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GENERALIZATION OF JENSEN’S AND JENSEN-STEFFENSEN’S
INEQUALITIES AND THEIR CONVERSES BY HERMITE’S
POLYNOMIAL AND MAJORIZATION THEOREM

G. ARAS-GAZIC, J. PECARIC AND A. VUKELIC!

ABsTrRACT. In this paper, using majorization theorems and Hermite’s interpolating
polynomials we obtain results concerning Jensen’s and Jensen-Steffensen’s inequalities
and their converses in both the integral and the discrete case. We give bounds for
identities related to these inequalities by using C‘ebyéev functionals. We also give
Griiss type inequalities and Ostrowsky type inequalities for these functionals.

1. INTRODUCTION

Majorization makes precise the vague notion that the components of a vector x are
"less spread out" or "more nearly equal" than the components of a vector y. For fixed
m > 2 let

X = (21, sZm), ¥ = Y1,y Ym)
denote two m-tuples. Let

Y

T[] 2 T[] 2 - 2 Tlm)s Y] 2 Y] = - 2 Yim)s

Ty S T2) S - S T(m)s Y1) SY@) S - = Yim)
be their ordered components.
Majorization: (see [14, p. 319]) x is said to majorize y (or y is said to be majorized by
x), in symbol, x >y, if

1 l
(L.1) Do <)
i=1 i=1
holds for [ =1,2,...,m — 1 and

Z L) = Z Y-
i=1 i=1
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Note that (1.1) is equivalent to

m m
Y. v < D
i=m—I1+1 i=m—Il+1
holds for [ =1,2,...,m — 1.
There are several equivalent characterizations of the majorization relation x > y in addi-
tion to the conditions given in the definition of majorization. One is actually the answer
of the question posed and answered in 1929 by Hardy, Littlewood and Polya in [8] and

[9]: x majorizes y if

m m

S P <Y F @)

i=1 i=1
for every continuous convex function F. Another interesting characterization of x > y,
also by Hardy, Littlewood and Polya in [8] and [9], is that y = Px for some double sto-
chastic matrix P. In fact, the previous characterization implies that the set of vectors x
that satisfy x > y is the convex hull spanned by the n! points formed from the permuta-
tions of the elements of x.
The following theorem is well-known as the majorization theorem and a convenient ref-
erence for its proof is given by Marshall and Olkin in [12, p. 14] (see also [14, p. 320]):

Theorem 1. Let x = (x1,...,Zm), ¥ = (Y1,.--,Ym) be two m-tuples such that x;,y; €
[a,b], i=1,....,m. Then

m

i=1 i=1
holds for every continuous convex function F : [a,b] — R iff x =y holds.

The following theorem can be regarded as a generalization of Theorem 1 known as
Weighted Majorization Theorem and is proved by Fuchs in [7] (see also [12, p. 580] and
[14, p. 323]).

Theorem 2. Let x = (1, ..., &m), ¥ = (Y1, .-, Ym) be two decreasing real m-tuples with
i, y; € [a,b], i =1,...,m, let w = (w1, ...,wn,) be a real m-tuple such that

! !
(1.2) Zwiyi§2wizi, forl=1,...,m-1
i=1 i=1
and
(1.3) sz‘yi = sz‘%i-
i=1 i=1

Then for every continuous convex function F : [a,b] = R, we have
(1.4) > wiF (yi) <Y wiF ().
i=1 i=1

The following integral version of Theorem 2 is a simple consequence of Theorem 12.14.
in [13] (see also [14, p. 328]).

Theorem 3. Let x,y : [a,b] — [, 3] be decreasing and w : [a,b] — R be continuous
functions. If

(1.5) /V w(t)y(t)dt < /V w(t)z(t)dt, v € |a,b
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and

b b
(1.6) / w(t)y(t)dt = / w(t)e(t)dt

hold, then for every continuous convex function F : [«, ] — R, we have

b b
/w(t)F(y(t))dtg/ w(t)F (2(t)) dt.

Consider the Greens’s function G defined on [a,b] X [a, b] by

U=hlza) g <s<t
(17) G(tv S) = { (sfll)n)i((tlfa), ¢ <_S <_b,
b—a, ) - =7
The function G is convex in s, it is symetric, so it is also convex in ¢. The function G
is continuous in s and continuous in t.
For any function F : [a,b] — R, F € C?[a,b], we can easily show by integrating by
parts that the following is valid

b—t t—a b .
= P R () + () +/a G(t, 5)F" (s)ds,

where the function G is defined as above in (1.7).

