

ON APPROXIMATION PROPERTIES OF NON-CONVOLUTION TYPE OF INTEGRAL OPERATORS FOR NON-INTEGRABLE FUNCTION

SEVGI ESEN ALMALI

ABSTRACT. In this paper, we study the problem of pointwise convergence of nonconvolution type of integral operators family at Lebesgue point when f is non-integrable functions. In this study third theorems are proved on the operator convergence to f(x). It is examined separately for finite and infinite intervals.

1. INTRODUCTION

In [5] Mamedov studied various results pointwise convergence and on the order of convergence at generalized lebesgue points and lebesgue points by a family of non-convolution type singular integrals operators of the form

$$T_{\lambda}(f,x) = \int_{-\infty}^{\infty} f(t)\Phi_{\lambda}(x,t)dt \,,$$

in L_p space. After, Mamedov in [4] give proofs of many on the rate of convergence of the form

$$\int_{a}^{b} f(t) K_{\lambda}(x,t) dt, \ x \in (a,b),$$

as $\lambda \to \infty$ for $f \in L_1(a, b)$, $f \in L_1(a, \infty)$ and $f \in L_p(a, b)$. And he shown similar results for functions of several variables. Similarly, Gadjiev [3] investigated that pointwise convergence and on the order of above the operator for f is bounded and differentiable.

In [1] Bardaro and Vinti studied convergence of integral operators $T_n(f)$ defined by

$$T_n(f)(s) = \int_{\Omega} f(t)K(n, s, t)dt \,,$$

where Ω is an open subset of \mathbb{R}^m concerning certain variational functionals. In [2] the authors given some approximation theorems with respect to pointwise convergence and the rate of pointwise convergence for non-convolution type linear operators of

²⁰¹⁰ Mathematics Subject Classification. 41A25.

 $Key\ words\ and\ phrases.$ Integral operators, lebesque points, pointwise convergence, non-integrable functions.

the form

$$T_{\lambda}(f,x) = \int_0^\infty f(z) L_{\lambda}(x,z) \frac{dz}{z}, \quad x > 0,$$

with kernel satisfying some general homogeneity assumptions. In [6] the authors obtained pointwise convergence and the rates of certain non-integrable functions f by double singular integral operators with radial kernel on $D = \langle -\pi, \pi \rangle \times \langle -\pi, \pi \rangle$, at generalized Lebesgue point.

In this paper, we investigate the pointwise convergence of $L_{\lambda}(f, x)$ to f(x) in $L_{1}(a,b)$ at lebesgue points by family of non-convolution type singular integral operators depending on two parameters of the form:

(1.1)
$$L_{\lambda}(f;x) = \int_{a}^{b} f(t) K_{\lambda}(t;x) dt, x \in (a,b)$$

here f is non-integrable, $f \notin L_1(a,b)$

First, we give the following definition.

Definition 1 (Class A). We take a family $F = (K_{\lambda})_{\lambda \in \Lambda}$ of functions $K_{\lambda}(t; x) : R \times \Lambda \to$ R, with K_{λ} is non-negative. We will say that the function $K_{\lambda}(t;x)$ belongs to class A, if the following condition are satisfied.

- a) $K_{\lambda}(t;x)$ is a function defined for all $x, t \in (a,b)$ and $\lambda \in \Lambda$.
- b) $\lim_{\lambda \to \infty} \int_{a}^{b} K_{\lambda}(t;x) dt = 1, \ \lambda > 0, \ a \le x \le b$ c) As functions of t, $K_{\lambda}(t;x)$ is non-decreasing on [a, x] and non-increasing on [x, b].
- d) $\lim K_{\lambda}(x \pm \delta; x) dt = 0$, for chossen $x \in [a, b]$ and $\delta > 0$.

2. Approximation

In this section some results on the approximation for non-convolution of integral operators for non-integrable functions is obtained. Let $\rho \in L_1(a, b)$ and E_{ρ} is Lebesgue points set of ρ . Then, the operator

$$L_{\lambda}(\rho; x) = \int_{a}^{b} \rho(t) K_{\lambda}(t; x) dt, \ a \le x \le b, \ \lambda > 0,$$

is convergence to $\rho(x)$ as $\lambda \to \infty$, with $x \in E_{\rho}$, if the functions $K_{\lambda}(t;x)$ belong to class A, see [5]. Let $E_{\underline{f}}$ be the set of Lebesgue points of $\frac{f}{\rho}$. Here $E = E_{\rho} \cap E_{\underline{f}}$ is the set of Lebesgue points both f and ρ . Now we will give the main theorems.

