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Abstrat. In this paper, using majorization theorems and Hermite's interpolating

polynomials we obtain results onerning Jensen's and Jensen-Ste�ensen's inequalities

and their onverses in both the integral and the disrete ase. We give bounds for

identities related to these inequalities by using �eby²ev funtionals. We also give

Grüss type inequalities and Ostrowsky type inequalities for these funtionals.

1. Introdution

Majorization makes preise the vague notion that the omponents of a vetor x are

"less spread out" or "more nearly equal" than the omponents of a vetor y. For �xed

m ≥ 2 let

x = (x1, ..., xm) , y = (y1, ..., ym)

denote two m-tuples. Let

x[1] ≥ x[2] ≥ ... ≥ x[m], y[1] ≥ y[2] ≥ ... ≥ y[m],

x(1) ≤ x(2) ≤ ... ≤ x(m), y(1) ≤ y(2) ≤ ... ≤ y(m)

be their ordered omponents.

Majorization: (see [14, p. 319℄) x is said to majorize y (or y is said to be majorized by

x), in symbol, x ≻ y, if

(1.1)

l∑

i=1

y[i] ≤
l∑

i=1

x[i]

holds for l = 1, 2, ...,m− 1 and

m∑

i=1

x[i] =

m∑

i=1

y[i].
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Note that (1.1) is equivalent to

m∑

i=m−l+1

y(i) ≤
m∑

i=m−l+1

x(i)

holds for l = 1, 2, ...,m− 1.
There are several equivalent haraterizations of the majorization relation x ≻ y in addi-

tion to the onditions given in the de�nition of majorization. One is atually the answer

of the question posed and answered in 1929 by Hardy, Littlewood and Polya in [8℄ and

[9℄: x majorizes y if

m∑

i=1

F (yi) ≤
m∑

i=1

F (xi)

for every ontinuous onvex funtion F . Another interesting haraterization of x ≻ y,

also by Hardy, Littlewood and Polya in [8℄ and [9℄, is that y = Px for some double sto-

hasti matrix P. In fat, the previous haraterization implies that the set of vetors x

that satisfy x ≻ y is the onvex hull spanned by the n! points formed from the permuta-

tions of the elements of x.

The following theorem is well-known as the majorization theorem and a onvenient ref-

erene for its proof is given by Marshall and Olkin in [12, p. 14℄ (see also [14, p. 320℄):

Theorem 1. Let x = (x1, ..., xm) , y = (y1, ..., ym) be two m-tuples suh that xi, yi ∈
[a, b] , i = 1, ...,m. Then

m∑

i=1

F (yi) ≤
m∑

i=1

F (xi)

holds for every ontinuous onvex funtion F : [a, b] → R i� x ≻ y holds.

The following theorem an be regarded as a generalization of Theorem 1 known as

Weighted Majorization Theorem and is proved by Fuhs in [7℄ (see also [12, p. 580℄ and

[14, p. 323℄).

Theorem 2. Let x = (x1, ..., xm) , y = (y1, ..., ym) be two dereasing real m-tuples with

xi, yi ∈ [a, b] , i = 1, ...,m, let w = (w1, ..., wm) be a real m-tuple suh that

(1.2)

l∑

i=1

wiyi ≤
l∑

i=1

wixi, for l = 1, ...,m− 1

and

(1.3)

m∑

i=1

wiyi =

m∑

i=1

wixi.

Then for every ontinuous onvex funtion F : [a, b] → R, we have

(1.4)

m∑

i=1

wiF (yi) ≤
m∑

i=1

wiF (xi) .

The following integral version of Theorem 2 is a simple onsequene of Theorem 12.14.

in [13℄ (see also [14, p. 328℄).

Theorem 3. Let x, y : [a, b] → [α, β] be dereasing and w : [a, b] → R be ontinuous

funtions. If

(1.5)

∫ ν

a

w(t)y(t)dt ≤
∫ ν

a

w(t)x(t)dt, ν ∈ [a, b]
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and

(1.6)

∫ b

a

w(t)y(t)dt =

∫ b

a

w(t)x(t)dt

hold, then for every ontinuous onvex funtion F : [α, β] → R, we have

∫ b

a

w(t)F (y(t)) dt ≤
∫ b

a

w(t)F (x(t)) dt.

Consider the Greens's funtion G de�ned on [a, b]× [a, b] by

G(t, s) =

{
(t−b)(s−a)

b−a
, a ≤ s ≤ t,

(s−b)(t−a)
b−a,

, t ≤ s ≤ b.
(1.7)

The funtion G is onvex in s, it is symetri, so it is also onvex in t. The funtion G

is ontinuous in s and ontinuous in t.

For any funtion F : [a, b] → R, F ∈ C2[a, b], we an easily show by integrating by

parts that the following is valid

(1.8) F (t) =
b− t

b− a
F (a) +

t− a

b− a
F (b) +

∫ b

a

G(t, s)F ′′(s)ds,

where the funtion G is de�ned as above in (1.7).