We follow here notations and terminology about Hermite interpolating polynomial
from [2, p. 62]:

Let —co<a<b<ooanda<aj <ag..<a.<b,r>2be given. For F € C"[a,b] a
unique polynomial Py (t) of degree (n—1), exists, fulfilling one of the following conditions:

Hermite conditions:

(1.8) F(t)

PP(a;) = FD(a;); 0<i<ky, 1<j<r Y kj+r=n,
j=1

in particular:
Simple Hermite or Osculatory conditions:
(n=2m, r=m, k; =1 for all j)

Po(aj) = F(a;), Pp(a;) = F'(a;), 1<j<m,
Lagrange conditions: (r = n, k; = 0 for all j)
Pr(a;) = Faz), 1<j<m,
Type (m,n —m) conditions: (r=2,1<m<n—-1,ki=m—1,ka=n—m-—1)
Pil(a)=FP(a), 0<i<m—1,
P@(b)=FD(b), 0<i<n-—m-—1,
Two-point Taylor conditions: (n =2m,r =2,k = ko =m — 1)
P (a) = FO(a), PE(b) =FD ), 0<i<m—1.
Theorem 4. Let F' € C"[a,b], and let Py be its Hermite interpolating polynomial. Then
F(t) =Py (t) +en(t)
ro Kk b
= Z Z Hi; () FD(a;) + / Grn(t,s)F™ (s)ds,

j=1 =0
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where H;; are fundamental polynomials of the Hermite basis defined by

1 w(t) kj—i 1 (t_aj)kj—i-l (k)
(1.9) Hia®) = 5y o 2 iyt { w(t) ]_ (#=a)
where
(1.10) w(t) = T~ a1,

and G, is the Green’s function defined by

l kj (u,j—s)"f"'*l H <
D i=1 22iz0 (n—i—1)! ij(t), s<t
r ki (aj—s)" 771
- Zj:lJrl Zi:o ( (Jnﬂ)‘71)! Hi; t), s >t,

forall a; < s <ajy1, 1 =0,...;r with ag = a and a1 =b.

(1.11) Grnlt,s) = {

The following Lemma describes the positivity of Green’s function (1.11) (see [5] and
[11]).
Lemma 1. The Green’s function G (t,s) has the following properties:

(1) €29 5 0, 0y <t <ap, a1 <5 < ar;

(2) GH,’n,(t, S) S WMk{)(t”y
(3) [) Gn(t,s)ds = 2D

In order to recall the definition of n-convex function, first we write the definition of
divided difference.

Definition 1. Let f be a real-valued function defined on the segment [a,b]. The divided
difference of order n of the function f at distinct points xg,...,x, € la,b], is defined
recursively (see [4], [14]) by

and
f[CEo,.-.,SCn] _ f[zlv"'v'rn] 7f[$0,...,1'n,1].
Tp — X0
The value flxg,...,xy] is independent of the order of the points g, ..., Ty,

The definition may be extended to include the case that some (or all) of the points coincide.
Assuming that fU— (z) exists, we define

B fU=D(x)
f[SC,...,SC] = W
j—times

The notion of n-convexity goes back to Popoviciu [15]. We follow the definition given
by Karlin [10]:

Definition 2. A function f : [a,b] — R is said to be n-convex on [a,b], n > 0, if for all
choices of (n+ 1) distinct points in [a,b], n-th order divided difference of f satisfies

f[x()a 51'71] > 0.
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In fact, Popoviciu proved that each continuous n-convex function on [0, 1] is the uniform
limit of the sequence of corresponding Bernstein’s polynomials (see for example [14, p.
293]). Also, Bernstein’s polynomials of continuous n-convex function are also n-convex
functions. Therefore, when stating our results for a continuous n-convex function f,
without any loss in generality we assume that f(") exists and is continuous.

In [1] the authors proved the following Fuch’s majorization theorems for n-convex
function:

Theorem 5. Let —co < a =a1 < az--- < a, = b < 00, r > 2 be the given points,
X = (21, Tm) and y = (Y1, ..., ym) be decreasing m-tuples and w = (w1, ..., w,) be any
m-tuple with z;,y; € [a,b], w; € R, i = 1,...,m which satisfy (1.2) and (1.3). Let H;; be
as defined in (1.9) and F : [a,b] — R be n-convez, then

(1.12) ZwiF(éﬂi) = ZwiF(yi)
r kj

/[sz (w0, t) = Glya, )| D> FU(ay) Hyy (t)dt.

Jj=11=0

(1) If k; is odd for every j =2,...,r, then the inequality (1.12) holds.
(2) If k; is odd for every j =2,...,7 — 1 and k, is even, then the reverse inequality
n (1.12) holds.