Theorem 1. Suppose that $\frac{f}{\rho} \in L_1(a,b)$ for $\rho > 0$, $f \notin L_1(a,b)$ and that the non-negative function K_{λ} be the element of the class A. Moreover, if ρ and K_{λ} be almost everywhere differentiable and for every λ and x, the condition

(2.1)
$$\rho'(t)\frac{\partial}{\partial t}K_{\lambda}(t;x) > 0\,,$$

holds. Then, the operators $L_{\lambda}(f; x)$, which are defined in (1.1),

$$\lim_{\lambda \to \infty} L_{\lambda}(f; x) = f(x) \, .$$

holds for at every x- Lebesgue point.

Note that when $\rho(t) = 1$ for $f \in L_1$, i.e., f belongs space L_1 , the condition (2.1) is not needed.

Proof. If the statement (1.1) is multiplied and divided by $\rho(t)$, we have:

$$L_{\lambda}(f;x) = \int_{a}^{b} \frac{f(t)}{\rho(t)} \rho(t) K_{\lambda}(t;x) dt$$

and we can write

(2.2)
$$L_{\lambda}(f;x) - f(x) = \int_{a}^{b} \left\{ \frac{f(t)}{\rho(t)} - \frac{f(x)}{\rho(x)} \right\} (\rho(t)K_{\lambda}(t;x))dt + \frac{f(x)}{\rho(x)} \left\{ \int_{a}^{b} \rho(t)K_{\lambda}(t;x)dt - \rho(x) \right\}.$$

On the order hand, since $\frac{f}{\rho} \in L_1(a, b)$ and x is a Lebesgue point of $\frac{f}{\rho}$, the statements

$$\lim_{\lambda \to \infty} \frac{1}{h} \int_{0}^{h} \left| \frac{f(x+t)}{\rho(x+t)} - \frac{f(x)}{\rho(x)} \right| dt = 0$$

 and

$$\lim_{\lambda \to \infty} \frac{1}{h} \int_{0}^{h} \left| \frac{f(x-t)}{\rho(x-t)} - \frac{f(x)}{\rho(x)} \right| dt = 0$$

hold. Then, for every $\varepsilon > 0$, $\exists \rho > 0$, $\forall h \leq \delta$, we have

(2.3)
$$\frac{1}{h} \int_{0}^{h} \left| \frac{f(x+t)}{\rho(x+t)} - \frac{f(x)}{\rho(x)} \right| dt < \epsilon h ,$$

and

(2.4)
$$\frac{1}{h} \int_{0}^{h} \left| \frac{f(x-t)}{\rho(x-t)} - \frac{f(x)}{\rho(x)} \right| dt < \epsilon h.$$

For a chosen δ and since $K_{\lambda}(t, x)$ is positive, we can write the equation (2.2) as follows:

$$\begin{aligned} |L_{\lambda}(f;x) - f(x)| &\leq \left\{ \int_{a}^{x-\delta} + \int_{x-\delta}^{x} + \int_{x}^{x+\delta} + \int_{x+\delta}^{b} \right\} \left| \frac{f(t)}{\rho(t)} - \frac{f(x)}{\rho(x)} \right| \rho(t) K_{\lambda}(t;x) dt \\ &+ \left| \frac{f(x)}{\rho(x)} \right| \left| \int_{a}^{b} \rho(t) K_{\lambda}(t;x) dt - \rho(x) \right| \\ &= A_{1,\lambda} + A_{2,\lambda} + A_{3,\lambda} + A_{4,\lambda} + A_{5,\lambda} \end{aligned}$$

It is sufficient to show that the terms on the right hand side of the last inequality tends to zero as $\lambda \to \infty$. Now, we will calculate the integrals $A_{1,\lambda}$, $A_{2,\lambda}$, $A_{3,\lambda}$, $A_{4,\lambda}$ and $A_{5,\lambda}$. Since $\rho \in L_1(a, b)$, K_{λ} is an element of class A and $x \in E_{\rho}$, we know (see [5]):

$$\lim_{\lambda \to \infty} \int_{a}^{b} \rho(t) K_{\lambda}(t; x) dt = \rho(x).$$

