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RESULTS INVOLVING GAUSSIAN ERROR FUNCTION erf(|z|'/?) AND
THE NEUTRIX CONVOLUTION

BRIAN FISHER, FATMA AL-SIREHY AND EMIN OZCAG!

ABSTRACT. The Gaussian error function erf(z) and its associated functions erf(xz4)
and erf(z_) are defined. Further, the generalized Gaussian error function erf;(x) and
the associated functions erf;(z4) and erf;(z_) are defined. Some neutrix convolutions
of these functions and other functions are evaluated.

1. INTRODUCTION

The error function (also known as Gaussian error function) erf(x) [19] is defined for

z € R by
f —u d _ l 21+1-
o \F/ “= fzz' 2z+1

The error function is odd, convex on (—oo, 0], concave on [0, 00), and strictly increasing
on R. We refer to the reader ref. [2, 3] for other properties of the error function.

The Gaussian error function plays an important role in statistics, probability theories
and in problems stemming from mathematical physics, especially in analytic solutions for
problems of thermo mechanics and mass flow due to diffusion. Dirschmid and Fischer
extended the classical Gaussian error function erf(x) to a family of infinite extended
Gaussian error functions erf;(x) (for ¢ > 1) which can be easily programmed by current
computational tools. The generalized Gaussian error function for i € N are defined by

erf;( /ue“du
f

see [5].
It can be easily noted that
2 1 i+ 1
iii%erfi(z) = 0, Ilingoerf \/_ —u = ﬁf(lz ),

ue
()it
),

Zgr_nooerfi(x) = \/_/ —* quy = ﬁ —1I( 5
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see [13] for the calculation.
The locally summable functions erf(x4) and erf(x_) are defined by

erf(xy) = H(x)erf(z), erf(z_) = H(—xz)erf(z),
where H denotes Heaviside’s function and we define
erf(—xz4) = —erf(z_), erf(—z_)=—erf(xy).
The functions erf(|z|'/?), erf(z 1/2) and erf(|z|'/?) are similarly defined by

1/2

erf(|z|'/?) = 7= /lxl exp(—u?) du,
erf(z/?) H(x)erf(|z|"/?), erf(a"/?) = H(—x)ert(|z|'/?).
Similarly, we define the locally summable functions erf;(z4) and erf;(z_) by
erf;(x) = H(z)erf;(z), erf;(z_)= H(—x)erf;(z),

Before proving our results on the convolution, we need the following lemma, which is
easily proved by induction:

Lemma 1.
Y
erfo;(z) = — u?e™ du
b
_ < (i —g)! 2i—25—1 .2 (24)!
= Z \/_22”' 5= 9)] T exp(—z%) + 531 erf(x),
eI‘fQH_l(.T) = 2Z+1 —u? du
‘\/_
il
- _ 21 27 o
Z \/— i) exp(—a?) + 7
fori=0,1,2,..., where the sum in first relation is empty when i = 0.

The classical definition of the convolution of two locally summable functions f and g
is as follows:

Definition 1. Let f and g be functions. Then the convolution f * g is defined by

(f*g)(x / f@®)glx —t)dt = / flx—1t)g(t)dt

for all points x for which the integral exist.

It follows easily from the definition that if f * g exists then g * f exists and

frg=gxf
and if (f*g) and f * ¢’ (or f’ * g) exists, then
(L.1) (fxg) =fxg (or ['xg).

We now define the functions erfy; 1 (|z|'/2) and erfy; _ (|z|*/?) by
orfa i (Ja] /%) = H(x) erfay(|2]'/?),  erfai,—(|2|'/?) = H(—z) erfai(|a['/?),
fori =0,1,2,....



RESULTS INVOLVING GAUSSIAN ERROR FUNCTION ...

The following results were proved in [11].

r+1
1 1 , _
of xerfi(z) = (Tj )(l)lerfi(z)xi”l,
=0
r+1
r \/7_'( i r+1 i i
7y loexp, (2] = 2(7~+1)Z oD erfi(@)al T 4
=0

for r =0,1,2,..., where exp, (—z?) = H(z) exp(—2?).
We now prove

Theorem 1. The convolution x’, * erf(xi_/Q) exists and

1 Er+1

- 1/2 i 1/2\, r—i

(1.2) o) werf(2/?) = — S :< l, )(1) erfy (2 ?)a 1,
1=0

r=0,1,2,....

Proof. We note that if x <0, then 27, * erf(zim) =0.If z > 0, we have

r 1/2 _ 2 ’ r 1/2
ol xerf(z)”) = 7/ (x —t)"erf(t'/=)dt
T Jo

$1/2

_ %/()I(:C—t)r/o exp(—u) du dt

1/2
e,
= — exp(—u®) [ (z—1t)"dtdu
ﬁ 0 u?

2 sy <T+1)( 1) ri+1/z1/2 20 oxp(—u?) d
= — 1)z u? exp(—u?) du
NG Zi:o i ) P

r+1
1 r+1 . 1 .
= —1)* fi /2N, r—i+1
e (M [ R

on using Lemma 1 Equation (1.2) follows.
Replacing x by —z in equation (1.2) gives

Corollary 1. The convolution x” x erf(xl_/Q) exists and

/ 1 KR+
r 1/2y _ _1)¢ ) 1/2y,.r—i+1
(1.3) a2l xerf(z’”) = m— igo ( ; >( 1) erfo;(Ja| ™/ =)a™""",
r=0,1,2,....