We follow here notations and terminology aboutHermite interpolating polynomial

from [2, p. 62℄:

Let −∞ < a < b < ∞ and a ≤ a1 < a2 ... < ar ≤ b, r ≥ 2 be given. For F ∈ Cn[a, b] a
unique polynomial PH(t) of degree (n−1), exists, ful�lling one of the following onditions:
Hermite onditions:

P
(i)
H (aj) = F (i)(aj); 0 ≤ i ≤ kj , 1 ≤ j ≤ r,

r∑

j=1

kj + r = n,

in partiular:

Simple Hermite or Osulatory onditions:

(n = 2m, r = m, kj = 1 for all j)

PO(aj) = F (aj), P ′
O(aj) = F ′(aj), 1 ≤ j ≤ m,

Lagrange onditions: (r = n, kj = 0 for all j)

PL(aj) = F (aj), 1 ≤ j ≤ n,

Type (m,n−m) onditions: (r = 2, 1 ≤ m ≤ n− 1, k1 = m− 1, k2 = n−m− 1)

P (i)
mn(a) = F (i)(a), 0 ≤ i ≤ m− 1,

P (i)
mn(b) = F (i)(b), 0 ≤ i ≤ n−m− 1,

Two-point Taylor onditions: (n = 2m, r = 2, k1 = k2 = m− 1)

P
(i)
2T (a) = F (i)(a), P

(i)
2T (b) = F (i)(b), 0 ≤ i ≤ m− 1.

Theorem 4. Let F ∈ Cn[a, b], and let PH be its Hermite interpolating polynomial. Then

F (t) = PH(t) + eH(t)

=

r∑

j=1

kj∑

i=0

Hij(t)F
(i)(aj) +

∫ b

a

GH,n(t, s)F
(n)(s)ds,



194 G. ARAS-GAZI�, J. PE�ARI� AND A. VUKELI�

where Hij are fundamental polynomials of the Hermite basis de�ned by

Hij(t) =
1

i!

ω(t)

(t− aj)kj+1−i

kj−i
∑

k=0

1

kj !

[
(t− aj)

kj+1

ω(t)

](k)

t=aj

(t− aj)
k,(1.9)

where

(1.10) ω(t) =

r∏

j=1

(t− aj)
kj+1,

and GH,n is the Green's funtion de�ned by

(1.11) GH,n(t, s) =

{ ∑l
j=1

∑kj

i=0
(aj−s)n−i−1

(n−i−1)! Hij(t), s ≤ t

−∑r
j=l+1

∑kj

i=0
(aj−s)n−i−1

(n−i−1)! Hij(t), s ≥ t,

for all al ≤ s ≤ al+1, l = 0, ..., r with a0 = a and ar+1 = b.

The following Lemma desribes the positivity of Green's funtion (1.11) (see [5℄ and

[11℄).

Lemma 1. The Green's funtion GH,n(t, s) has the following properties:

(1)

GH,n(t,s)
ω(t) > 0, a1 ≤ t ≤ ar, a1 ≤ s ≤ ar;

(2) GH,n(t, s) ≤ 1
(n−1)!(b−a) |ω(t)|;

(3)

∫ b

a
GH,n(t, s)ds =

ω(t)
n!

In order to reall the de�nition of n-onvex funtion, �rst we write the de�nition of

divided di�erene.

De�nition 1. Let f be a real-valued funtion de�ned on the segment [a, b]. The divided
di�erene of order n of the funtion f at distint points x0, ..., xn ∈ [a, b], is de�ned

reursively (see [4℄, [14℄) by

f [xi] = f(xi), (i = 0, . . . , n)

and

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

The value f [x0, . . . , xn] is independent of the order of the points x0, . . . , xn.

The de�nition may be extended to inlude the ase that some (or all) of the points oinide.

Assuming that f (j−1)(x) exists, we de�ne

f [x, . . . , x
︸ ︷︷ ︸

j−times

] =
f (j−1)(x)

(j − 1)!
.

The notion of n-onvexity goes bak to Popoviiu [15℄. We follow the de�nition given

by Karlin [10℄:

De�nition 2. A funtion f : [a, b] → R is said to be n-onvex on [a, b], n ≥ 0, if for all

hoies of (n+ 1) distint points in [a, b], n-th order divided di�erene of f satis�es

f [x0, ..., xn] ≥ 0.
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In fat, Popoviiu proved that eah ontinuous n-onvex funtion on [0, 1] is the uniform
limit of the sequene of orresponding Bernstein's polynomials (see for example [14, p.

293℄). Also, Bernstein's polynomials of ontinuous n-onvex funtion are also n-onvex

funtions. Therefore, when stating our results for a ontinuous n-onvex funtion f ,

without any loss in generality we assume that f (n)
exists and is ontinuous.

In [1℄ the authors proved the following Fuh's majorization theorems for n-onvex

funtion:

Theorem 5. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given points,

x = (x1, ..., xm) and y = (y1, ..., ym) be dereasing m-tuples and w = (w1, ..., wm) be any

m-tuple with xi, yi ∈ [a, b], wi ∈ R, i = 1, ...,m whih satisfy (1.2) and (1.3). Let Hlj be

as de�ned in (1.9) and F : [a, b] → R be n-onvex, then

m∑

i=1

wiF (xi)−
m∑

i=1

wiF (yi)(1.12)

≥
∫ b

a

[
m∑

i=1

wi (G(xi, t)−G(yi, t))

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(t)dt.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (1.12) holds.
(2) If kj is odd for every j = 2, . . . , r − 1 and kr is even, then the reverse inequality

in (1.12) holds.

If the inequality (reverse inequality) in (1.12) holds and the funtion

φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of

(1.12) will be non negative (non positive), that is the inequality (reverse inequality) in

(1.4) will hold.

In [3℄ using Hermite's interpolating polynomials and onditions on Green's funtions,

the authors present results for Jensen's inequality and onverse of Jensen's inequality

for signed measure. In this paper we give generalized results of Jensen's and Jensen-

Ste�ensen's inequalities and their onverses by using majorization theorem and Hermite's

polynomial for n-onvex funtions. Then we give bounds for identities related to these

inequalities by using �eby²ev funtionals. We give Grüss type inequalities and Ostrowsky

type inequalities for these funtionals.