If the inequality (reverse inequality) in (1.12) holds and the function

r kj
() =3 FU+2(a;)Hyj(.) is non negative (non positive), then the right hand side of
j=1i=0
(1.12) will be non negative (non positive), that is the inequality (reverse inequality) in
(1.4) will hold.

In [3] using Hermite’s interpolating polynomials and conditions on Green’s functions,
the authors present results for Jensen’s inequality and converse of Jensen’s inequality
for signed measure. In this paper we give generalized results of Jensen’s and Jensen-
Steffensen’s inequalities and their converses by using majorization theorem and Hermite’s
polynomial for n-convex functions. Then we give bounds for identities related to these
inequalities by using Cebyéev functionals. We give Griiss type inequalities and Ostrowsky
type inequalities for these functionals.

2. GENERALIZATION OF JENSEN’S INEQUALITY

Theorem 6. Let —0co < a < a1 < az-+ < a, < b < 00, r > 2 be the given points,
let x = (21,...,Zm) and w = (w1, ...,wy) be m-tuples such that x; € [a,b], w; € R,
i=1,...,m, Wy =3 " w, T= WLZZ?; w;z; and F € C"[a,b]. Also let Hij, Gun,
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and G be as defined in (1.9), (1.11) and (1.7) respectively. Then

(21) e Yo wiF (@) - F(@)
' L - w;G(x;, s F(l+2) s)ds

W > wiGlwi, s) — Hy;(s)
a moi=1 7j=11=0

//l sz (z5,5) — G (T, 5)

Proof. Consider 77— > w;F(z;) — F(Z). Using (1.8), we have
™ i=1

T k]

Grn_o(s,t)F™ (1) dtds.

(2.2) WimzwiF(wi) ~ F(2)

/ l sz (5,8) — G (T, s)

By Theorem 4, F"(s) can be expressed as

(23) P = 33 / Gitna (s, )F ™) (D)t

7=11=0
Using (2.2) and (2.3) we get (2.1). O

F"(s)ds.

Using previous result and Theorem 5, here we give generalization of Jensen’s inequality
for n-convex function.

Theorem 7. Let —co <a=a; < ag- - <a, =b< oo, r>2 be the given points, let x =
(1, .oy ) be decreasing real m-tuple with x; € [a,b], i =1,...,m, let w = (w1, ..., W)
be positive m-tuple such that w; € R, i = 1,...,m, Wy, = > w;, T = WLM Yo wim
and Hy; be as defined in (1.9). Let F : [a,b] — R be n-convexr function. Consider the

inequality

(24) e Y wiF (@) - F(a)
b m ok
/ lWLZwiG(xi’S) - G(z,s) ZZF +2)(q Hij(s)ds.
a moi=1 j=11=0

(1) If k; is odd for every j =2,...,r, then the inequality (2.4) holds.
(2) If k; is odd for every j =2,...,7 — 1 and k, is even, then the reverse inequality
n (2.4) holds.

If the inequality (reverse inequality) in (2.4) holds and the function
r kj
() =3 3 FUH2(a;)Hyj(.) is non negative (non positive), then the right hand side of

j=11=0
(2.4) will be non negative (non positive), that is the inequality (reverse inequality)

(2.5) Wim > wil (@)~ F@) 20
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holds.
Proof. For Il =1, ..., k, such that z; > T we get

l l
=1 =1

Ifl=k+1,..,m—1, such that ;41 <T we have

l m
g wixizg W;T; — g wle>2 wW;T — g wzx—g W; T
=1 1=1

i=Il+1 i=Il+1

So,
1

l
ZwﬁSZwixi foralll=1,...,m—1
i=1

and obviously
m m
E wif = E W;Tj.
i=1 i=

Now, we put x = (z1,...,Zm,) and y = (Z,...,Z) in Theorem 5 to get inequalities (2.4)
and (2.5). O

Using (p,n — p) type conditions, we get the following corollary:

Corollary 1. Let [a,b] be the given interval, x = (x1,...,Tm) be decreasing real m-tuple

with x; € [a,b], i =1,...,m, let w = (w1, ..., wy,) be positive m-tuple such that w; € R,
i=1,.,m Wy = 3" w; and T = 55— > wiz;. Let F : [a,b] — R be n-convex

function. Consider the inequality

(2.6) Wim Z w; F(z;) — F(T)

b 1 m
— Z w;G(z;,s) —
/" [Wm i=1

n 1

ZF“” )Hin(s) + zpj

F l”) ng(s)l ds,

1=0
where
R T C= S S (s T E= )
A T k b—a
k=0
and
1 —a\Pml! p+k—1 s—b\"
H = —b
oo (2 8 () (2)

(1) If n —p is even, then the inequality (2.6) holds.
(2) If n —p is odd, then the reverse inequality in (2.6) holds.

