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ON APPROXIMATION PROPERTIES OF NON-CONVOLUTION TYPE
OF INTEGRAL OPERATORS FOR NON-INTEGRABLE FUNCTION

SEVGI ESEN ALMALI

ABsTrRACT. In this paper, we study the problem of pointwise convergence of non-
convolution type of integral operators family at Lebesgue point when fis non-integrable
functions. In this study third theorems are proved on the operator convergence to
f(x). It is examined separately for finite and infinite intervals.

1. INTRODUCTION

In [5] Mamedov studied various results pointwise convergence and on the order of con-
vergence at generalized lebesgue points and lebesgue points by a family of non-convolution
type singular integrals operators of the form

Ty(f.z) = / (0@ (. t)dt

in L, space. After, Mamedov in [4] give proofs of many on the rate of convergence of the
form

b
/f(t)K,\(:c,t)dt, x € (a,b),

as A — oo for f € Li(a,b), f € Li(a,00) and f € Ly(a,b). And he shown similar

results for functions of several variables. Similarly, Gadjiev [3] investigated that pointwise

convergence and on the order of above the operator for f is bounded and differentiable.
In [1] Bardaro and Vinti studied convergence of integral operators T, (f) defined by

T, (f)(s) = / SR (n,5,t)dt
Q

where (2 is an open subset of R™ concerning certain variational functionals.
In [2] the authors given some approximation theorems with respect to pointwise conver-
gence and the rate of pointwise convergence for non-convolution type linear operators of
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the form
& dz
= f)La(z,2)—, >0,
O Z

with kernel satisfying some general homogeneity assumptions. In [6] the authors obtained
pointwise convergence and the rates of certain non-integrable functions f by double sin-
gular integral operators with radial kernel on D = (—m,m) x (—m,m) , at generalized
Lebesgue point.

In this paper, we investigate the pointwise convergence of Ly (f,z) to f(x) in L;(a.b) at
lebesgue points by family of non-convolution type singular integral operators depending
on two parameters of the form:

b
(L1) La(fi2) = / FOEA(t 2)dt,z € (a,0).

here f is non-integrable, f ¢ L,(a.b)
First, we give the following definition.

Definition 1 (Class A). We take a family F' = (K))aea of functions Kx(t;z) : Rx A —
R, with Ky is non-negative. We will say that the function K(t;x) belongs to class A, if
the following condition are satisfied.

a) K\(t;x) is a function defined for all x,t € (a,b) and A € A.
b
);Hn Ky(t;z)dt=1, A>0, a<z<b
—00
) As functions of t, K (t; x) is non-decreasing on [a, x] and non-increasing on [x,b] .
) ;im Ky(x £ 6;z)dt =0, for chossen x € [a,b] and § > 0.
—00

2. APPROXIMATION

In this section some results on the approximation for non-convolution of integral oper-
ators for non-integrable functions is obtained. Let p € L;(a,b) and E, is Lebesgue points
set of p. Then, the operator

b
LA(p;z):/ p()Kx(t;)dt, a <o <b, A >0,

is convergence to p(x) as A — oo, with z € E,, if the functions K(¢; x) belong to class
A, see [5]. Let Ef be the set of Lebesgue pomts of f Here E = E, N Ef is the set of

Lebesgue points both f and p. Now we will give the main theorems .

Theorem 1. Suppose that / € Li(a,b) for p> 0, f ¢ Li(a,b) and that the non-negative

function K be the element of the class A. Moreover, if p and Ky be almost everywhere
differentiable and for every A and x, the condition

0
K
ot )815 At z) >0,
holds. Then, the operators Ly(f;x), which are defined in (1.1),
lim Ly(f;z) = f(z),
A—00

holds for at every x— Lebesque point.

(2.1)
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Note that when p(t) = 1 for f € Ly, i.e., f belongs space L;, the condition (2.1) is not
needed.

