0
(aj−s)n−i−1

(n−i−1)! Hij(t), s ≥ t,

for all al ≤ s ≤ al+1, l = 0, ..., r with a0 = a and ar+1 = b.

The following Lemma des
ribes the positivity of Green's fun
tion (1.11) (see [5℄ and

[11℄).

Lemma 1. The Green's fun
tion GH,n(t, s) has the following properties:

(1)

GH,n(t,s)
ω(t) > 0, a1 ≤ t ≤ ar, a1 ≤ s ≤ ar;

(2) GH,n(t, s) ≤ 1
(n−1)!(b−a) |ω(t)|;

(3)

∫ b

a
GH,n(t, s)ds =

ω(t)
n!

In order to re
all the de�nition of n-
onvex fun
tion, �rst we write the de�nition of

divided di�eren
e.

De�nition 1. Let f be a real-valued fun
tion de�ned on the segment [a, b]. The divided
di�eren
e of order n of the fun
tion f at distin
t points x0, ..., xn ∈ [a, b], is de�ned

re
ursively (see [4℄, [14℄) by

f [xi] = f(xi), (i = 0, . . . , n)

and

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

The value f [x0, . . . , xn] is independent of the order of the points x0, . . . , xn.

The de�nition may be extended to in
lude the 
ase that some (or all) of the points 
oin
ide.

Assuming that f (j−1)(x) exists, we de�ne

f [x, . . . , x
︸ ︷︷ ︸

j−times

] =
f (j−1)(x)

(j − 1)!
.

The notion of n-
onvexity goes ba
k to Popovi
iu [15℄. We follow the de�nition given

by Karlin [10℄:

De�nition 2. A fun
tion f : [a, b] → R is said to be n-
onvex on [a, b], n ≥ 0, if for all


hoi
es of (n+ 1) distin
t points in [a, b], n-th order divided di�eren
e of f satis�es

f [x0, ..., xn] ≥ 0.



GENERALIZATION OF JENSEN'S AND JENSEN-STEFFENSEN'S INEQUALITIES. . . 195

In fa
t, Popovi
iu proved that ea
h 
ontinuous n-
onvex fun
tion on [0, 1] is the uniform
limit of the sequen
e of 
orresponding Bernstein's polynomials (see for example [14, p.

293℄). Also, Bernstein's polynomials of 
ontinuous n-
onvex fun
tion are also n-
onvex

fun
tions. Therefore, when stating our results for a 
ontinuous n-
onvex fun
tion f ,

without any loss in generality we assume that f (n)
exists and is 
ontinuous.

In [1℄ the authors proved the following Fu
h's majorization theorems for n-
onvex

fun
tion:

Theorem 5. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given points,

x = (x1, ..., xm) and y = (y1, ..., ym) be de
reasing m-tuples and w = (w1, ..., wm) be any

m-tuple with xi, yi ∈ [a, b], wi ∈ R, i = 1, ...,m whi
h satisfy (1.2) and (1.3). Let Hlj be

as de�ned in (1.9) and F : [a, b] → R be n-
onvex, then

m∑

i=1

wiF (xi)−
m∑

i=1

wiF (yi)(1.12)

≥
∫ b

a

[
m∑

i=1

wi (G(xi, t)−G(yi, t))

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(t)dt.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (1.12) holds.
(2) If kj is odd for every j = 2, . . . , r − 1 and kr is even, then the reverse inequality

in (1.12) holds.

If the inequality (reverse inequality) in (1.12) holds and the fun
tion

φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of

(1.12) will be non negative (non positive), that is the inequality (reverse inequality) in

(1.4) will hold.

In [3℄ using Hermite's interpolating polynomials and 
onditions on Green's fun
tions,

the authors present results for Jensen's inequality and 
onverse of Jensen's inequality

for signed measure. In this paper we give generalized results of Jensen's and Jensen-

Ste�ensen's inequalities and their 
onverses by using majorization theorem and Hermite's

polynomial for n-
onvex fun
tions. Then we give bounds for identities related to these

inequalities by using �eby²ev fun
tionals. We give Grüss type inequalities and Ostrowsky

type inequalities for these fun
tionals.

2. Generalization of Jensen's inequality

Theorem 6. Let −∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2 be the given points,

let x = (x1, ..., xm) and w = (w1, ..., wm) be m-tuples su
h that xi ∈ [a, b] , wi ∈ R,

i = 1, ...,m, Wm =
∑m

i=1 wi, x = 1
Wm

∑m
i=1 wixi and F ∈ Cn [a, b] . Also let Hlj , GH,n
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and G be as de�ned in (1.9), (1.11) and (1.7) respe
tively. Then

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.1)

=

∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

+

∫ b

a

∫ b

a

[

1

Wm

m∑

i=1

wiG (xi, s)−G (x, s)

]

GH,n−2(s, t)F
(n)(t) dtds.