It is easy seen that

$$\lim_{\lambda \to \infty} A_{5,\lambda} = 0 \,.$$

Next, we consider $A_{1,\lambda}$ and $A_{4,\lambda}$:

$$A_{1,\lambda} = \int_{a}^{x-\delta} \left| \frac{f(t)}{\rho(t)} - \frac{f(x)}{\rho(x)} \right| \rho(t) K_{\lambda}(t;x) dt \, .$$

From the triangle inequality, we can write:

$$A_{1,\lambda} \leq \int_{a}^{x-\delta} \left| \frac{f(t)}{\rho(t)} \right| \rho(t) K_{\lambda}(t;x) dt + \left| \frac{f(x)}{\rho(x)} \right| \int_{a}^{x-\delta} \rho(t) K_{\lambda}(t;x) dt.$$

From condition c) and (2.1), we get:

$$A_{1,\lambda} < \rho(x-\rho)K_{\lambda}(x-\rho;x) \left\{ \int_{a}^{x-\delta} \left| \frac{f(t)}{\rho(t)} \right| dt + \left| \frac{f(x)}{\rho(x)} \right| \int_{a}^{x-\delta} dt \right\}$$

$$\leq \rho(x-\rho)K_{\lambda}(x-\rho;x) \left\{ \int_{a}^{b} \left| \frac{f(t)}{\rho(t)} \right| dt + \left| \frac{f(x)}{\rho(x)} \right| \int_{a}^{b} dt \right\}$$

$$\leq \rho(x-\rho)K_{\lambda}x-\rho;x) \left\{ \left\| \frac{f}{\rho} \right\|_{L_{1}} + \left| \frac{f(x)}{\rho(x)} \right| (b-a) \right\}.$$

In the same way, we find that

$$A_{4,\lambda} < \rho(x+\rho)K_{\lambda}x+\rho;x) \left\{ \int_{x+\delta}^{b} \left| \frac{f(t)}{\rho(t)} \right| dt + \left| \frac{f(x)}{\rho(x)} \right| \int_{x+\delta}^{b} dt \right\}$$
$$\leq \rho(x+\rho)K_{\lambda}(x+\rho;x) \left\{ \left\| \frac{f}{\rho} \right\|_{L_{1}} + \left| \frac{f(x)}{\rho(x)} \right| (b-a) \right\}.$$

Thus, we have

$$A_{1,\lambda} + A_{4,\lambda} < \left\{ \left\| \frac{f}{\rho} \right\|_{L_1} + \left| \frac{f(x)}{\rho(x)} \right| (b-a) \right\} \rho(x-\rho) K_{\lambda}(x-\rho;x) \\ + \left\{ \left\| \frac{f}{\rho} \right\|_{L_1} + \left| \frac{f(x)}{\rho(x)} \right| (b-a) \right\} \rho(x+\rho) K_{\lambda}(x+\rho;x).$$

By using the condition d), we obtain that

(2.5)
$$\lim_{\lambda \to \infty} (A_{1,\lambda} + A_{4,\lambda}) = 0.$$

Next, we consider $A_{2,\lambda}$. Let us define the function

$$\Phi(t) = \int_{0}^{t} \left| \frac{f(x-u)}{\rho(x-u)} - \frac{f(x)}{\rho(x)} \right| du$$

Then

(2.6)
$$d\Phi(t) = \left| \frac{f(x-t)}{\rho(x-t)} - \frac{f(x)}{\rho(x)} \right| dt.$$

From (2.4) and $t \leq \delta$, the inequality

$$(2.7) \qquad \Phi(t) < \epsilon t$$

holds. Thus, for the integral $A_{2,\lambda}$ with an appropriate transformation (t = x - u and then u = t), we get:

$$A_{2,\lambda} = \int_0^\delta \left| \frac{f(x-t)}{\rho(x-t)} - \frac{f(x)}{\rho(x)} \right| \rho(x-t) K_\lambda(x-t;x) dt$$