If the inequality (reverse inequality) in (2.6) holds and the function
() = Z FU+2) (a)Hyy (. )Jr Z F(l”)(b)ng( ) is non negative (non positive), then the

right hand side of (2.6) will be non negative (non positive), that is the inequality (reverse
inequality) (2.5) holds.

Using Two-point Taylor conditions, we get the following corollary:
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Corollary 2. Let [a,b] be the given interval, x = (x1,...,m) be decreasing real m-tuple
with x; € [a,b], i =1,...,m, let w = (w1, ..., wn,) be positive m-tuple such that w; € R,
i=1m, Wy = 30w and T = = 30" wiai. Let F 2 [a,b] — R be n-convex
function. Consider the inequality

C1) o Y wFE) - F@)

m .
7=

- [ lwim iwicm,s) -~ G(@s)
l(s ;!a)l <Z_Z)p (Z_Z)kF(Hz)(a)Jr (S;!b)l <Z_Z>p (Z_Z)kF(lH)(b)] ds

(1) If p is even then the inequality (2.7) holds.
(2) If p is odd then the reverse inequality in (2.7) holds.

If the inequality (reverse inequality) in (2.7) holds and the function ¢(s) =

p—1p—1-I p k p k
lzo ,;_:O (p+:—1) [(s“aﬂ (Z:Z) (ﬁ) F(lJrz)(a)Jr (s;!b)l (ﬁ) (Z;_i) F(l+2)(b)} is non
negative (non positive), then the right hand side of (2.7) will be non negative (non posi-

tive), that is the inequality (reverse inequality) (2.5) holds.

Using Simple Hermite or Osculatory conditions, we get the following corollary:

Corollary 3. Let —co < a=a1 < az--- < ar, = b < o0, 7 > 2 be the given points,
let x = (x1,...,xm) be decreasing real m-tuple with x; € [a,b], i = 1,...,m, let w =
(W1, ... wy,) be positive m-tuple such that w; € R, i = 1,..,m, W,,, = > 1" w,; and
T = WLM Yo wixi. Let F: [a,b] — R be (2r)-convez function. Then we have

WL > wiF(z;) — F(T)
moi—1
b 1 - - 1"
> /a [W—mz_zlsz(xu Jz:; (aj)Hoj(s) + F"'(a;)Hi;(s)] d
where
gm P (B )
o) R ' Py )
(o) — P2 (s)
= e P
and
Po(s) = [(s - a5)
j=1
Proof. We put k; =1 for j =1,...,r in Theorem 7. O

In the following remark we give the integral version of the Theorem 7.
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Remark 1. For the given points —oco < a@ = a1 < as-+- < a, = f < 00, 7 > 2
x : [a,b] = R continuous decreasing function, such that z([a b)) C [, B, A : [a,b] —

f z(t) dA(t)
Wa rz(c) >

/::c(t)d)\(t)Z/:x(c)d)\(t) z/acmu(t), celab].

If z(c) < T we have

increasing, bounded function with A(a) # A(b) and T = T, we have:

/::z:(t) dA(t) = /abx(t) A(t) — /Cb:z:(t) dA(t)
> /abfd)\(t)—/cbfd)\(t):/acfd)\(t), celal.

[~ [ o0

obviously holds, so majorization conditions (1.5) and (1.6) are satisfied.
Consider the inequality:

Equality

[ F (@(t) A

N d)\(t)
> / ’

J; Gla(t). ) dN(t)
where Hj; is as defined in (1.9) and F : [a, 5] — R is n-convex function.

J7 dA(t)
(1) If k; is odd for every j = 2,...,r, then the inequality (2.8) holds.
(2) If k; is odd for every j = 2,...,r — 1 and k, is even, then the reverse inequality
n (2.8) holds.

If the inequality (reverse inequality) in (2.8) holds and the function

(2.8)

- F(7)

s k]
FU2) (a;)Hyj(s)ds,
j=11=0

r  kj
) = FU+2)(q;)H;:(.) is non negative (non positive), then the right hand side of
G )L
j=11=0
2.8) will be non negative (non positive), that is the inequality (reverse inequality
g

JUF (2(t) dA(1)

(2.9) f; D

—F@) >0

holds.
Remark 2. Motivated by the inequalities (2.4) and (2.8), we define functionals ©1(F)
and O4(F), by

1 m

r kj

/l sz (2i,5) — G(T, 5) FUF2) ;) Hj(s)ds,

j=11=0
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b
o)~ B EED DO

JTaA)
K
[

G(x(t),s)d\(t r
fa > (), ) () G(T,s) Z FHQ) (a;)Hij;(s)ds,
fa dA(t) j=11=0
Similarly as in [3] we can construct new families of exponentially convex function and
Cauchy type means by looking at these linear functionals. The monotonicity property
of the generalized Cauchy means obtained via these functionals can be proved by using
the properties of the linear functionals associated with this error representation, such as
n-exponential and logarithmic convexity.