Proof. Consider

1
Wm

m∑

i=1

wiF (xi)− F (x). Using (1.8), we have

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.2)

=

∫ b

a

[

1

Wm

m∑

i=1

wiG (xi, s)−G (x, s)

]

F ′′(s)ds.

By Theorem 4, F ′′(s) 
an be expressed as

(2.3) F ′′(s) =

r∑

j=1

kj∑

l=0

Hlj(s)F
(l+2)(aj) +

∫ b

a

GH,n−2(s, t)F
(n)(t)dt.

Using (2.2) and (2.3) we get (2.1). �

Using previous result and Theorem 5, here we give generalization of Jensen's inequality

for n-
onvex fun
tion.

Theorem 7. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given points, let x =
(x1, ..., xm) be de
reasing real m-tuple with xi ∈ [a, b], i = 1, . . . ,m, let w = (w1, ..., wm)
be positive m-tuple su
h that wi ∈ R, i = 1, ...,m, Wm =

∑m

i=1 wi, x = 1
Wm

∑m

i=1 wixi

and Hlj be as de�ned in (1.9). Let F : [a, b] → R be n-
onvex fun
tion. Consider the

inequality

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.4)

≥
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (2.4) holds.
(2) If kj is odd for every j = 2, . . . , r − 1 and kr is even, then the reverse inequality

in (2.4) holds.

If the inequality (reverse inequality) in (2.4) holds and the fun
tion

φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of

(2.4) will be non negative (non positive), that is the inequality (reverse inequality)

1

Wm

m∑

i=1

wiF (xi)− F (x) ≥ 0(2.5)
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holds.

Proof. For l = 1, ..., k, su
h that xk ≥ x we get

l∑

i=1

wix ≤
l∑

i=1

wixi.

If l = k + 1, ...,m− 1, su
h that xk+1 < x we have

l∑

i=1

wixi =

m∑

i=1

wixi −
m∑

i=l+1

wixi >

m∑

i=1

wix−
m∑

i=l+1

wix =

l∑

i=1

wix.

So,

l∑

i=1

wix ≤
l∑

i=1

wixi for all l = 1, . . . ,m− 1

and obviously

m∑

i=1

wix =

m∑

i=1

wixi.

Now, we put x = (x1, . . . , xm) and y = (x̄, . . . , x̄) in Theorem 5 to get inequalities (2.4)

and (2.5). �

Using (p, n− p) type 
onditions, we get the following 
orollary:

Corollary 1. Let [a, b] be the given interval, x = (x1, ..., xm) be de
reasing real m-tuple

with xi ∈ [a, b], i = 1, . . . ,m, let w = (w1, ..., wm) be positive m-tuple su
h that wi ∈ R,

i = 1, ...,m, Wm =
∑m

i=1 wi and x = 1
Wm

∑m
i=1 wixi. Let F : [a, b] → R be n-
onvex

fun
tion. Consider the inequality

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.6)

≥
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

][
p−1
∑

l=0

F (l+2)(a)Hl1(s) +

n−p−1
∑

l=0

F (l+2)(b)Hl2(s)

]

ds,

where

Hl1(s) =
1

l!
(s− a)l

(
s− b

a− b

)n−p p−1−l
∑

k=0

(
n− p+ k − 1

k

)(
s− a

b− a

)k

and

Hl2(s) =
1

l!
(s− b)l

(
s− a

b− a

)p n−p−1−l
∑

k=0

(
p+ k − 1

k

)(
s− b

a− b

)k

.

(1) If n− p is even, then the inequality (2.6) holds.
(2) If n− p is odd, then the reverse inequality in (2.6) holds.

If the inequality (reverse inequality) in (2.6) holds and the fun
tion

φ(.) =
p−1∑

l=0

F (l+2)(a)Hl1(.)+
n−p−1∑

l=0

F (l+2)(b)Hl2(.) is non negative (non positive), then the

right hand side of (2.6) will be non negative (non positive), that is the inequality (reverse

inequality) (2.5) holds.

Using Two-point Taylor 
onditions, we get the following 
orollary:
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Corollary 2. Let [a, b] be the given interval, x = (x1, ..., xm) be de
reasing real m-tuple

with xi ∈ [a, b], i = 1, . . . ,m, let w = (w1, ..., wm) be positive m-tuple su
h that wi ∈ R,

i = 1, ...,m, Wm =
∑m

i=1 wi and x = 1
Wm

∑m

i=1 wixi. Let F : [a, b] → R be n-
onvex

fun
tion. Consider the inequality

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.7)

≥
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
p−1
∑

l=0

p−1−l
∑

k=0

(
p+ k − 1

k

)

·
[

(s− a)l

l!