2. Generalization of Jensen's inequality

Theorem 6. Let −∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2 be the given points,

let x = (x1, ..., xm) and w = (w1, ..., wm) be m-tuples suh that xi ∈ [a, b] , wi ∈ R,

i = 1, ...,m, Wm =
∑m

i=1 wi, x = 1
Wm

∑m
i=1 wixi and F ∈ Cn [a, b] . Also let Hlj , GH,n
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and G be as de�ned in (1.9), (1.11) and (1.7) respetively. Then

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.1)

=

∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

+

∫ b

a

∫ b

a

[

1

Wm

m∑

i=1

wiG (xi, s)−G (x, s)

]

GH,n−2(s, t)F
(n)(t) dtds.

Proof. Consider

1
Wm

m∑

i=1

wiF (xi)− F (x). Using (1.8), we have

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.2)

=

∫ b

a

[

1

Wm

m∑

i=1

wiG (xi, s)−G (x, s)

]

F ′′(s)ds.

By Theorem 4, F ′′(s) an be expressed as

(2.3) F ′′(s) =

r∑

j=1

kj∑

l=0

Hlj(s)F
(l+2)(aj) +

∫ b

a

GH,n−2(s, t)F
(n)(t)dt.

Using (2.2) and (2.3) we get (2.1). �

Using previous result and Theorem 5, here we give generalization of Jensen's inequality

for n-onvex funtion.

Theorem 7. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given points, let x =
(x1, ..., xm) be dereasing real m-tuple with xi ∈ [a, b], i = 1, . . . ,m, let w = (w1, ..., wm)
be positive m-tuple suh that wi ∈ R, i = 1, ...,m, Wm =

∑m

i=1 wi, x = 1
Wm

∑m

i=1 wixi

and Hlj be as de�ned in (1.9). Let F : [a, b] → R be n-onvex funtion. Consider the

inequality

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.4)

≥
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (2.4) holds.
(2) If kj is odd for every j = 2, . . . , r − 1 and kr is even, then the reverse inequality

in (2.4) holds.

If the inequality (reverse inequality) in (2.4) holds and the funtion

φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of

(2.4) will be non negative (non positive), that is the inequality (reverse inequality)

1

Wm

m∑

i=1

wiF (xi)− F (x) ≥ 0(2.5)
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holds.

Proof. For l = 1, ..., k, suh that xk ≥ x we get

l∑

i=1

wix ≤
l∑

i=1

wixi.

If l = k + 1, ...,m− 1, suh that xk+1 < x we have

l∑

i=1

wixi =

m∑

i=1

wixi −
m∑

i=l+1

wixi >

m∑

i=1

wix−
m∑

i=l+1

wix =

l∑

i=1

wix.

So,

l∑

i=1

wix ≤
l∑

i=1

wixi for all l = 1, . . . ,m− 1

and obviously

m∑

i=1

wix =

m∑

i=1

wixi.

Now, we put x = (x1, . . . , xm) and y = (x̄, . . . , x̄) in Theorem 5 to get inequalities (2.4)

and (2.5). �

Using (p, n− p) type onditions, we get the following orollary:

Corollary 1. Let [a, b] be the given interval, x = (x1, ..., xm) be dereasing real m-tuple

with xi ∈ [a, b], i = 1, . . . ,m, let w = (w1, ..., wm) be positive m-tuple suh that wi ∈ R,

i = 1, ...,m, Wm =
∑m

i=1 wi and x = 1
Wm

∑m
i=1 wixi. Let F : [a, b] → R be n-onvex

funtion. Consider the inequality

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.6)

≥
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

][
p−1
∑

l=0

F (l+2)(a)Hl1(s) +

n−p−1
∑

l=0

F (l+2)(b)Hl2(s)

]

ds,

where

Hl1(s) =
1

l!
(s− a)l

(
s− b

a− b

)n−p p−1−l
∑

k=0

(
n− p+ k − 1

k

)(
s− a

b− a

)k

and

Hl2(s) =
1

l!
(s− b)l

(
s− a

b− a

)p n−p−1−l
∑

k=0

(
p+ k − 1

k

)(
s− b

a− b

)k

.

(1) If n− p is even, then the inequality (2.6) holds.
(2) If n− p is odd, then the reverse inequality in (2.6) holds.

If the inequality (reverse inequality) in (2.6) holds and the funtion

φ(.) =
p−1∑

l=0

F (l+2)(a)Hl1(.)+
n−p−1∑

l=0

F (l+2)(b)Hl2(.) is non negative (non positive), then the

right hand side of (2.6) will be non negative (non positive), that is the inequality (reverse

inequality) (2.5) holds.

Using Two-point Taylor onditions, we get the following orollary:
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Corollary 2. Let [a, b] be the given interval, x = (x1, ..., xm) be dereasing real m-tuple

with xi ∈ [a, b], i = 1, . . . ,m, let w = (w1, ..., wm) be positive m-tuple suh that wi ∈ R,

i = 1, ...,m, Wm =
∑m

i=1 wi and x = 1
Wm

∑m

i=1 wixi. Let F : [a, b] → R be n-onvex

funtion. Consider the inequality

1

Wm

m∑

i=1

wiF (xi)− F (x)(2.7)

≥
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
p−1
∑

l=0

p−1−l
∑

k=0

(
p+ k − 1

k

)

·
[

(s− a)l

l!