3. GENERALIZATION OF JENSEN STEFFENSEN’S INEQUALITY

Theorem 8. Let —oc0 < a = a1 < az--- < a, = b < oo, r > 2 be the given
points, let x = (x1,...,Zm) be decreasing real m-tuple with x; € [a,b], i = 1,...,m, let
w = (w1, ..., wy,) be real m-tuple such that 0 < Wy, < W,,,, k=1,---,m, W,, > 0, where
Wy = Zle w;, T = WLm St wiz; and Hy; be as defined in (1.9). Let F : [a,b] — R be
n-convex function.

(1) If k; is odd for every j =2,...,r, then the inequality (2.4) holds.
(2) If k; is odd for every j =2,...,7 — 1 and k, is even, then the reverse inequality
n (2.4) holds.

If the inequality (reverse inequality) in (2.4) holds and the function

o(.) Z Z FU+2)(a;)H;(.) is non negative (non positive), then the right hand side of
j=11=0

(2.4) will be non negative (non positive), that is the inequality (reverse inequality) (2.5)
holds.

Proof. For l =1, ..., k, such that z; > T we have
-1

Zwm Wiz = (@ — 2ig))W; >0
i=1

and so we get
l l

Zwif =Wz <Wyzx; < Zwixi.
i=1 i=1
Forl=Fk+1,...,m —1, such that z+1 < T we have

xg (W, — W) — Z wx; = Z (wiz1 — @)Wy — WiZ1) >0
=141 =41

and now
Z W =Wy —=W)T > (W, — W) 2y > Z Wi Ty
i=l+1 i=l4+1

So, similarly as in Theorem 7, we get that conditions (1.2) and (1.3) for majorization are
satisfied, so inequalities (2.4) and (2.5) are valid. O
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Remark 3. For the given points —co < aa = a1 < az--- < a, = <00, > 2, T :
[a,b] — R continuous, decreasing function, such that :c([a b)) C [a gl and A : [a,b] —» R
is either continuous or of bounded variation satisfying A(a) < A(t) < A(b) for all ¢ € [a, b],
[P z(t) dA(t) >

T we have:

and F' : [a, 8] = R n-convex function, for z(c)

/a "2 (har(t) — (c) / O = — / 0 ( / t d)\(x)) dt >0
f/acd/\(t) < 2(c) / dA(t) < /acz(t)d/\(t).
If 2(c) < T we have
x(c) /Cb d\(t) — /Cb:c(t)d)\(t) = /Cb 2’ (t) (/tb dA(:c)> dt >0
7 / ") > (o) / ") > / " (N,

Similarly as in the Remark 1 we get that conditions for majorization are satisfied, so
inequalities (2.8) and (2.9) are valid.

T =

and so

and now

4. GENERALIZATION OF CONVERSE OF JENSEN’S INEQUALITY

Theorem 9. Let —co < a=a; < as--- < a, =b< oo, r>2 be the given points, let
x = (21, ...,xp) be real p-tuple with x; € [m, M] C [a,b], i=1,...,p, let w = (w1, ..., wp)
be positive p-tuple such that w; € R, i=1,...,p, W, =38 w;, T = W P wix; and
H;; be as defined in (1.9). Let F : [a,b] — R be n-convex function. Consider the inequality

M-z
. —_— <
(4.1) sz ;) _M mF(M)—i—MimF(m)
b [ = P
T—m M 1
_ /a[MmG(M,s)—i—Mm (m,s)—@;wiG(%,s)
XZZF(Z+2 l()d
j=11=0

(1) If k; is odd for every j =2,...,r, then the inequality (4.1) holds.
(2) If k; is odd for every j =2,...,r — 1, and k, is even, then the reverse inequality
n (4.1) holds.
Moreover, if the inequality (reverse inequality) in (4.1) holds and the function ¢(.) =
r kj
S50 FUH2)(a;)Hy;(.) is mon negative (non positive), then the right hand side of (4.1)
j=11i=0
will be non positive (non negative), that is the inequality (reverse inequality)

M-z

F(m)

(4.2) Wi Z w; F(x;) < Zi”;F(M) +

holds.



202 G. ARAS-GAZIC, J. PECARIC AND A. VUKELIC

Proof. Using inequality (2.4) we have

1 i Fla:) 1 i I xi—mM+M—:Ei
—_— w; X)) = — w; m
Wy =~ Wy &= M—m M—m

T—m M-z
<
< T R(M) 4 1 F(m)
b [ = — P
T—m M-—7 1
- /a M—mG(M’S)+M—mG(m’S>Wp;wiG(xi’s)]
r  kj
X FU2) (a;)Hyj(s)ds.