(
s− b

a− b

)p(
s− a

b− a

)k

F (l+2)(a) +
(s− b)l

l!

(
s− a

b− a

)p(
s− b

a− b

)k

F (l+2)(b)

]

ds

(1) If p is even then the inequality (2.7) holds.
(2) If p is odd then the reverse inequality in (2.7) holds.

If the inequality (reverse inequality) in (2.7) holds and the fun
tion φ(s) =
p−1∑

l=0

p−1−l∑

k=0

(
p+k−1

k

)
[

(s−a)l

l!

(
s−b
a−b

)p (
s−a
b−a

)k

F (l+2)(a) + (s−b)l

l!

(
s−a
b−a

)p (
s−b
a−b

)k

F (l+2)(b)

]

is non

negative (non positive), then the right hand side of (2.7) will be non negative (non posi-

tive), that is the inequality (reverse inequality) (2.5) holds.

Using Simple Hermite or Os
ulatory 
onditions, we get the following 
orollary:

Corollary 3. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given points,

let x = (x1, ..., xm) be de
reasing real m-tuple with xi ∈ [a, b], i = 1, . . . ,m, let w =
(w1, ..., wm) be positive m-tuple su
h that wi ∈ R, i = 1, ...,m, Wm =

∑m
i=1 wi and

x = 1
Wm

∑m

i=1 wixi. Let F : [a, b] → R be (2r)-
onvex fun
tion. Then we have

1

Wm

m∑

i=1

wiF (xi)− F (x)

≥
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

[F ′′(aj)H0j(s) + F ′′′(aj)H1j(s)] ds,

where

H0j(s) =
P 2
r (s)

(s− aj)2 [P ′
r(aj)]

2

(

1− P ′′
r (aj)

P ′
r(aj)

(s− aj)

)

H1j(s) =
P 2
r (s)

(s− aj) [P ′
r(aj)]

2 ,

and

Pr(s) =

r∏

j=1

(s− aj).

Proof. We put kj = 1 for j = 1, ..., r in Theorem 7. �

In the following remark we give the integral version of the Theorem 7.
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Remark 1. For the given points −∞ < α = a1 < a2 · · · < ar = β < ∞, r ≥ 2,
x : [a, b] → R 
ontinuous de
reasing fun
tion, su
h that x([a, b]) ⊆ [α, β], λ : [a, b] → R

in
reasing, bounded fun
tion with λ(a) 6= λ(b) and x =
∫

b

a
x(t) dλ(t)
∫

b

a
dλ(t)

, for x(c) ≥ x, we have:

∫ c

a

x(t) dλ(t) ≥
∫ c

a

x(c) dλ(t) ≥
∫ c

a

x dλ(t), c ∈ [a, b] .

If x(c) < x we have

∫ c

a

x(t) dλ(t) =

∫ b

a

x(t) dλ(t) −
∫ b

c

x(t) dλ(t)

>

∫ b

a

x dλ(t)−
∫ b

c

x dλ(t) =

∫ c

a

x dλ(t), c ∈ [a, b] .

Equality

∫ b

a

x(t) dλ(t) =

∫ b

a

xdλ(t)

obviously holds, so majorization 
onditions (1.5) and (1.6) are satis�ed.
Consider the inequality:

∫ b

a
F (x(t)) dλ(t)
∫ b

a
dλ(t)

− F (x)(2.8)

≥
∫ β

α

[∫ b

a
G(x(t), s) dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds,

where Hlj is as de�ned in (1.9) and F : [α, β] → R is n-
onvex fun
tion.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (2.8) holds.
(2) If kj is odd for every j = 2, . . . , r − 1 and kr is even, then the reverse inequality

in (2.8) holds.

If the inequality (reverse inequality) in (2.8) holds and the fun
tion

φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of

(2.8) will be non negative (non positive), that is the inequality (reverse inequality)

∫ b

a
F (x(t)) dλ(t)
∫ b

a
dλ(t)

− F (x) ≥ 0(2.9)

holds.