(
s− b

a− b

)p(
s− a

b− a

)k

F (l+2)(a) +
(s− b)l

l!

(
s− a

b− a

)p(
s− b

a− b

)k

F (l+2)(b)

]

ds

(1) If p is even then the inequality (2.7) holds.
(2) If p is odd then the reverse inequality in (2.7) holds.

If the inequality (reverse inequality) in (2.7) holds and the funtion φ(s) =
p−1∑

l=0

p−1−l∑

k=0

(
p+k−1

k

)
[

(s−a)l

l!

(
s−b
a−b

)p (
s−a
b−a

)k

F (l+2)(a) + (s−b)l

l!

(
s−a
b−a

)p (
s−b
a−b

)k

F (l+2)(b)

]

is non

negative (non positive), then the right hand side of (2.7) will be non negative (non posi-

tive), that is the inequality (reverse inequality) (2.5) holds.

Using Simple Hermite or Osulatory onditions, we get the following orollary:

Corollary 3. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given points,

let x = (x1, ..., xm) be dereasing real m-tuple with xi ∈ [a, b], i = 1, . . . ,m, let w =
(w1, ..., wm) be positive m-tuple suh that wi ∈ R, i = 1, ...,m, Wm =

∑m
i=1 wi and

x = 1
Wm

∑m

i=1 wixi. Let F : [a, b] → R be (2r)-onvex funtion. Then we have

1

Wm

m∑

i=1

wiF (xi)− F (x)

≥
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

[F ′′(aj)H0j(s) + F ′′′(aj)H1j(s)] ds,

where

H0j(s) =
P 2
r (s)

(s− aj)2 [P ′
r(aj)]

2

(

1− P ′′
r (aj)

P ′
r(aj)

(s− aj)

)

H1j(s) =
P 2
r (s)

(s− aj) [P ′
r(aj)]

2 ,

and

Pr(s) =

r∏

j=1

(s− aj).

Proof. We put kj = 1 for j = 1, ..., r in Theorem 7. �

In the following remark we give the integral version of the Theorem 7.
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Remark 1. For the given points −∞ < α = a1 < a2 · · · < ar = β < ∞, r ≥ 2,
x : [a, b] → R ontinuous dereasing funtion, suh that x([a, b]) ⊆ [α, β], λ : [a, b] → R

inreasing, bounded funtion with λ(a) 6= λ(b) and x =
∫

b

a
x(t) dλ(t)
∫

b

a
dλ(t)

, for x(c) ≥ x, we have:

∫ c

a

x(t) dλ(t) ≥
∫ c

a

x(c) dλ(t) ≥
∫ c

a

x dλ(t), c ∈ [a, b] .

If x(c) < x we have

∫ c

a

x(t) dλ(t) =

∫ b

a

x(t) dλ(t) −
∫ b

c

x(t) dλ(t)

>

∫ b

a

x dλ(t)−
∫ b

c

x dλ(t) =

∫ c

a

x dλ(t), c ∈ [a, b] .

Equality

∫ b

a

x(t) dλ(t) =

∫ b

a

xdλ(t)

obviously holds, so majorization onditions (1.5) and (1.6) are satis�ed.
Consider the inequality:

∫ b

a
F (x(t)) dλ(t)
∫ b

a
dλ(t)

− F (x)(2.8)

≥
∫ β

α

[∫ b

a
G(x(t), s) dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds,

where Hlj is as de�ned in (1.9) and F : [α, β] → R is n-onvex funtion.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (2.8) holds.
(2) If kj is odd for every j = 2, . . . , r − 1 and kr is even, then the reverse inequality

in (2.8) holds.

If the inequality (reverse inequality) in (2.8) holds and the funtion

φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of

(2.8) will be non negative (non positive), that is the inequality (reverse inequality)

∫ b

a
F (x(t)) dλ(t)
∫ b

a
dλ(t)

− F (x) ≥ 0(2.9)

holds.

Remark 2. Motivated by the inequalities (2.4) and (2.8), we de�ne funtionals Θ1(F )
and Θ2(F ), by

Θ1(F ) =
1

Wm

m∑

i=1

wiF (xi)− F (x)

−
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds,
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Θ2(F ) =

∫ b

a
F (x(t)) dλ(t)
∫ b

a
dλ(t)

− F (x)

−
∫ β

α

[∫ b

a
G(x(t), s) dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds,

Similarly as in [3℄ we an onstrut new families of exponentially onvex funtion and

Cauhy type means by looking at these linear funtionals. The monotoniity property

of the generalized Cauhy means obtained via these funtionals an be proved by using

the properties of the linear funtionals assoiated with this error representation, suh as

n-exponential and logarithmi onvexity.

3. Generalization of Jensen Steffensen's inequality

Theorem 8. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given

points, let x = (x1, ..., xm) be dereasing real m-tuple with xi ∈ [a, b], i = 1, ...,m, let

w = (w1, ..., wm) be real m-tuple suh that 0 ≤ Wk ≤ Wm, k = 1, · · · ,m, Wm > 0, where

Wk =
∑k

i=1 wi, x = 1
Wm

∑m

i=1 wixi and Hlj be as de�ned in (1.9). Let F : [a, b] → R be

n-onvex funtion.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (2.4) holds.
(2) If kj is odd for every j = 2, . . . , r − 1 and kr is even, then the reverse inequality

in (2.4) holds.