By using (2.6) we can write:

$$A_{2,\lambda} = \int_{0}^{\delta} \rho(x-t) K_{\lambda}(x-t;x) d\Phi(t) \,.$$

By partial integration and by using the fact that $K_{\lambda}(t, x)$ is positive, we obtain the following inequality:

$$A_{2,\lambda} \le \Phi(\delta)\rho(x-\delta)K_{\lambda}x-\delta;x) + \int_{0}^{\delta} \Phi(t)d_t \left(\rho(x-t)K_{\lambda}x-t;x\right)\right).$$

Then, since the derivative of $\rho(x-t)K_{\lambda}(x-t;x)$ is positive, the function is increasing. Therefore, from (2.7) the inequality:

$$A_{2,\lambda} \le \epsilon \delta \rho(x-\delta) K_{\lambda}(x-\delta;x) + \epsilon \int_{0}^{\delta} t d_t \left(\rho(x-t) K_{\lambda}(x-t;x) \right)$$

is satisfied. By partial integration again, we obtain the inequality

$$A_{2,\lambda} \le \epsilon \int_{0}^{\delta} \rho(x-t) K_{\lambda}(x-t;x) dt$$

and we get

$$A_{2,\lambda} \le \epsilon \int_{x-\delta}^{x} \rho(t) K_{\lambda}(t;x) dt$$

(t = x - u and then u = t). When $\rho(t)$ and $K_{\lambda}(t; x)$ are positive, we have:

$$A_{2,\lambda} \leq \epsilon \int_{a}^{b} \rho(t) K_{\lambda}(t;x) dt$$
.

We can use similar method for evaluating $A_{3,\lambda}$. Let

$$\Psi(t) = \int_0^t \left| \frac{f(x+u)}{\rho(x+u)} - \frac{f(x)}{\rho(x)} \right| du,$$

then, it follows:

$$d\Psi(t) = \left|\frac{f(x+t)}{\rho(x+t)} - \frac{f(x)}{\rho(x)}\right| dt$$

From (2.3) and by using $t \leq \delta$ we have:

(2.8) $\Psi(t) < \epsilon t \,.$

After the transformations, first t = x + u later t = u, we obtain:

$$A_{3,\lambda} = \int_0^o \left| \frac{f(x+t)}{\rho(x+t)} - \frac{f(x)}{\rho(x)} \right| \rho(x+t) K_\lambda(x+t;x) dt \,.$$

From differentiation of $\Psi(t)$, the equality

$$A_{3,\lambda} = \int_{0}^{\delta} \rho(x+t) K_{\lambda}(x+t;x) d\Psi(t) \,,$$

is obtained. By using partial integration, we get:

$$A_{3,\lambda} \leq \Psi(\delta)\rho(x+\delta)K_{\lambda}(x+\delta;x) + \int_{0}^{\delta} \Psi(t)d_t \left(\rho(x+t)K_{\lambda}(x+t;x)\right) \,.$$

From the conditions c) and (2.1), $\rho(x+t)K_{\lambda}(x+t;x)$ is decreasing on [x,b]. Thus $-\rho(x+t)K_{\lambda}(x+t;x)$ is increasing and its derivative is positive. Then, by using (2.8), it is obtained:

$$A_{3,\lambda} \leq \epsilon \delta \rho(x+\delta) K_{\lambda}(x+\delta;x) + \epsilon \int_{0}^{\delta} t d_t \left(-\rho(x+t) K_{\lambda}(x+t;x) \right) \,.$$

Again by applying the partial integration,

$$A_{3,\lambda} \leq \epsilon \int_{0}^{\delta} \left(\rho(x+t) K_{\lambda}(x+t;x) \right) dt$$

and it follows that:

$$A_{3,\lambda} \leq \epsilon \int_{x}^{x-\delta} (\rho(t)K_{\lambda}t;x)) dt$$

Since $\rho(t)$ and $K_{\lambda}(t; x)$ are positive, we find that:

$$A_{3,\lambda} \leq \epsilon \int_{a}^{b} \rho(t) K_{\lambda}(t;x) dt$$

and it is clear that:

$$A_{2,\lambda} + A_{3,\lambda} \le 2\epsilon \int_{a}^{b} \rho(t) K_{\lambda}(t;x) dt$$
.