Remark 2. Motivated by the inequalities (2.4) and (2.8), we de�ne fun
tionals Θ1(F )
and Θ2(F ), by

Θ1(F ) =
1

Wm

m∑

i=1

wiF (xi)− F (x)

−
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds,



200 G. ARAS-GAZI�, J. PE�ARI� AND A. VUKELI�

Θ2(F ) =

∫ b

a
F (x(t)) dλ(t)
∫ b

a
dλ(t)

− F (x)

−
∫ β

α

[∫ b

a
G(x(t), s) dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds,

Similarly as in [3℄ we 
an 
onstru
t new families of exponentially 
onvex fun
tion and

Cau
hy type means by looking at these linear fun
tionals. The monotoni
ity property

of the generalized Cau
hy means obtained via these fun
tionals 
an be proved by using

the properties of the linear fun
tionals asso
iated with this error representation, su
h as

n-exponential and logarithmi
 
onvexity.

3. Generalization of Jensen Steffensen's inequality

Theorem 8. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given

points, let x = (x1, ..., xm) be de
reasing real m-tuple with xi ∈ [a, b], i = 1, ...,m, let

w = (w1, ..., wm) be real m-tuple su
h that 0 ≤ Wk ≤ Wm, k = 1, · · · ,m, Wm > 0, where

Wk =
∑k

i=1 wi, x = 1
Wm

∑m

i=1 wixi and Hlj be as de�ned in (1.9). Let F : [a, b] → R be

n-
onvex fun
tion.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (2.4) holds.
(2) If kj is odd for every j = 2, . . . , r − 1 and kr is even, then the reverse inequality

in (2.4) holds.

If the inequality (reverse inequality) in (2.4) holds and the fun
tion

φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of

(2.4) will be non negative (non positive), that is the inequality (reverse inequality) (2.5)
holds.

Proof. For l = 1, ..., k, su
h that xk ≥ x we have

l∑

i=1

wixi −Wlxl =

l−1∑

i=1

(xi − xi+1)Wi ≥ 0

and so we get

l∑

i=1

wix = Wlx ≤ Wlxl ≤
l∑

i=1

wixi.

For l = k + 1, ...,m− 1, su
h that xk+1 < x we have

xl (Wm −Wl)−
m∑

i=l+1

wixi =

m∑

i=l+1

(xi−1 − xi)(Wm −Wi−1) ≥ 0

and now

m∑

i=l+1

wix = (Wm −Wl)x > (Wm −Wl)xl ≥
m∑

i=l+1

wixi.

So, similarly as in Theorem 7, we get that 
onditions (1.2) and (1.3) for majorization are

satis�ed, so inequalities (2.4) and (2.5) are valid. �
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Remark 3. For the given points −∞ < α = a1 < a2 · · · < ar = β < ∞, r ≥ 2, x :
[a, b] → R 
ontinuous, de
reasing fun
tion, su
h that x([a, b]) ⊆ [α, β] and λ : [a, b] → R

is either 
ontinuous or of bounded variation satisfying λ(a) ≤ λ(t) ≤ λ(b) for all t ∈ [a, b],

x =
∫

b

a
x(t) dλ(t)

∫
b

a
dλ(t)

and F : [α, β] → R n-
onvex fun
tion, for x(c) ≥ x, we have:

∫ c

a

x(t)dλ(t) − x(c)

∫ c

a

dλ(t) = −
∫ c

a

x′(t)

(∫ t

a

dλ(x)

)

dt ≥ 0

and so

x

∫ c

a

dλ(t) ≤ x(c)

∫ c

a

dλ(t) ≤
∫ c

a

x(t)dλ(t).

If x(c) < x we have

x(c)

∫ b

c

dλ(t)−
∫ b

c

x(t)dλ(t) = −
∫ b

c

x′(t)

(
∫ b

t

dλ(x)

)

dt ≥ 0

and now

x

∫ b

c

dλ(t) > x(c)

∫ b

c

dλ(t) ≥
∫ b

c

x(t)dλ(t).

Similarly as in the Remark 1 we get that 
onditions for majorization are satis�ed, so

inequalities (2.8) and (2.9) are valid.

4. Generalization of 
onverse of Jensen's inequality

Theorem 9. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given points, let

x = (x1, ..., xp) be real p-tuple with xi ∈ [m,M ] ⊆ [a, b], i = 1, . . . , p, let w = (w1, ..., wp)
be positive p-tuple su
h that wi ∈ R, i = 1, ..., p, Wp =

∑p

i=1 wi, x = 1
Wp

∑p

i=1 wixi and

Hlj be as de�ned in (1.9). Let F : [a, b] → R be n-
onvex fun
tion. Consider the inequality

1

Wp

p
∑

i=1

wiF (xi) ≤
x−m

M −m
F (M) +

M − x

M −m
F (m)(4.1)

−
∫ b

a

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)− 1

Wp

p
∑

i=1

wiG(xi, s)

]

×
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (4.1) holds.
(2) If kj is odd for every j = 2, . . . , r − 1, and kr is even, then the reverse inequality

in (4.1) holds.