1
For the inequality (4.2) we use the fact that for every convex function ¢ we have

T—m M—=

1 p
§ . -) < M —+ m).
Wp P wi@(xl) - M mw( ) M mw( )

O

Corollary 4. Let —co <m < ag -+ < ar—1 < M < o0, r > 2 be the given points, let
x = (@1, ...,xp) be real p-tuple with z; € [m,M], i = 1,...,p, let w = (w1,...,w,) be

positive p-tuple such that w; € R, i=1,...p, W, =30 w;, T= 5~ >.0_, wiz; and Hy;
be as defined in (1.9). Let F : [m, M] = R be n-convez function. Consider the inequality
1 & T-m M-z
— iFr;) < F(M F
() < ) P
r kK 1 & M
142
(4.3) + ; ;F( + )(aj)Wp 2 w; /m G(x;, s)Hy;(s)ds.

(1) If k; is odd for every j =2,...,r, then the inequality (4.3) holds.
(2) If k; is odd for every j =2,...,r — 1, and k, is even, then the reverse inequality
n (4.3) holds.

Proof. We use inequality (4.1) for m = a = a1 and M = b = a,. Therefore we get
G(m,s) =0 and G(M, s) = 0 and so obtain inequality (4.3). O

Remark 4. For the given points —o0 < a@ = a1 < a2+ < a, = 8 < 00, 7 > 2,

z : [a,b] = R continuous function, such that x([a,b]) C [m, M] C [a, f] and A : [a,b] = R
b

increasing, bounded function with A(a) # A(b), T = W, H;; as defined in (1.9)

and F : [a, 8] — R n-convex function, consider the inequaality

[P F(a(t)dAt)  T—m M-7%
(4.4) 0 < s (M) + = F(m)
flz—m M-% [P G(x(t), s)d(t) | &
a /a lM - mG(M’ 5+ mG(m, 8= fab dA(t) =

kj
X Z FU2) (a;)Hyj(s)ds.
1=0
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(1) If k; is odd for every j = 2,...,r, then the inequality (4.4) holds.

(2) If k; is odd for every j = 2,...,r — 1, and k, is even, then the reverse inequality
n (4.4) holds.

Moreover, if the inequality (reverse inequality) in (4.4) holds and the function ¢(.) =

r kj
S5 FU+2)(a;)Hy;(.) is non negative (non positive), then the right hand side of (4.4)
j=11=0

will be non positive (non negative), that is the inequality (reverse inequality)
[PFP@@)ant)  T-m M-7%
f: dA(2) M —-m M —m

F(m)
holds.

Remark 5. Motivated by the inequalities (4.1) and (4.4), we define functionals ©3(F’)
and O4(F) by

p

1 T—m M-z
= > wF(z;) - F(M) - F
W, 2 ) = g FOD = g Flm)
b — —
T—m M — x
+ /a M—mG(M’S)+M G(m,s ——E w; G (x4, 8

r o kj
x> S P (a;)Hyi(s)ds
=0

j=

and
CPF@@)dAt)  m-m Y
O4(F) = P -1 mF(M)_MimF(m)
z T b
! /ﬂ wa__n;G(M,sH ]]\\j__;G(m, ) — Ja G;”b(;);\;)d/\(t)

r kj
<Y N F(a;) Hyj(s)ds.

j=11=0

Now, we can observe the same results which are mentioned in Remark 2.

5. BOUNDS FOR IDENTITIES RELATED TO GENERALIZATION OF MAJORIZATION
INEQUALITY

For two Lebesgue integrable functions f, h : [a,b] — R we consider éebyéev functional

(5.1) f, /f dt——/ £t dt— h(t)dt.

In [6], the authors proved the following theorems:

Theorem 10. Let f : [a,b] — R be a Lebesque integrable function and h : [a,b] — R
be an absolutely continuous function with (. — a)(b—.)[I/]* € L|a,b]. Then we have the
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inequality

1
2

1 b 2
(52)  19(f0) |< == [QF ) —— (/ (= a)(b—x) [ ()] drc)

7 vVb—a
The constant % n (5.2) is the best possible.

Theorem 11. Assume that h : [a,b] — R is monotonic nondecreasing on [a,b] and
f:[a,b] = R is absolutely continuous with f' € Lo [a,b]. Then we have the inequality

b
(5.3) | Qf;h) [< 2( ) If ||oo/ (x —a)(b - x)dh(z).
The constant % in (5.3) is the best possible.