On the other hand, from conditions of the theorem, we see that

$$\int_{a}^{b} \rho(t) K_{\lambda}(t;x) dt = \int_{a}^{x} \rho(t) K_{\lambda}(t;x) dt + \int_{x}^{b} \rho(t) K_{\lambda}(t;x) dt$$
$$\leq \rho(x) \int_{a}^{b} K_{\lambda}(t;x) dt + \rho(x) \int_{a}^{b} K_{\lambda}(t;x) dt$$
$$= 2\rho(x) \int_{a}^{b} K_{\lambda}(t;x) dt.$$

From the condition

$$\lim_{\lambda \to \infty} \int_{a}^{b} K_{\lambda}(t; x) dt = 1$$

this integration is bounded. Then, the integration

$$\int_{a}^{b} \rho(t) K_{\lambda}(t;x) dt$$

is bounded. Thus

 $(2.9) A_{2,\lambda} + A_{3,\lambda} < \epsilon C \,,$

with C is a fixed. Combining (2.9) and (2.5), we get:

$$|l_{\lambda}(f,x) - f(t)| < \begin{cases} \left\| \frac{f}{\rho} \right\|_{L_{1}} + \left| \frac{f(x)}{\rho(x)} \right| (b-a) \right\} \rho(x-\rho) K_{\lambda}(x-\rho;x) \\ + \left\{ \left\| \frac{f}{\rho} \right\|_{L_{1}} + \left| \frac{f(x)}{\rho(x)} \right| (b-a) \right\} \rho(x+\rho) K_{\lambda}(x+\rho;x) \\ + \epsilon C + \left| \frac{f(x)}{\rho(x)} \right| \left| \int_{a}^{b} \rho(t) K_{\lambda}(t;x) dt - \rho(x) \right| . \end{cases} \end{cases}$$

Therefore our theorem now follows as $\lambda \to \infty$

$$\lim_{\lambda \to \infty} L_{\lambda}(f, x) = f(x)$$

This completes the proof of the theorem.

In this theorem, specially it may be $a = \infty$ and $b = \infty$. In this case, we can give the following theorem.

Theorem 2. Let $\frac{f}{\rho} \in L_1(-\infty,\infty)$ with $\rho > 0, \rho \in L_1(-\infty,\infty)$. Suppose that non-negative function K_{λ} be the element of the Class-A. For the chosen $\delta > 0$, let conditions

$$\lim_{\lambda \to \infty} \int_{-\infty}^{x-\delta} K_{\lambda}(t;x) dt = 0$$

and

$$\lim_{\lambda \to \infty} \int_{x+\delta}^{\infty} K_{\lambda}(t;x) dt = 0$$

225

be satisfied. Also if ρ and K_{λ} be almost everywhere differenable and for every λ and x, the condition (2.1) holds, then

$$\lim_{\lambda \to \infty} L_{\lambda}(f, x) = f(x),$$

at $x \in E$.

Proof. As in the proof of Theorem 1, we can write:

$$|L_{\lambda}(f;x) - f(x)| \leq \left\{ \int_{-\infty}^{x-\delta} + \int_{x-\delta}^{x} + \int_{x}^{x+\delta} + \int_{x+\delta}^{\infty} \right\} \left| \frac{f(t)}{\rho(t)} - \frac{f(x)}{\rho(x)} \right| \rho(t) K_{\lambda}(t;x) dt + \left| \frac{f(x)}{\rho(x)} \right| \left| \int_{-\infty}^{\infty} \rho(t) K_{\lambda}(t;x) dt - \rho(x) \right| = B_{1,\lambda} + B_{2,\lambda} + B_{3,\lambda} + B_{4,\lambda} + B_{5,\lambda}.$$

By using (2.1) and the condition c), we have

$$B_{1,\lambda} = \int_{-\infty}^{x-\delta} \left| \frac{f(t)}{\rho(t)} - \frac{f(x)}{\rho(x)} \right| \rho(t) K_{\lambda}(t;x) dt$$

$$(2.10) \leq \rho(x-\rho) K_{\lambda} x - \rho;x) \left\| \frac{f}{\rho} \right\|_{L_{1}} + \left| \frac{f(x)}{\rho(x)} \right| \rho(x-\rho) \int_{-\infty}^{x-\delta} K_{\lambda}(t;x) dt$$

and the inequality

(2.11)
$$B_{4,\lambda} < \rho(x+\rho)K_{\lambda}x+\rho;x) \left\|\frac{f}{\rho}\right\|_{L_1} + \left|\frac{f(x)}{\rho(x)}\right|\rho(x+\rho)\int_{x+\delta}^{\infty}K_{\lambda}(t;x)dt$$

is obtained. From the condition c), the relations (2.10) and (2.11), we get:

$$\lim_{\lambda \to \infty} \left(B_{1,\lambda} + B_{4,\lambda} \right) = 0 \,.$$