Moreover, if the inequality (reverse inequality) in (4.1) holds and the fun
tion φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of (4.1)

will be non positive (non negative), that is the inequality (reverse inequality)

1

Wp

p
∑

i=1

wiF (xi) ≤
x−m

M −m
F (M) +

M − x

M −m
F (m)(4.2)

holds.
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Proof. Using inequality (2.4) we have

1

Wp

p
∑

i=1

wiF (xi) =
1

Wp

p
∑

i=1

wiF

(
xi −m

M −m
M +

M − xi

M −m
m

)

≤ x−m

M −m
F (M) +

M − x

M −m
F (m)

−
∫ b

a

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)− 1

Wp

p
∑

i=1

wiG(xi, s)

]

×
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds.

For the inequality (4.2) we use the fa
t that for every 
onvex fun
tion ϕ we have

1

Wp

p
∑

i=1

wiϕ(xi) ≤
x−m

M −m
ϕ(M) +

M − x

M −m
ϕ(m).

�

Corollary 4. Let −∞ < m < a2 · · · < ar−1 < M < ∞, r ≥ 2 be the given points, let

x = (x1, ..., xp) be real p-tuple with xi ∈ [m,M ], i = 1, . . . , p, let w = (w1, ..., wp) be

positive p-tuple su
h that wi ∈ R, i = 1, ..., p, Wp =
∑p

i=1 wi, x = 1
Wp

∑p

i=1 wixi and Hlj

be as de�ned in (1.9). Let F : [m,M ] → R be n-
onvex fun
tion. Consider the inequality

1

Wp

p
∑

i=1

wiF (xi) ≤
x−m

M −m
F (M) +

M − x

M −m
F (m)

+

r∑

j=1

kj∑

l=0

F (l+2)(aj)
1

Wp

p
∑

i=1

wi

∫ M

m

G(xi, s)Hlj(s)ds.(4.3)

(1) If kj is odd for every j = 2, . . . , r, then the inequality (4.3) holds.
(2) If kj is odd for every j = 2, . . . , r − 1, and kr is even, then the reverse inequality

in (4.3) holds.

Proof. We use inequality (4.1) for m = a = a1 and M = b = ar. Therefore we get

G(m, s) = 0 and G(M, s) = 0 and so obtain inequality (4.3). �

Remark 4. For the given points −∞ < α = a1 < a2 · · · < ar = β < ∞, r ≥ 2,
x : [a, b] → R 
ontinuous fun
tion, su
h that x([a, b]) ⊆ [m,M ] ⊆ [α, β] and λ : [a, b] → R

in
reasing, bounded fun
tion with λ(a) 6= λ(b), x =
∫

b

a
x(t) dλ(t)
∫

b

a
dλ(t)

, Hlj as de�ned in (1.9)

and F : [α, β] → R n-
onvex fun
tion, 
onsider the inequality

∫ b

a
F (x(t))dλ(t)
∫ b

a
dλ(t)

≤ x−m

M −m
F (M) +

M − x

M −m
F (m)(4.4)

−
∫ β

α

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)−

∫ b

a
G(x(t), s)dλ(t)
∫ b

a
dλ(t)

]
r∑

j=1

×
kj∑

l=0

F (l+2)(aj)Hlj(s)ds.
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(1) If kj is odd for every j = 2, . . . , r, then the inequality (4.4) holds.

(2) If kj is odd for every j = 2, . . . , r − 1, and kr is even, then the reverse inequality

in (4.4) holds.

Moreover, if the inequality (reverse inequality) in (4.4) holds and the fun
tion φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of (4.4)

will be non positive (non negative), that is the inequality (reverse inequality)

∫ b

a
F (x(t))dλ(t)
∫ b

a
dλ(t)

≤ x−m

M −m
F (M) +

M − x

M −m
F (m)

holds.

Remark 5. Motivated by the inequalities (4.1) and (4.4), we de�ne fun
tionals Θ3(F )
and Θ4(F ) by

Θ3(F ) =
1

Wp

p
∑

i=1

wiF (xi)−
x−m

M −m
F (M)− M − x

M −m
F (m)

+

∫ b

a

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)− 1

Wp

p
∑

i=1

wiG(xi, s)

]

×
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

and

Θ4(F ) =

∫ b

a
F (x(t))dλ(t)
∫ b

a
dλ(t)

− x−m

M −m
F (M)− M − x

M −m
F (m)

+

∫ β

α

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)−

∫ b

a
G(x(t), s)dλ(t)
∫ b

a
dλ(t)

]

×
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds.

Now, we 
an observe the same results whi
h are mentioned in Remark 2.