If the inequality (reverse inequality) in (2.4) holds and the funtion

φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of

(2.4) will be non negative (non positive), that is the inequality (reverse inequality) (2.5)
holds.

Proof. For l = 1, ..., k, suh that xk ≥ x we have

l∑

i=1

wixi −Wlxl =

l−1∑

i=1

(xi − xi+1)Wi ≥ 0

and so we get

l∑

i=1

wix = Wlx ≤ Wlxl ≤
l∑

i=1

wixi.

For l = k + 1, ...,m− 1, suh that xk+1 < x we have

xl (Wm −Wl)−
m∑

i=l+1

wixi =

m∑

i=l+1

(xi−1 − xi)(Wm −Wi−1) ≥ 0

and now

m∑

i=l+1

wix = (Wm −Wl)x > (Wm −Wl)xl ≥
m∑

i=l+1

wixi.

So, similarly as in Theorem 7, we get that onditions (1.2) and (1.3) for majorization are

satis�ed, so inequalities (2.4) and (2.5) are valid. �
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Remark 3. For the given points −∞ < α = a1 < a2 · · · < ar = β < ∞, r ≥ 2, x :
[a, b] → R ontinuous, dereasing funtion, suh that x([a, b]) ⊆ [α, β] and λ : [a, b] → R

is either ontinuous or of bounded variation satisfying λ(a) ≤ λ(t) ≤ λ(b) for all t ∈ [a, b],

x =
∫

b

a
x(t) dλ(t)

∫
b

a
dλ(t)

and F : [α, β] → R n-onvex funtion, for x(c) ≥ x, we have:

∫ c

a

x(t)dλ(t) − x(c)

∫ c

a

dλ(t) = −
∫ c

a

x′(t)

(∫ t

a

dλ(x)

)

dt ≥ 0

and so

x

∫ c

a

dλ(t) ≤ x(c)

∫ c

a

dλ(t) ≤
∫ c

a

x(t)dλ(t).

If x(c) < x we have

x(c)

∫ b

c

dλ(t)−
∫ b

c

x(t)dλ(t) = −
∫ b

c

x′(t)

(
∫ b

t

dλ(x)

)

dt ≥ 0

and now

x

∫ b

c

dλ(t) > x(c)

∫ b

c

dλ(t) ≥
∫ b

c

x(t)dλ(t).

Similarly as in the Remark 1 we get that onditions for majorization are satis�ed, so

inequalities (2.8) and (2.9) are valid.

4. Generalization of onverse of Jensen's inequality

Theorem 9. Let −∞ < a = a1 < a2 · · · < ar = b < ∞, r ≥ 2 be the given points, let

x = (x1, ..., xp) be real p-tuple with xi ∈ [m,M ] ⊆ [a, b], i = 1, . . . , p, let w = (w1, ..., wp)
be positive p-tuple suh that wi ∈ R, i = 1, ..., p, Wp =

∑p

i=1 wi, x = 1
Wp

∑p

i=1 wixi and

Hlj be as de�ned in (1.9). Let F : [a, b] → R be n-onvex funtion. Consider the inequality

1

Wp

p
∑

i=1

wiF (xi) ≤
x−m

M −m
F (M) +

M − x

M −m
F (m)(4.1)

−
∫ b

a

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)− 1

Wp

p
∑

i=1

wiG(xi, s)

]

×
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds.

(1) If kj is odd for every j = 2, . . . , r, then the inequality (4.1) holds.
(2) If kj is odd for every j = 2, . . . , r − 1, and kr is even, then the reverse inequality

in (4.1) holds.

Moreover, if the inequality (reverse inequality) in (4.1) holds and the funtion φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of (4.1)

will be non positive (non negative), that is the inequality (reverse inequality)

1

Wp

p
∑

i=1

wiF (xi) ≤
x−m

M −m
F (M) +

M − x

M −m
F (m)(4.2)

holds.
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Proof. Using inequality (2.4) we have

1

Wp

p
∑

i=1

wiF (xi) =
1

Wp

p
∑

i=1

wiF

(
xi −m

M −m
M +

M − xi

M −m
m

)

≤ x−m

M −m
F (M) +

M − x

M −m
F (m)

−
∫ b

a

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)− 1

Wp

p
∑

i=1

wiG(xi, s)

]

×
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds.

For the inequality (4.2) we use the fat that for every onvex funtion ϕ we have

1

Wp

p
∑

i=1

wiϕ(xi) ≤
x−m

M −m
ϕ(M) +

M − x

M −m
ϕ(m).

�

Corollary 4. Let −∞ < m < a2 · · · < ar−1 < M < ∞, r ≥ 2 be the given points, let

x = (x1, ..., xp) be real p-tuple with xi ∈ [m,M ], i = 1, . . . , p, let w = (w1, ..., wp) be

positive p-tuple suh that wi ∈ R, i = 1, ..., p, Wp =
∑p

i=1 wi, x = 1
Wp

∑p

i=1 wixi and Hlj

be as de�ned in (1.9). Let F : [m,M ] → R be n-onvex funtion. Consider the inequality

1

Wp

p
∑

i=1

wiF (xi) ≤
x−m

M −m
F (M) +

M − x

M −m
F (m)

+

r∑

j=1

kj∑

l=0

F (l+2)(aj)
1

Wp

p
∑

i=1

wi

∫ M

m

G(xi, s)Hlj(s)ds.(4.3)

(1) If kj is odd for every j = 2, . . . , r, then the inequality (4.3) holds.
(2) If kj is odd for every j = 2, . . . , r − 1, and kr is even, then the reverse inequality

in (4.3) holds.