In the other hand, $B_{2,\lambda}$ and $B_{3,\lambda}$ are calculated as Theorem 1, i. e.,

$$B_{2,\lambda} + B_{3,\lambda} < \epsilon C \,.$$

Thus, we obtain:

$$\begin{aligned} \left\| \frac{f}{\rho} \right\| \left\{ \rho(x-\rho) K_{\lambda}(x-\rho;x) + \rho(x+\rho) K_{\lambda}(x+\rho;x) \right\} \\ + \left| \frac{f(x)}{\rho(x)} \right| \left\{ \rho(x-\rho) \int_{-\infty}^{x-\delta} K_{\lambda}(t;x) dt + \rho(x+\rho) \int_{x+\delta}^{\infty} K_{\lambda}(t;x) dt \right\} \\ + \left| \frac{f(x)}{\rho(x)} \right| \left| \int_{-\infty}^{\infty} \rho(t) K_{\lambda}(t;x) dt - \rho(x) \right| \\ + \epsilon C. \end{aligned}$$

By taking limit as $\lambda \to \infty$, from the hypothesis, since $K_{\lambda}(x + \delta; x) \to 0$, from

$$\int_{-\infty}^{x-\delta} K_{\lambda}(t;x)dt \to 0$$

 and

$$\int_{x+\delta}^{\infty} K_{\lambda}(t;x) dt \to 0$$

we have:

$$\lim_{\lambda \to \infty} L_{\lambda}(f, x) = f(x) \,.$$

This completes the proof.

Example 1. Let

$$\rho(t) = \frac{1}{(1+|t)|\sqrt{|t|}} = \left\{ \begin{array}{c} \frac{1}{(1+t)\sqrt{t}}, t > 0\\ 1, t = 0\\ \frac{1}{(1-t)\sqrt{-t}}, t < 0 \end{array} \right\}.$$

Is it $\rho \in L_1(-\infty,\infty)$? Since ρ is even, we have: $\int_{-\infty}^{\infty} \rho(t)dt = 2\int_{0}^{\infty} \rho(t)dt$. It is sufficient show

that the integration $\int_{0}^{\infty} \rho(t) dt$ is bounded.

$$\int_{0}^{\infty} \frac{dt}{(1+t)\sqrt{t}} = \int_{0}^{1} \frac{dt}{(1+t)\sqrt{t}} + \int_{1}^{\infty} \frac{dt}{(1+t)\sqrt{t}} = I_1 + I_2.$$

First, we will consider I_1 .

i) Since t < 1 on 0 < t < 1, the inequality

$$\begin{array}{rcl} \sqrt{t} & < & 1 \\ \sqrt{t}(1+t) & > & \sqrt{t} \\ \frac{1}{(1+t)\sqrt{t}} & < & \frac{1}{\sqrt{t}} \end{array}$$

is satisfied. Hence,

$$I_{1} = \int_{0}^{1} \frac{dt}{(1+t)\sqrt{t}} < \int_{0}^{1} \frac{dt}{\sqrt{t}}$$
$$= \lim_{\mu \to 0} \int_{\mu}^{1} \frac{dt}{\sqrt{t}} = 2 < \infty.$$

227

ii) Taking $1 < t < \infty$, we can write

$$I_{2} = \int_{1}^{\infty} \frac{dt}{(1+t)\sqrt{t}} < \int_{1}^{\infty} \frac{dt}{t^{\frac{3}{2}}} = \lim_{\beta \to \infty} \int_{1}^{\beta} \frac{dt}{t^{\frac{3}{2}}} = 2,$$

and I_2 is bounded.

Thus $\rho \in L_1(-\infty,\infty)$.