5. Bounds for identities related to generalization of majorization

inequality

For two Lebesgue integrable fun
tions f, h : [a, b] → R we 
onsider �eby²ev fun
tional

Ω(f, h) =
1

b− a

∫ b

a

f(t)h(t)dt− 1

b− a

∫ b

a

f(t)dt
1

b− a

∫ b

a

h(t)dt.(5.1)

In [6℄, the authors proved the following theorems:

Theorem 10. Let f : [a, b] → R be a Lebesgue integrable fun
tion and h : [a, b] → R

be an absolutely 
ontinuous fun
tion with (. − a)(b − .) [h′]
2 ∈ L [a, b] . Then we have the
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inequality

| Ω(f, h) |≤ 1√
2
[Ω(f, f)]

1

2
1√
b− a

(
∫ b

a

(x− a)(b− x) [h′(x)]
2
dx

) 1

2

.(5.2)

The 
onstant

1√
2
in (5.2) is the best possible.

Theorem 11. Assume that h : [a, b] → R is monotoni
 nonde
reasing on [a, b] and

f : [a, b] → R is absolutely 
ontinuous with f ′ ∈ L∞ [a, b] . Then we have the inequality

| Ω(f, h) |≤ 1

2(b− a)
‖ f ′ ‖∞

∫ b

a

(x− a)(b − x)dh(x).(5.3)

The 
onstant

1
2 in (5.3) is the best possible.

In the sequel we use the above theorems to obtain generalizations of the results proved

in the previous se
tions.

For m-tuples w = (w1, ..., wm), x = (x1, ..., xm) with xi ∈ [a, b], wi ∈ R, i = 1, ...,m,

Wm =
∑m

i=1 wi, x = 1
Wm

∑m

i=1 wixi and the Green's fun
tions G and GH,n−2 as de�ned

in (1.7) and (1.11), respe
tively, we denote

Υ(t) =

∫ b

a

[

1

Wm

m∑

i=1

wiG (xi, s)−G (x, s)

]

GH,n−2(s, t)ds, t ∈ [a, b].(5.4)

Similarly for x : [a, b] → [α, β] 
ontinuous fun
tion, λ : [a, b] → R as de�ned in Remark

1 or in Remark 3, the Green's fun
tions G and GH,n−2 as de�ned in (1.7) and (1.11),

respe
tively, and for all s ∈ [α, β] we denote

Υ̃(t) =

∫ β

α

[∫ b

a
G (x(p), s) dλ(p)
∫ b

a
dλ(p)

−G (x, s)

]

GH,n−2(s, t)ds, t ∈ [α, β].(5.5)

Theorem 12. Let −∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2 be the given

points, let F : [a, b] → R be su
h that F ∈ Cn+1 [a, b] for n ∈ N and x = (x1, ..., xm),
w = (w1, ..., wm) be m-tuples su
h that xi ∈ [a, b], wi ∈ R, i = 1, ...,m, Wm =

∑m
i=1 wi,

x = 1
Wm

∑m

i=1 wixi and let the fun
tions Hlj , l = 0, ..., kj, j = 1, ..., r, ω, G, Υ and

fun
tional Ω be de�ned in (1.9), (1.10), (1.7), (5.4) and (5.1), respe
tively. Then we have:

1

Wm

m∑

i=1

wiF (xi)− F (x)

=

∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

+
F (n−1)(b)− F (n−1)(a)

b− a

∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]

ω(s)

(n− 2)!
ds

+H1
n(F ; a, b)(5.6)

where the remainder H1
n(F ; a, b) satis�es the estimation

| H1
n(F ; a, b) |≤

√
b− a√
2

[Ω(Υ,Υ]
1

2

∣
∣
∣
∣
∣

∫ b

a

(t− a)(b− t)
[

F (n+1)(t)
]2

dt

∣
∣
∣
∣
∣

1

2

.(5.7)
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Proof. If we apply Theorem 10 for f → Υ and h → F (n)
we obtain

∣
∣
∣
∣
∣

1

b− a

∫ b

a

Υ(t)F (n)(t)dt− 1

b− a

∫ b

a

Υ(t)dt · 1

b− a

∫ b

a

F (n)(t)dt

∣
∣
∣
∣
∣

≤ 1√
2
[Ω(Υ,Υ)]

1

2
1√
b− a

∣
∣
∣
∣
∣

∫ b

a

(t− a)(b − t)
[

F (n+1)(t)
]2

dt

∣
∣
∣
∣
∣

1

2

.