Proof. If the statement (1.1) is multiplied and divided by p(t), we have:

b
- | %p@m(mdt,

and we can write

b
La(fia) - / {28 - L8 poms oy
b
(2.2) +£(—g /p(t)K,\(t;:c)dt — p(x)

a

On the order hand, since i € Li(a,b) and z is a Lebesgue point of i, the statements
p p

fla f(2)
H,oh/’ T |t =0
and
L=t f@)
Alinsoﬁo/‘p(x_m T =0

hold. Then, for every e > 0, 3p > 0, Vh < §, we have

(2.3) /‘f fg dt < eh,
and

h
(2.4) %/’ fé;”; dt < eh.

0
For a chosen ¢ and since K(t, ) is positive, we can write the equation (2.2) as follows:
x x4+ b

/ / / / ‘% —Z(—g p(t) K (t; x)dt

x x+6

|La(f3 ) = f(2)]

IN

n \f— ottt — oo

a

= Ain+ Ao+ A3+ A+ A5

It is sufficent to show that the terms on the right hand side of the last inequality tends
to zero as A — oco. Now, we will calculate the integrals A; x, A2, Az, Asx and A5 .
Since p € Li(a,b), Ky is an element of class A and z € E,, we know (see [5]):
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b
lim p(t) K\ (t; 2)dt = p(x).

A—oo J,
It is easy seen that
lim A51,\ =0.
A—00

Next, we consider A; » and Ay y :

/ f@) (x)
t :c

From the triangle inequality, we can write:

VEO\(t; ) dt

y r—0
Ay < / ’pz ’ ) K\ (t; x)dt—f—‘% [p(t)K,\(t;gg)dt_
From condition c) and (2.1), we get:
or < et f (B8] 53] [
b ® b
< plz—p)Kr(r—p;x {/‘f—t‘dth‘(—i /dt}
< p(ZEp)K)\:L'p;x){ L f(_i ba}

In the same way, we find that

Agx < p(z+ p)Knz + p; o {

J [ 3 Jo}
6-of.

(b— a} p(z — p)Kx(z — p; )

9
+
>

< p(z + p)Ka(z + p; ) {

Thus, we have

Aia+ Ay < {Hi
Ly

&l
p

By using the condition d), we obtain that

'f ()
()
(

7)

Ly ‘p(:ﬂ

(b— a} p(x + p)Kx(z + p; ).

(2.5) lim (A1,x + A4 x) = 0.

A—00
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Next, we consider Aj 5. Let us define the function

o [[2=2 Lo,
Then
(2.6) dywz‘ﬁgjg—ﬁg%ﬁ.
From (2.4) and t < §, the inequality
(2.7) B(t) < et.

holds. Thus, for the integral Ay with an appropriate transformation ( t = x — v and
then u = t), we get:
s
—t
Ay = / ’M _ @ ple —t)K\(z — t;x)dt .
) plz—t)  plz)

By using (2.6) we can write:

b
Asy = /p(:z:—t)K,\(x—t;:E)d@(t).
0

By partial integration and by using the fact that K,(¢,z) is positive, we obtain the
following inequality:
§

Az x < ®(0)p(x — §) Kz — 0;x) + / O(t)dy (p(x — t)Khx — t;x)) .

0
Then, since the derivative of p(x — t)K)(x — t; ) is positive, the function is increasing.
Therefore, from (2.7) the inequality:

s
Ay < edp(x — 6 Kx(z — §;x) + e/tdt (p(x —t)Kx(z — t;x))
0
is satisfied. By partial integration again, we obtain the inequality
5
Az < e/p(:n —t)K)(x — t;x)dt
0

and we get
xT

ur<e [ pOEA b
r—4
(t =2 —u and then u =t). When p(t) and K, (¢; ) are positive, we have:

b
A\ < €/p(t)K,\(t;£L‘)dt.
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We can use similar method for evaluating As » . Let

/fx-i—u f(x)d

(x+u) plx)

then, it follows:

_ |+t f@)

plz+t) plz)
From (2.3) and by using ¢t < § we have:
(2.8) U(t) < et.