Now, we will find that f function with $f \notin L_1(-\infty,\infty)$ and $\frac{f}{\rho} \in L_1(-\infty,\infty)$. We we consider the function

$$f(t) = \frac{1}{|t|(1+t^2)} = \left\{ \begin{array}{c} \frac{1}{t(1+t^2)}, t > 0\\ 1, t = 0\\ \frac{1}{-t(1+t^2)}, t < 0 \end{array} \right\}.$$

Now, let us see $\frac{f}{\rho} \in L_1(-\infty,\infty)$ or $f \notin L_1(-\infty,\infty)$. For 0 < t < 1 it is easy to see that

$$\begin{array}{rcl} 1+t^2 &< 2\\ \frac{1}{1+t^2} &> \frac{1}{2}\\ \frac{1}{(1+t^2)} &> \frac{1}{2t} \end{array}$$

 $\frac{1}{t(1+t^2)} > \frac{1}{2t}.$ Therefore, since: $\int_{0}^{1} \frac{dt}{t(1+t^2)} > \frac{1}{2} \int_{0}^{1} \frac{dt}{t} = \infty, \text{ it follows that } f \notin L_1(-\infty,\infty).$

Moreover, is
$$\frac{f}{\rho} \in L_1(-\infty,\infty)$$
? We write:
$$\int_{-\infty}^{\infty} \frac{f(t)}{\rho(t)} dt = \left(\int_{-\infty}^{\infty} + \int_{0}^{\infty}\right) \frac{f(t)}{\rho(t)} dt = I_1 + I_2.$$

From $\frac{f}{\rho}$ is even function, we get $\int_{-\infty}^{\infty} \frac{f(t)}{\rho(t)} dt = 2 \int_{0}^{\infty} \frac{f(t)}{\rho(t)} dt$. Hence, we obtain
 $I_2 = \int_{0}^{\infty} \frac{\sqrt{t}(1+t)}{t(1+t^2)} dt = \int_{0}^{\infty} \frac{(1+t)}{\sqrt{t}(1+t^2)} dt$
$$= \left(\int_{1}^{\infty} + \int_{0}^{1}\right) \frac{(1+t)}{\sqrt{t}(1+t^2)} dt$$
$$< \int_{0}^{1} \frac{2}{\sqrt{t}} dt + 2 \int_{1}^{\infty} \frac{t}{\sqrt{t}(1+t^2)} dt$$
$$< 2 \int_{0}^{1} \frac{1}{\sqrt{t}} dt + 2 \int_{1}^{\infty} \frac{1}{t^{\frac{3}{2}}} dt.$$

Then, we see that these integration are bounded. That is $\frac{f}{\rho} \in L_1(-\infty,\infty)$. From the condition of Class A, since K (t, g) is increasing on (- ∞ , g) and fy

From the condition of Class A, since $K_{\lambda}(t, x)$ is increasing on $(-\infty, x]$ and from (2.1), also $\rho(t)$ is increasing on $(-\infty, x]$ and $K_{\lambda}(t, x)$ is decreasing on $[x, \infty)$, hence $\rho(t)$ is decreasing. Let $-\infty < t < 0$ (for the special case: x = 0). From the definition of $\rho(t)$, we have:

$$\rho'(t) = \frac{\frac{1}{2\sqrt{-t}}(1-t) + \sqrt{-t}}{(\sqrt{-t}(1-t))^2} > 0.$$

Thus, $\rho(t)$ is increasing on $(-\infty, x]$. For $0 < t < \infty$, we find that

$$\rho'(t) = \frac{-\frac{1}{2\sqrt{t}}(1+t) + \sqrt{t}}{(\sqrt{t}(1+t))^2} < 0,$$

i. e, $\rho(t)$ is decreasing on $[x, \infty)$. Now, we will take $K_{\lambda}(t, x) = \frac{\lambda}{\sqrt{\pi}} e^{-\lambda^2 (t-x)^2}$ (kernel of Gaus-Weierstrass). It is evident that this functions non-negative for every $t \in (-\infty, \infty)$. Is it

$$\lim_{\lambda \to \infty} \int_{-\infty}^{\infty} K_{\lambda}(t, x) dt = \lim_{\lambda \to \infty} \int_{-\infty}^{\infty} \frac{\lambda}{\sqrt{\pi}} e^{-\lambda^2 (t-x)^2} = 1?$$

Next, we will calculate. By using

$$\int_{-\infty}^{\infty} K_{\lambda}(t,x) dt = \int_{-\infty}^{\infty} \frac{\lambda}{\sqrt{\pi}} e^{-\lambda^2 (t-x)^2} dt = \frac{\lambda}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\lambda^2 u^2} du,$$

if the transformation $\lambda t = w$ is made, we get for the last integral:

$$\int_{-\infty}^{\infty} e^{w^2} dw = 1.$$

Hence, the condition b) is satisfied.