Therefore we have

∫ b

a

Υ(t)F (n)(t)dt

=
F (n−1)(b)− F (n−1)(a)

b− a

∫ b

a

Υ(t)dt+H1
n(F ; a, b),

where the remainder H1
n(F ; a, b) satis�es the estimation (5.7). Now, from Lemma 1 we

obtain (5.6). �

Integral 
ase of the above theorem 
an be given:

Theorem 13. Let −∞ < α ≤ a1 < a2 · · · < ar ≤ β < ∞, r ≥ 2 be the given points,

let F : [α, β] → R be su
h that F ∈ Cn+1 [α, β] for n ∈ N, let x : [a, b] → R 
ontinuous

fun
tions su
h that x([a, b]) ⊆ [α, β], λ : [a, b] → R be as de�ned in Remark 1 or in

Remark 3, x =
∫

b

a
x(t) dλ(t)
∫

b

a
dλ(t)

and let the fun
tions Hlj , l = 0, ..., kj , j = 1, ..., r, ω, G, Υ̃

and fun
tional Ω be de�ned in (1.9), (1.10), (1.7), (5.5) and (5.1), respe
tively. Then we

have:

∫ b

a
F (x(t))dλ(t)
∫ b

a
dλ(t)

− F (x)

=

∫ β

α

[∫ b

a
G(x(t), s) dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

+
F (n−1)(β) − F (n−1)(α)

β − α

∫ β

α

[∫ b

a
G(x(t), s)dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]

ω(s)

(n− 2)!
ds

+H̃1
n(F ;α, β)(5.8)

where the remainder H̃1
n(F ;α, β) satis�es the estimation

| H̃1
n(F ;α, β) |≤

√
β − α√
2

[

Ω(Υ̃, Υ̃)
] 1

2

∣
∣
∣
∣
∣

∫ β

α

(s− α)(β − s)
[

F (n+1)(s)
]2

ds

∣
∣
∣
∣
∣

1

2

.

Using Theorem 11 we also get the following Grüss type inequality.

Theorem 14. Let −∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2 be the given points,

let F : [a, b] → R be su
h that F ∈ Cn+1 [a, b] for n ∈ N, F (n+1) ≥ 0 on [a, b] and let

x = (x1, ..., xm), w = (w1, ..., wm) be m-tuples su
h that xi ∈ [a, b], wi ∈ R, i = 1, ...,m,

Wm =
∑m

i=1 wi, x = 1
Wm

∑m
i=1 wixi and let the fun
tion Υ be de�ned in (5.4). Then we
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have the representation (5.6) and the remainder H1
n(F ; a, b) satis�es the bound

| H1
n(F ; a, b) |≤ ‖Υ′‖∞

2

{

(b − a)
[

F (n−1)(b) + F (n−1)(a)
]

−
[

F (n−2)(b)− F (n−2)(a)
]}

.

(5.9)

Proof. Applying Theorem 11 for f → Υ and h → F (n)
we obtain

∣
∣
∣
∣
∣

1

b− a

∫ b

a

Υ(t)F (n)(t)dt− 1

b− a

∫ b

a

Υ(t)dt · 1

b− a

∫ b

a

F (n)(t)dt

∣
∣
∣
∣
∣

≤ 1

2(b− a)
‖Υ′‖∞

∫ b

a

(t− a)(b− t)F (n+1)(t)dt.(5.10)

Sin
e

∫ b

a

(t− a)(b− t)F (n+1)(t)dt =

∫ b

a

[2t− (a+ b)]F (n)(t)dt

= (b− a)
[

F (n−1)(b) + F (n−1)(a)
]

− 2
[

F (n−2)(b)− F (n−2)(a)
]

,

using the identity (2.1) and (5.10) we dedu
e (5.9). �

Integral version of the above theorem 
an be given as:

Theorem 15. Let −∞ < α ≤ a1 < a2 · · · < ar ≤ β < ∞, r ≥ 2 be the given points,

let F : [α, β] → R be su
h that F ∈ Cn+1 [α, β] for n ∈ N and F (n+1) ≥ 0 on [α, β] , let
x : [a, b] → R 
ontinuous fun
tions su
h that x([a, b]) ⊆ [α, β], λ : [a, b] → R be as de�ned

in Remark 1 or in Remark 3, x =
∫

b

a
x(t) dλ(t)
∫

b

a
dλ(t)

and let the fun
tion Υ̃ be de�ned in (5.5).

Then we have the representation (5.8) and the remainder H̃1
n(F ;α, β) satis�es the bound

| H̃1
n(F ;α, β) |≤ ‖Υ′‖∞

2

{

(β − α)
[

F (n−1)(β) + F (n−1)(α)
]

−
[

F (n−2)(β)− F (n−2)(α)
]}

.

We also give the Ostrowsky type inequality related to the generalization of majorization

inequality.