Proof. We use inequality (4.1) for m = a = a1 and M = b = ar. Therefore we get

G(m, s) = 0 and G(M, s) = 0 and so obtain inequality (4.3). �

Remark 4. For the given points −∞ < α = a1 < a2 · · · < ar = β < ∞, r ≥ 2,
x : [a, b] → R ontinuous funtion, suh that x([a, b]) ⊆ [m,M ] ⊆ [α, β] and λ : [a, b] → R

inreasing, bounded funtion with λ(a) 6= λ(b), x =
∫

b

a
x(t) dλ(t)
∫

b

a
dλ(t)

, Hlj as de�ned in (1.9)

and F : [α, β] → R n-onvex funtion, onsider the inequality

∫ b

a
F (x(t))dλ(t)
∫ b

a
dλ(t)

≤ x−m

M −m
F (M) +

M − x

M −m
F (m)(4.4)

−
∫ β

α

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)−

∫ b

a
G(x(t), s)dλ(t)
∫ b

a
dλ(t)

]
r∑

j=1

×
kj∑

l=0

F (l+2)(aj)Hlj(s)ds.
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(1) If kj is odd for every j = 2, . . . , r, then the inequality (4.4) holds.

(2) If kj is odd for every j = 2, . . . , r − 1, and kr is even, then the reverse inequality

in (4.4) holds.

Moreover, if the inequality (reverse inequality) in (4.4) holds and the funtion φ(.) =
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(.) is non negative (non positive), then the right hand side of (4.4)

will be non positive (non negative), that is the inequality (reverse inequality)

∫ b

a
F (x(t))dλ(t)
∫ b

a
dλ(t)

≤ x−m

M −m
F (M) +

M − x

M −m
F (m)

holds.

Remark 5. Motivated by the inequalities (4.1) and (4.4), we de�ne funtionals Θ3(F )
and Θ4(F ) by

Θ3(F ) =
1

Wp

p
∑

i=1

wiF (xi)−
x−m

M −m
F (M)− M − x

M −m
F (m)

+

∫ b

a

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)− 1

Wp

p
∑

i=1

wiG(xi, s)

]

×
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

and

Θ4(F ) =

∫ b

a
F (x(t))dλ(t)
∫ b

a
dλ(t)

− x−m

M −m
F (M)− M − x

M −m
F (m)

+

∫ β

α

[

x−m

M −m
G(M, s) +

M − x

M −m
G(m, s)−

∫ b

a
G(x(t), s)dλ(t)
∫ b

a
dλ(t)

]

×
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds.

Now, we an observe the same results whih are mentioned in Remark 2.

5. Bounds for identities related to generalization of majorization

inequality

For two Lebesgue integrable funtions f, h : [a, b] → R we onsider �eby²ev funtional

Ω(f, h) =
1

b− a

∫ b

a

f(t)h(t)dt− 1

b− a

∫ b

a

f(t)dt
1

b− a

∫ b

a

h(t)dt.(5.1)

In [6℄, the authors proved the following theorems:

Theorem 10. Let f : [a, b] → R be a Lebesgue integrable funtion and h : [a, b] → R

be an absolutely ontinuous funtion with (. − a)(b − .) [h′]
2 ∈ L [a, b] . Then we have the
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inequality

| Ω(f, h) |≤ 1√
2
[Ω(f, f)]

1

2
1√
b− a

(
∫ b

a

(x− a)(b− x) [h′(x)]
2
dx

) 1

2

.(5.2)

The onstant

1√
2
in (5.2) is the best possible.

Theorem 11. Assume that h : [a, b] → R is monotoni nondereasing on [a, b] and

f : [a, b] → R is absolutely ontinuous with f ′ ∈ L∞ [a, b] . Then we have the inequality

| Ω(f, h) |≤ 1

2(b− a)
‖ f ′ ‖∞

∫ b

a

(x− a)(b − x)dh(x).(5.3)

The onstant

1
2 in (5.3) is the best possible.

In the sequel we use the above theorems to obtain generalizations of the results proved

in the previous setions.

For m-tuples w = (w1, ..., wm), x = (x1, ..., xm) with xi ∈ [a, b], wi ∈ R, i = 1, ...,m,

Wm =
∑m

i=1 wi, x = 1
Wm

∑m

i=1 wixi and the Green's funtions G and GH,n−2 as de�ned

in (1.7) and (1.11), respetively, we denote

Υ(t) =

∫ b

a

[

1

Wm

m∑

i=1

wiG (xi, s)−G (x, s)

]

GH,n−2(s, t)ds, t ∈ [a, b].(5.4)

Similarly for x : [a, b] → [α, β] ontinuous funtion, λ : [a, b] → R as de�ned in Remark

1 or in Remark 3, the Green's funtions G and GH,n−2 as de�ned in (1.7) and (1.11),

respetively, and for all s ∈ [α, β] we denote

Υ̃(t) =

∫ β

α

[∫ b

a
G (x(p), s) dλ(p)
∫ b

a
dλ(p)

−G (x, s)

]

GH,n−2(s, t)ds, t ∈ [α, β].(5.5)

Theorem 12. Let −∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2 be the given

points, let F : [a, b] → R be suh that F ∈ Cn+1 [a, b] for n ∈ N and x = (x1, ..., xm),
w = (w1, ..., wm) be m-tuples suh that xi ∈ [a, b], wi ∈ R, i = 1, ...,m, Wm =