After the transformations, first ¢ = x + u later t = u, we obtain:

/ f x+1t) B f(x)
(x+1t) plx)
From differentation of W(t), the equality
b
Az = /P(fﬂ + ) Kx(z + t;2)dP(1),
0

is obtained. By using partial integration, we get:
b
Aur <)o+ Ko+ 85) + [ WO (pla + DKo + 1)
0
From the conditions c) and (2.1), p(x + ¢)Kx(x + ¢;x) is decreasing on [z,b] . Thus
—p(x + t)K\(z + t; z) is increasing and its derivative is positive. Then, by using (2.8), it
is obtained:

dt .

plax +t)Kx(z + t;x)dt .

o
Ay < ebpla+ )R (o + 6ia) + e [ td: (pla+ Ko+ 6:0))
0

Again by applying the partial integration,
s
As iy < e/ (p(x + t)Kx(x + t;)) dt,
0

and it follows that: 5

Agyr < e / (p(t) Kt z) dt

Since p(t) and K(t; ) are positive, we find that:
b
Az < e/p(t)K,\(t;:E)dt,

a

and it is clear that:

b
Aoy + Az < 26/p(t)K>\(t;:c)dt.
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On the other hand, from conditions of the theorem, we see that

b x b
[rmstaa = [ors@oris [ oK
a a b xT b

< o) [ Ko+ pte) [ Kot

b
= 2p(x)/K>\(t;:c)dt.

From the condition

lim /K,\(t;x)dtz
A—00

this integration is bounded. Then, the integration
b

/prxumw,

a

is bounded. Thus
(2.9) Aoy + Az x < eC,
with C is a fixed. Combining (2.9) and (2.5), we get:

{HfH P(w) ba)}p(zP)KA(zp;:c)
In(fo2) = F(8)] < +ﬂHH +Hg @}Mx+mK“x+mm

f(=z)
+eC + ‘p(m)

[ o) K (152 — p(a)]

Therefore our theorem now follows as A — oo
lim Ly(f,z) = f(x).
A—00
This completes the proof of the theorem. O

In this theorem, specially it may be a = oo and b = oco. In this case, we can give the
following theorem.

Theorem 2. Let / € Li(—00,00) with p > 0, p € L1(—00,00). Suppose that non-negative

function Ky be the element of the Class-A. For the chosen § > 0, let conditions

r—0
lim /Kk(t;x)dt =0
A—00
and
lim Ky(t;z)dt = 0
A—00

x4+
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be satisfied. Also if p and K be almost everywhere differenable and for every A and x,
the condition (2.1) holds, then

lim Lx(f,z) = f(x),

A—00

at z € E.

Proof. As in the proof of Theorem 1, we can write:

x z+6 0o
La(fi7) — fz)] < / / / / '%_if(_gp@m(t;x)dt
x x40
f@) p(tm (t:2)dt — p(z)
o(z) ’

o0

= By + Baox+ B3+ By + Bs).
By using (2.1) and the condition c¢), we have

- /‘f_t_f_w

t :L'

p(t) K (t; 2)dt

(2.10) < ple—p)Kyrx — p; ) ‘f(_;c x—p /K,\tx

and the inequality

(2.11) By < p(z + p)Kxx + p; x) ‘f '&;) :E+p)/KA(t;z)dt
5

is obtained. From the condition c), the relations (2.10) and (2.11), we get:
/\11_>H010 (Bia+ Bix) =0.
In the other hand, By » and Bs » are calculated as Theorem 1, i. e,
By y+ B3y <eC.

Thus, we obtain:
f
H; {p(x — p)Kx(z — p;z) + p(x + p)Kxr(z + p; )}

_i_‘L;C)’ plz —p /K,\tx)dt—i—px—i—p /thiﬂ)d

‘fi“/p VE s (t; 2)dt — p(a)
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By taking limit as A — oo, from the hypothesis, since K(x + d;2) — 0, from

r—34
/ K (t: )t — 0

and
/K,\(t;z)dt —0,
x+6
we have:
A11_>m La(f,x) = f(z).
This completes the proof. O

Example 1. Let

1
0 1 (1+t)\/i’t >0
pl)=—— = Lt=0
1+t t
OV | 2 v
Is it p € L1(—00,00)7 Since p is even, we have:/ 2//) t)dt. It is sufficent show
—o00 0

o0
that the integration / p(t)dt is bounded.
0

1 00
dt / +/
1+t 1+t\/¥ 146Vt
1
11+12.

o~——23
|

First, we will consider I;.

i) Since t < 1 on 0 < ¢t < 1, the inequality

Vi< 1
VI(L+1t) > Vi
1 1
TN

is satisfied. Hence,

1 1
I _/ dt </ﬁ
Yo arove 7
0 0
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ii) Taking 1 <t < oo, we can write

el
1(1+t)\/E 1t§
B
= lim d—,t:2

B—o0 t% ’
1

and I is bounded.
Thus p € Ly(—00, 00).