Theorem 16. Let −∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞ r ≥ 2 be the given points,

let x = (x1, ..., xm) and w = (w1, ..., wm) be m-tuples su
h that xi ∈ [a, b] , wi ∈ R,

i = 1, ...,m, Wm =
∑m

i=1 wi, x = 1
Wm

∑m
i=1 wixi. Let (p, q) be a pair of 
onjugate

exponents, that is 1 ≤ p, q ≤ ∞ and

1
p
+ 1

q
= 1 and let F ∈ Cn [a, b]. Also, let Hlj and Υ

be as de�ned in (1.9) and (5.4) respe
tively.
Then we have

∣
∣
∣
∣
∣

1

Wm

m∑

i=1

wiF (xi)− F (x)(5.11)

−
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

∣
∣
∣
∣
∣
∣

≤ ||F (n)||p||Υ||q.
The 
onstant on the right hand side of (5.11) is sharp for 1 < p ≤ ∞ and the best possible

for p = 1.
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Proof. Using the identity (2.1) and applying Hölder's inequality we obtain

∣
∣
∣
∣
∣

1

Wm

m∑

i=1

wiF (xi)− F (x)

−
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ b

a

Υ(t)F (n)(t)dt

∣
∣
∣
∣
∣
≤ ||F (n)||p||Υ||q.

For the proof of the sharpness of the 
onstant ||Υ||q let us �nd a fun
tion F for whi
h

the equality in (5.11) is obtained.

For 1 < p < ∞ take F to be su
h that

F (n)(t) = sgnΥ(t) |Υ(t)|
1

p−1 .

For p = ∞ take F (n)(t) = sgnΥ(t).
For p = 1 we prove that

(5.12)

∣
∣
∣
∣
∣

∫ b

a

Υ(t)F (n)(t)dt

∣
∣
∣
∣
∣
≤ max

t∈[a,b]
|Υ(t)|

(
∫ b

a

∣
∣
∣F

(n)(t)
∣
∣
∣ dt

)

is the best possible inequality. Suppose that |Υ(t)| attains its maximum at t0 ∈ [a, b].
First we assume that Υ(t0) > 0. For ε small enough we de�ne Fε(t) by

Fε(t) =







0, a ≤ t ≤ t0,
1

εn! (t− t0)
n, t0 ≤ t ≤ t0 + ε,

1
(n−1)!(t− t0)

n−1, t0 + ε ≤ t ≤ b.

Then for ε small enough

∣
∣
∣
∣
∣

∫ b

a

Υ(t)F (n)(t)dt

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

∫ t0+ε

t0

Υ(t)
1

ε
dt

∣
∣
∣
∣
=

1

ε

∫ t0+ε

t0

Υ(t)dt.

Now from the inequality (5.12) we have

1

ε

∫ t0+ε

t0

Υ(t)dt ≤ Υ(t0)

∫ t0+ε

t0

1

ε
dt = Υ(t0).

Sin
e

lim
ε→0

1

ε

∫ t0+ε

t0

Υ(t)dt = Υ(t0)

the statement follows. In the 
ase Υ(t0) < 0, we de�ne Fε(t) by

Fε(t) =







1
(n−1)!(t− t0 − ε)n−1, a ≤ t ≤ t0,

− 1
εn! (t− t0 − ε)n, t0 ≤ t ≤ t0 + ε,

0, t0 + ε ≤ t ≤ b,

and the rest of the proof is the same as above.

�

Integral version of the above theorem 
an be stated as:
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Theorem 17. Let −∞ < α ≤ a1 < a2 · · · < ar ≤ β < ∞, r ≥ 2 be the given points,

let x : [a, b] → R 
ontinuous fun
tions su
h that x([a, b]) ⊆ [α, β], λ : [a, b] → R be as

de�ned in Remark 1 or in Remark 3 and x =
∫

b

a
x(t) dλ(t)

∫
b

a
dλ(t)

. Let (p, q) be a pair of 
onjugate

exponents, that is 1 ≤ p, q ≤ ∞ and

1
p
+ 1

q
= 1. Let F ∈ Cn [α, β] and let the Hlj and Υ̃

be de�ned in (1.9) and (5.5).
Then we have

∣
∣
∣
∣
∣

∫ b

a
F (x(t)) dλ(t)
∫ b

a
dλ(t)

− F (x)(5.13)

−
∫ β

α

[∫ b

a
G(x(t), s) dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

∣
∣
∣
∣
∣
∣

≤ ||F (n)||p||Υ̃||q.
The 
onstant on the right hand side of (5.13) is sharp for 1 < p ≤ ∞ and the best possible

for p = 1.
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