For $-\infty < t < x$ (or let x = 0), $-\infty < t < 0$, we see that

$$\frac{\partial}{\partial t}K_{\lambda}(t,x) = \frac{\partial}{\partial t}\left(\frac{\lambda}{\sqrt{\pi}}e^{-\lambda^{2}t^{2}}\right) = \frac{-2\lambda^{3}t}{\sqrt{\pi}}e^{-\lambda^{2}t^{2}} > 0.$$

Therefore, it is increasing.

Second, for $0 < t < \infty$ we get

$$\frac{\partial}{\partial t}K_{\lambda}(t,x) = \frac{-2\lambda^3 t}{\sqrt{\pi}}e^{-\lambda^2 t^2} < 0.$$

Then, $K_{\lambda}(t, x)$ is decreasing as t on $[0, \infty)$. Finally, we will show that the condition of the Theorem 2 is satisfied. For every $t \neq x$, we must show that,

$$\lim_{\lambda \to \infty} K_{\lambda}(t, x) = 0.$$

We took in particular, x = 0. Then for every $t \neq 0$, we get

$$\lim_{\lambda \to \infty} K_{\lambda}(t, x) = \lim_{\lambda \to \infty} \frac{\lambda}{\sqrt{\pi}} e^{-\lambda^2 t^2} = 0.$$

As a result, the integration

$$L_{\lambda}(f,x) = \int_{-\infty}^{\infty} \frac{1}{|t| (1+t^2)} e^{-\lambda^2 (t-x)^2} dt$$

convergence to f(0) as $\lambda \to \infty$ for x = 0.

If we take $\rho(t) = \frac{1}{\rho_1(x)}$ in Theorem 1, then, we can give the following theorem.

Theorem 3. Let $\frac{1}{\rho_1} \in L_1$, $f\rho_1 \in L_1(a,b)$ and $f \notin L_1(a,b)$. Suppose that non-negative function K_{λ} be the element of Class A. Also if $\frac{1}{\rho_1}$ and K_{λ} be almost everywhere differentiable and for every λ and x, the condition,

$$\left(\frac{1}{\rho_1(t)}\right)'\frac{\partial}{\partial t}K_{\lambda}(t,x) > 0$$

 $holds. \ Then$

$$\lim_{\lambda \to \infty} L_{\lambda}(f, x) = f(x)$$

at x- Lebesgue point of $\rho_1 \in L_1$.

Proof. The proof is done similar to that of Theorem 1.

References

- [1] C.BARDARO, G.VINTI: On approximation properties of certain non-convolution integral operators, J.Approx.Theory **62**(3) (1990), 358-371.
- [2] C.BARDARO, G.VINTI, H.KARSLI: On pointwise convergence of linear integral operators with homogeneous kernels, Integral Trans. Spec. Funct., 19(5-6) (2008), 429-439.
- [3] A.D.GAJIEV: On the order of convergence of some class of singular integrals, Izv. Acad. Sc. of Azerbaijan SSR, 6 (1963), 27-31.
- [4] R.G.MAMEDOV: A study of order of convergence of one-dimensional and multidimensional singular integrals, Studies in theory of differential equations and theory of functions (in Russian), Izdat. Akad. Nauk Azerbaĭdžan. SSR, Baku, 41(50) (1965), 92-108.
- [5] R.G.MAMEDOV: A generalization of some results on the order of convergence of singular integrals, (in Russian) Akad. Nauk Azerbaĭdžan, SSR Dokl., 18(3) (1962), 3-7.
- G.UYSAL, M.M.YILMAZ: Some theorems on the approximation of non-integrable functions via singular integral operators, Proc. Jangieon Math. Soc., 18(2) (2015), 241-251.

Department of Mathematics Kirikkale University Kirikkale,Turkey