Now, we will find that f function with f ¢ L;(—o0,00) and f € L1(—00,00). We we
p

consider the function

1
1 eyt >0
O —— 1,t=0
0= frare

1
=gyt <0

Now, let us see f € Li(—00,00) or f ¢ Li(—00,00). For 0 < ¢t < 1 it is easy to see that
p

1+t < 2

1 1

1+¢2 2

1 1

i) 2
1 1
Therefore, since: /15(161%2) > %/% = o0, it follows that f ¢ L;(—o00,00).

0 0

[e%e} 0 o
Moreover, is i € Li(—00,00)? We write: /&dt = / +/ &dt =L +1.
p J p(t) S p(t)

t t
From i is even function, we get / Mdzf =2 / Mdtf. Hence, we obtain
p J p(t) / p(t)

L = Mdt:/ﬂdt
0

Il
)—‘\8
+
O\»—A
2=
+1%
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Then, we see that these integration are bounded. That is i € Li(—00,00).

From the condition of Class A, since K (t, x) is increasing on (—oo, 2] and from (2.1), also
p(t) is increasing on (—oo, 2] and K (¢, z) is decreasing on [z, o), hence p(t) is decreasing.
Let —oo < ¢ < 0 (for the special case: = 0). From the definition of p(t), we have:

%ﬁ(lft)nL\/f_t

/
p(t) =
Ve e
Thus, p(t) is increasing on (—oo, z]. For 0 < t < oo, we find that
(1+1t) + Vi
s = ZE

<0,
(VE(1+1))°
i. e, p(t) is decreasing on [x,00). Now, we will take K)(t,z) = %e”‘z(t’z)z (kernel of
Gaus-Weierstrass). It is evident that this functions non-negative for every t € (—o0, 00).

Is it

lim [ K)(t,z)dt = lim /—67/\ (t—z)
A—00 A—r00

Next, we will calculate. By using

o0 oo A ) , )\ %) L,
/K)\(t,x)dt: /ﬁe)\ (t—2)* g — ﬁ/e/\ v du,

if the transformation A\t = w is made, we get for the last integral:

00
/ew2dw =1.
oo

Hence, the condition b) is satisfied.

For —oo <t <z (or let x = 0), -0o < t < 0, we see that

9, A 7)\2152) _ i/\gtefﬂt?

QKA(t z) = 5(7 T

ot

Therefore, it is increasing.
Second, for 0 < t < oo we get

9] —2X3t _2p
Z K\ (t -\t
5 At x) = N e <0

Then, K, (t,x) is decreasing as ¢ on [0, c0) .Finally, we will show that the condition of the
Theorem 2 is satisfied. For every t # x, we must show that,

lim Ky (¢, z) = 0.
A—00

We took in particular, x = 0.Then for every ¢t # 0,we get

A a2
,\lggoK)‘(t x) = 131;07 = 0.
As a result, the integration
L)\(f ,T) — /;e—)ﬂ(t—zydt
’ [t| (14 t2)

— 00
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convergence to f(0) as A\ — oo for = 0.

If we take p(t) = pl;(z) in Theorem 1, then, we can give the following theorem.

1
Theorem 3. Let — € Ly, fp1 € Li(a,b) and f ¢ Li(a,b). Suppose that non-negative
1

1

function Ky be the element of Class A. Also if — and K be almost everywhere differ-
P1

entiable and for every \ and x, the condition,

(pll(t))I%Kx(t,w) >0

lim Ly(/,2) = /()

holds. Then

at x— Lebesgque point of p1 € L.
Proof. The proof is done similar to that of Theorem 1. O
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