∑m
i=1 wi,

x = 1
Wm

∑m

i=1 wixi and let the funtions Hlj , l = 0, ..., kj, j = 1, ..., r, ω, G, Υ and

funtional Ω be de�ned in (1.9), (1.10), (1.7), (5.4) and (5.1), respetively. Then we have:

1

Wm

m∑

i=1

wiF (xi)− F (x)

=

∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

+
F (n−1)(b)− F (n−1)(a)

b− a

∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]

ω(s)

(n− 2)!
ds

+H1
n(F ; a, b)(5.6)

where the remainder H1
n(F ; a, b) satis�es the estimation

| H1
n(F ; a, b) |≤

√
b− a√
2

[Ω(Υ,Υ]
1

2

∣
∣
∣
∣
∣

∫ b

a

(t− a)(b− t)
[

F (n+1)(t)
]2

dt

∣
∣
∣
∣
∣

1

2

.(5.7)
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Proof. If we apply Theorem 10 for f → Υ and h → F (n)
we obtain

∣
∣
∣
∣
∣

1

b− a

∫ b

a

Υ(t)F (n)(t)dt− 1

b− a

∫ b

a

Υ(t)dt · 1

b− a

∫ b

a

F (n)(t)dt

∣
∣
∣
∣
∣

≤ 1√
2
[Ω(Υ,Υ)]

1

2
1√
b− a

∣
∣
∣
∣
∣

∫ b

a

(t− a)(b − t)
[

F (n+1)(t)
]2

dt

∣
∣
∣
∣
∣

1

2

.

Therefore we have

∫ b

a

Υ(t)F (n)(t)dt

=
F (n−1)(b)− F (n−1)(a)

b− a

∫ b

a

Υ(t)dt+H1
n(F ; a, b),

where the remainder H1
n(F ; a, b) satis�es the estimation (5.7). Now, from Lemma 1 we

obtain (5.6). �

Integral ase of the above theorem an be given:

Theorem 13. Let −∞ < α ≤ a1 < a2 · · · < ar ≤ β < ∞, r ≥ 2 be the given points,

let F : [α, β] → R be suh that F ∈ Cn+1 [α, β] for n ∈ N, let x : [a, b] → R ontinuous

funtions suh that x([a, b]) ⊆ [α, β], λ : [a, b] → R be as de�ned in Remark 1 or in

Remark 3, x =
∫

b

a
x(t) dλ(t)
∫

b

a
dλ(t)

and let the funtions Hlj , l = 0, ..., kj , j = 1, ..., r, ω, G, Υ̃

and funtional Ω be de�ned in (1.9), (1.10), (1.7), (5.5) and (5.1), respetively. Then we

have:

∫ b

a
F (x(t))dλ(t)
∫ b

a
dλ(t)

− F (x)

=

∫ β

α

[∫ b

a
G(x(t), s) dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

+
F (n−1)(β) − F (n−1)(α)

β − α

∫ β

α

[∫ b

a
G(x(t), s)dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]

ω(s)

(n− 2)!
ds

+H̃1
n(F ;α, β)(5.8)

where the remainder H̃1
n(F ;α, β) satis�es the estimation

| H̃1
n(F ;α, β) |≤

√
β − α√
2

[

Ω(Υ̃, Υ̃)
] 1

2

∣
∣
∣
∣
∣

∫ β

α

(s− α)(β − s)
[

F (n+1)(s)
]2

ds

∣
∣
∣
∣
∣

1

2

.

Using Theorem 11 we also get the following Grüss type inequality.

Theorem 14. Let −∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2 be the given points,

let F : [a, b] → R be suh that F ∈ Cn+1 [a, b] for n ∈ N, F (n+1) ≥ 0 on [a, b] and let

x = (x1, ..., xm), w = (w1, ..., wm) be m-tuples suh that xi ∈ [a, b], wi ∈ R, i = 1, ...,m,

Wm =
∑m

i=1 wi, x = 1
Wm

∑m
i=1 wixi and let the funtion Υ be de�ned in (5.4). Then we
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have the representation (5.6) and the remainder H1
n(F ; a, b) satis�es the bound

| H1
n(F ; a, b) |≤ ‖Υ′‖∞

2

{

(b − a)
[

F (n−1)(b) + F (n−1)(a)
]

−
[

F (n−2)(b)− F (n−2)(a)
]}

.

(5.9)

Proof. Applying Theorem 11 for f → Υ and h → F (n)
we obtain

∣
∣
∣
∣
∣

1

b− a

∫ b

a

Υ(t)F (n)(t)dt− 1

b− a

∫ b

a

Υ(t)dt · 1

b− a

∫ b

a

F (n)(t)dt

∣
∣
∣
∣
∣

≤ 1

2(b− a)
‖Υ′‖∞

∫ b

a

(t− a)(b− t)F (n+1)(t)dt.(5.10)

Sine

∫ b

a

(t− a)(b− t)F (n+1)(t)dt =

∫ b

a

[2t− (a+ b)]F (n)(t)dt

= (b− a)
[

F (n−1)(b) + F (n−1)(a)
]

− 2
[

F (n−2)(b)− F (n−2)(a)
]

,

using the identity (2.1) and (5.10) we dedue (5.9). �

Integral version of the above theorem an be given as:

Theorem 15. Let −∞ < α ≤ a1 < a2 · · · < ar ≤ β < ∞, r ≥ 2 be the given points,

let F : [α, β] → R be suh that F ∈ Cn+1 [α, β] for n ∈ N and F (n+1) ≥ 0 on [α, β] , let
x : [a, b] → R ontinuous funtions suh that x([a, b]) ⊆ [α, β], λ : [a, b] → R be as de�ned

in Remark 1 or in Remark 3, x =
∫

b

a
x(t) dλ(t)
∫

b

a
dλ(t)

and let the funtion Υ̃ be de�ned in (5.5).