In the sequel we use the above theorems to obtain generalizations of the results proved
in the previous sections.

For m-tuples w = (wyq, ..., W), X = (21, ..., Ty ) With x; € [a,b], w; € R, i =1,...,m,
Wi =300 wi, T = 50— > v, w;x; and the Green’s functions G and G2 as defined
n (1.7) and (1.11), respectively, we denote

(5.4) T(@) = /[ mel (i,8) — G (T, 5)

Similarly for z : [a,b] — [a, ] continuous function, A : [a,b] — R as defined in Remark
1 or in Remark 3, the Green’s functions G and G ,—2 as defined in (1.7) and (1.11),
respectively, and for all s € [a, 8] we denote

- B b x s
(5.5) T(t) = / faG} b(z;k(p))dA(p)

Theorem 12. Let —0 < a < a1 < az--+ < ar < b < o0, r > 2 be the given
points, let F : [a,b] — R be such that F € C""1[a,b] for n € N and x = (z1,...,7m),
w = (w1, ..., wn) be m-tuples such that z; € [a,b], w; € R, i=1,..m, Wy, = > 1" w;,
T = ﬁzyil wiz; and let the functions Hy;, | = 0,..,k;, 7 =1,...,r, w, G, T and
functional Q be defined in (1.9), (1.10), (1.7), (5.4) and (5.1), respectively. Then we have:

GHn—2(s,t)ds, t € [a,b].

-G (T, )| Gun—2(s,t)ds, t € [, ]

1 & _
e ; w;F(z;) — F(T)
b 1 m r kj
[ | St~ 6| 23 r
a m j=11=0

(n—1) (n—1)
+F (bl))iaF ()/ [ sz T, 8) — (:C’S)

(5.6) +H}(F;a,b)
where the remainder H}(F;a,b) satisfies the estimation

Vb —
V2

N
N[

b 2
(5.7) | Hi(F5a,0) |< =207, 1) / (t—a)b—t) [P (8] at
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Proof. If we apply Theorem 10 for f — Y and h — F(") we obtain

L (n) L L
YT F"™ (t)dt — —— T(t)dt - —— F (t)dt
= | ToF 0 - [xta = [ Fow
1
Laer s -2 ’ b Fn+D) 2d2
< D)) ——— | [ (t—a)b—t) [FOO )] at
< Sl o—| [ t-ae-y [Fo00)
Therefore we have
b
/ T () F™ (t)dt
F(n—l) _ F(n—l) b
_ (bl)) (a) / Y(t)dt + H(F;a,b),
— ’

where the remainder H}!(F;a,b) satisfies the estimation (5.7). Now, from Lemma 1 we
obtain (5.6). O

Integral case of the above theorem can be given:

Theorem 13. Let —co < a < a; < as--- < ar < B < oo, v > 2 be the given points,
let F : [a, ] — R be such that F € C""[a, B8] for n € N, let z : [a,b] — R continuous
functions such that x([a,b]) C [o, 8], A : [a,b] — R be as defined in Remark 1 or in

b ~
% and let the functions Hyj;, 1 =0,....k;, j=1,...,r,w, G, T
and functional Q0 be defined in (1.9), (1.10), (1.7), (5.5) and (5.1), respectively. Then we
have:

Remark 3, T =

b
Ja F(bw(t))dk(t) @)
I, dX(t)
I el CIORO Y210 NN R R
a /a fab dA(t) ~ o) j=1 l:OF (s
FO=0(8) — Fe=(a) 5[ [7G(a(t), s)dA(t) N IR0
- B—a /a R0 @) G
(5.8) +H)(F; o, B)

where the remainder ﬁ%(F; a, B) satisfies the estimation

NI

| H:(F;a,B) |< /j(s —a)(B—s) [F(nﬂ)(s)r ds

Using Theorem 11 we also get the following Griiss type inequality.

Theorem 14. Let —co < a < a1 < az - < ar < b < 00, r> 2 be the given points,
let F : [a,b] — R be such that F € C"*1[a,b] forn € N, F"*Y) > 0 on [a,b] and let
X = (X1, 00, T )y W = (W1, ..., W) be m-tuples such that x; € [a,b], w; € R, i=1,...,m,
Wp =Y w,T= Vl}m Yo wix; and let the function T be defined in (5.4). Then we




206 G. ARAS-GAZIC, J. PECARIC AND A. VUKELIC

have the representation (5.6) and the remainder H}(F;a,b) satisfies the bound

T/ oo n— n— n— n—
(P 1< 2 L a) [P0 ) 4 PO (0)] - [FO-2 ) - FO2(a)) ).
(5.9)
Proof. Applying Theorem 11 for f — Y and h — F™ we obtain

T /T( t)F™) (t) dt——/ t)dt - —/ FM(t)dt

b
(5.10) < ﬁwuw / (t — a)(b— )P+ (1)dt.