Then we have the representation (5.8) and the remainder H̃1
n(F ;α, β) satis�es the bound

| H̃1
n(F ;α, β) |≤ ‖Υ′‖∞

2

{

(β − α)
[

F (n−1)(β) + F (n−1)(α)
]

−
[

F (n−2)(β)− F (n−2)(α)
]}

.

We also give the Ostrowsky type inequality related to the generalization of majorization

inequality.

Theorem 16. Let −∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞ r ≥ 2 be the given points,

let x = (x1, ..., xm) and w = (w1, ..., wm) be m-tuples suh that xi ∈ [a, b] , wi ∈ R,

i = 1, ...,m, Wm =
∑m

i=1 wi, x = 1
Wm

∑m
i=1 wixi. Let (p, q) be a pair of onjugate

exponents, that is 1 ≤ p, q ≤ ∞ and

1
p
+ 1

q
= 1 and let F ∈ Cn [a, b]. Also, let Hlj and Υ

be as de�ned in (1.9) and (5.4) respetively.
Then we have

∣
∣
∣
∣
∣

1

Wm

m∑

i=1

wiF (xi)− F (x)(5.11)

−
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

∣
∣
∣
∣
∣
∣

≤ ||F (n)||p||Υ||q.
The onstant on the right hand side of (5.11) is sharp for 1 < p ≤ ∞ and the best possible

for p = 1.
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Proof. Using the identity (2.1) and applying Hölder's inequality we obtain

∣
∣
∣
∣
∣

1

Wm

m∑

i=1

wiF (xi)− F (x)

−
∫ b

a

[

1

Wm

m∑

i=1

wiG(xi, s)−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ b

a

Υ(t)F (n)(t)dt

∣
∣
∣
∣
∣
≤ ||F (n)||p||Υ||q.

For the proof of the sharpness of the onstant ||Υ||q let us �nd a funtion F for whih

the equality in (5.11) is obtained.

For 1 < p < ∞ take F to be suh that

F (n)(t) = sgnΥ(t) |Υ(t)|
1

p−1 .

For p = ∞ take F (n)(t) = sgnΥ(t).
For p = 1 we prove that

(5.12)

∣
∣
∣
∣
∣

∫ b

a

Υ(t)F (n)(t)dt

∣
∣
∣
∣
∣
≤ max

t∈[a,b]
|Υ(t)|

(
∫ b

a

∣
∣
∣F

(n)(t)
∣
∣
∣ dt

)

is the best possible inequality. Suppose that |Υ(t)| attains its maximum at t0 ∈ [a, b].
First we assume that Υ(t0) > 0. For ε small enough we de�ne Fε(t) by

Fε(t) =







0, a ≤ t ≤ t0,
1

εn! (t− t0)
n, t0 ≤ t ≤ t0 + ε,

1
(n−1)!(t− t0)

n−1, t0 + ε ≤ t ≤ b.

Then for ε small enough

∣
∣
∣
∣
∣

∫ b

a

Υ(t)F (n)(t)dt

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

∫ t0+ε

t0

Υ(t)
1

ε
dt

∣
∣
∣
∣
=

1

ε

∫ t0+ε

t0

Υ(t)dt.

Now from the inequality (5.12) we have

1

ε

∫ t0+ε

t0

Υ(t)dt ≤ Υ(t0)

∫ t0+ε

t0

1

ε
dt = Υ(t0).

Sine

lim
ε→0

1

ε

∫ t0+ε

t0

Υ(t)dt = Υ(t0)

the statement follows. In the ase Υ(t0) < 0, we de�ne Fε(t) by

Fε(t) =







1
(n−1)!(t− t0 − ε)n−1, a ≤ t ≤ t0,

− 1
εn! (t− t0 − ε)n, t0 ≤ t ≤ t0 + ε,

0, t0 + ε ≤ t ≤ b,

and the rest of the proof is the same as above.

�

Integral version of the above theorem an be stated as:
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Theorem 17. Let −∞ < α ≤ a1 < a2 · · · < ar ≤ β < ∞, r ≥ 2 be the given points,

let x : [a, b] → R ontinuous funtions suh that x([a, b]) ⊆ [α, β], λ : [a, b] → R be as

de�ned in Remark 1 or in Remark 3 and x =
∫

b

a
x(t) dλ(t)

∫
b

a
dλ(t)

. Let (p, q) be a pair of onjugate

exponents, that is 1 ≤ p, q ≤ ∞ and

1
p
+ 1

q
= 1. Let F ∈ Cn [α, β] and let the Hlj and Υ̃

be de�ned in (1.9) and (5.5).
Then we have

∣
∣
∣
∣
∣

∫ b

a
F (x(t)) dλ(t)
∫ b

a
dλ(t)

− F (x)(5.13)

−
∫ β

α

[∫ b

a
G(x(t), s) dλ(t)
∫ b

a
dλ(t)

−G(x, s)

]
r∑

j=1

kj∑

l=0

F (l+2)(aj)Hlj(s)ds

∣
∣
∣
∣
∣
∣

≤ ||F (n)||p||Υ̃||q.
The onstant on the right hand side of (5.13) is sharp for 1 < p ≤ ∞ and the best possible

for p = 1.
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