Since
b b
/ (t —a)(b—t)F" ) (1) dt = / [2t — (a + b)] F™ (t)dt
= (b—a) [F("*l)(b) + F<”*1>(a)} —2 [F<H> (b) — FO=2(q)]
using the identity (2.1) and (5.10) we deduce (5.9). O

Integral version of the above theorem can be given as:

Theorem 15. Let — o < a < a; < az - < ar < B < oo, r > 2 be the given points,

let F : [, B] — R be such that F € C" [a, ] for n € N and FtY) >0 on [, 8], let

z : [a,b] = R continuous functions such that x([a,b]) C [a, 8], A : [a,b] — R be as defined
b ~

% and let the function Y be defined in (5.5).

Then we have the representation (5.8) and the remainder HL(F; o, ) satisfies the bound

| (0, 8) 1< 2B {8 0) [F0-0(8) 4 P00 @] - [F0=2(8) - FO-2(@)] ).

in Remark 1 or in Remark 3, T =

We also give the Ostrowsky type inequality related to the generalization of majorization
inequality.

Theorem 16. Let —co < a < a; < az--- < a, < b < oor > 2 be the given points,
let x = (x1,...,Tm) and w = (w1, ...,wy,) be m-tuples such that x; € [a,b], w; € R,
i=1,..,m, Wy = 3" w, T = WLmZ;il w;x;. Let (p,q) be a pair of conjugate
ewponents, that is 1 < p,q < oo and % + % =1 and let F € C™ [a,b]. Also, let Hj; and T
be as defined in (1.9) and (5.4) respectively.

Then we have

1 m
(5.11) — Y w;F(z;) - F(T)
moi=1
b 1 m r kj
/ lw— > wiG(ai,s) - G(T, 5) FU) (a;) Hyj(s)ds
a moi=1 j=11=0

< ED]T]],-

The constant on the right hand side of (5.11) is sharp for 1 < p < oo and the best possible
forp=1.
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Proof. Using the identity (2.1) and applying Holder’s inequality we obtain

_ f

/ ’ T(t)F™ (t)dt

r o kj

Z > FU(a,)Hyj(s)ds

j=11=

1 m
— ZwiG(zi, s) — G(T, s)
W i=1

< ([E[,][1]q.

207

For the proof of the sharpness of the constant ||Y||, let us find a function F' for which

the equality in (5.11) is obtained.
For 1 < p < oo take F' to be such that

F(t) = sgn X (t) [T (1) 77 .
For p = oo take F(™(t) = sgn Y(t).
For p = 1 we prove that

(5.12) /b T (t)F™ (t)dt

b
< (¢
_trél[gfg]l ()I(/a

FO)(4) ‘ dt)

is the best possible inequality. Suppose that |Y(¢)| attains its maximum at to € [a,b].

First we assume that Y (o) > 0. For £ small enough we define F_(t) by

0, a <t <,
F(t) =14 zalt—1to)" to<t<ty+e,
(nil)! (t—to)" ™, to+e<t<b.

Then for & small enough

b to+e 1 1 to+e
/ Y () F™ (t)dt| = / T(t)—dt‘ == / Y (t)dt.
a t() € € t()
Now from the inequality (5.12) we have
1 to+e to+e 1
—/ Y(t)dt < T(to)/ —dt = Y (o).
€ Ji, to €
Since
1 tote
lim — Y(t)dt = Y(to)
e—=0 ¢ to

the statement follows. In the case T (to) < 0, we define F.(¢) by
it —to—e)" !, a<t<ty,
F.(t) = Lt —to—e)", to <t <to+e,

" en!

0, to+e<t<hb,

and the rest of the proof is the same as above.

Integral version of the above theorem can be stated as:
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Theorem 17. Let — o < a < a3 < az - < ar < B < oo, r > 2 be the given points,
let © : [a,b] — R continuous functions such that x([a,b]) C [a, B], A : [a,b] — R be as

b
%. Let (p, q) be a pair of conjugate

exponents, that is 1 < p,q < oo and % + % =1. Let F € C" [a, 5] and let the H;; and T

be defined in (1.9) and (5.5).
Then we have

defined in Remark 1 or in Remark 8 and T =

L F (x(1)) dA(2)
[P an@)

/’3 J!Glalt) s)dA(t) .k

(5.13) - F(z)

G(Z, s) F(l+2)(aj)Hj(s)ds
12 a) ; ; l

< NE@IT g

The constant on the right hand side of (5.13) is sharp for 1 < p < oo and the best possible
forp=1.
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