1/

Corollary 2. The convolution x, * [x % exp(—|z|)] ezists and

(14) 2wy P exp(—lel)] = VA <> (=1 exfyi (/)27
=0

r=0,1,2,....



234 B. FISHER, F. AL-SIREHY AND E. OZCAG

Proof. Differentiating equation (1.2) and using equation (1.1), we get

1/2

xl % [erf(x_lf)]’ - L * [z 77 exp(—|=|)]

N
= [ ert (o )
= T:E:__l * erf(:ci_/Q)

T

> (1)1 et 20t

i=0
and equation (1.4) follows for r =1,2,....
In the particular case r = 0, we have

1 —1/2 1/2 1/2
\/—Ezg * o] / exp(—|z|)] = 0(x) * erf(z+/ )= erf(:c+/ ),
giving
2 [xfrl/Q exp(—|z|)] = \/Eerf(xip).
This proved equation (1.4) for the case r = 0. O

Replacing « by —z in equation (1.4) gives

1/2

Corollary 3. The convolution x” * [x_ "'~ exp(—|z|)] exists and

ﬂ*mwmumﬁzcyn%mﬂmw
1=0

r=0,1,2,....

2. NEUTRIX CONVOLUTION

We now let D be the space of infinitely differentiable functions with compact support
and let D’ be the space of distributions defined on D.

Definition 2. The convolution f * g of two distributions f and g in D' is defined by the
equation

(Fxg)(x),0) = (f(y), (g(x), p(z +y)))
for arbitrary ¢ in D provided f and g satisfy either of the conditions:

(B1) either f or g has bounded support,
(B2) the supports of f and g are bounded on the same side,

see Gel'fand and Shilov [12] (or [14]). Note that if f and g are locally summable functions
satisfying either of the above conditions and the classical convolution f x g exists, then it
is in agreement with Definition 1.

Now let f and g be two distributions on R such that K = Supp (f) and K’ = Supp (g)
satisfying the following conditions:

(a) for every bounded set B C R, the set (K x K’) N B* is bounded in R?,
(b) for every bounded set B C R, the set K N (B — K') is bounded in R,
(c) for every bounded set B C R, the set (B — K) N K’ is bounded in R,
(d) if x,, € K,y, € K’ and |z,,| + |yn| — o0, then |z, + yn| — oo,
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where B4 = {(x,y) € R? : z +y € B}, then the convolution product f * g of f and g
exists and is defined as in Definition 2.

The condition (a)-(d) are well known see [9, 17]. Condition (d) was introduced by J.
Mikusinski in [1]. If the supports of distributions f and g satisfy conditions (B1) or (B2),
then they fulfill conditions (a)-(d).

In [9], two pairs of distributions S,T and f,g were given, which did not satisfy the
conditions (B1) or (B2), but the convolution S * T and f * g existed and conditions
(a)-(d) were satisfied.

The convolution product of distributions may be defined in a more general way without
any restriction on the supports. The most well-known is given by Jones, see [16]. However,
there still exist many pairs of distributions such that the convolution products do not exist
in the sense of these definitions.

The method of neglecting appropriately defined infinite quantities was devised by
Hadamard and the resulting finite value extracted from the divergent integral is usu-
ally referred to as the Hadamard finite part. Using the concepts of the neutrix and the
neutrix limit due to van der Corput [4], Fisher gave the general principle for the dis-
carding of unwanted infinite quantities from asymptotic expansions and this has been
exploited in context of distributions, particularly in connection with convolution product
and distributional multiplication see [6, 7, 8, 15, 18].

In order to introduce Fisher’s definition of neutrix convolution product, we first of all
let 7 be a function in D satisfying the following properties :

(i) 7(z) = 7(—=),
(i) 0< r(z) <1,

(iii) 7(z) =1 for |z] < 1,

(iv) 7(x) =0 for |z| > 1.

The function 7, is now defined by

1, lz| < n,
() =< 7(n"x —n"t), oz >n,
r(n"z +n"t), < —n,

form=1,2,....

Definition 3. Let f and g be distributions in DD’ and let f, = f1, forn =1,2,....
Then the neutriz convolution f ®) g is defined as the neutriz limit of the sequence {f, xg},
provided that the limit h exists in the sense that

for all ¢ in DD, where N is the neutriz, see van der Corput [4], having domain N' =
{1,2,...,n,...} and range N" the real numbers, with negligible functions finite linear
sums of the functions

Pn" tn, In"n A>0,7r=1,2,...)
and all functions which converge to zero in the usual sense as n tends to infinity.

In this definition the convolution product f, x g exists since the distribution f,, having
bounded support. Note that because of the lack of symmetry in the definition of f &) g,
the neutrix convolution is in general non-commutative.

The following two theorems were proved in [7], showing that the neutrix convolution
is a generalization of the convolution.
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Theorem 2. Let f and g be distributions in DD’ satisfying either condition (B1) or
condition (B2) of Definition 2. Then the neutriz convolution f &) g exists and

f®g=1fxg

Theorem 3. Let f and g be distributions in DD’ and suppose that f &) g exists, then the
neutriz convolution f &) g’ exists and

(2.1) (f®g9)' =f®g"

Note however that equation (1.1) does not necessarily hold for the neutrix convolution
product and that (f & g)’ is not necessarily equal to f’ & g.

In order to prove our next results we need to extend our set of negligible functions
given in Definition 3 to also include finite linear sums of the function

n" erf[(x 4+ n)'/?)], r=1,2,....
We now prove

Theorem 4. The neutriz convolution x" (¥) erf(zim) exists and

= i
(2.2) " ® erf(z 1/2) LZ (rj%l)L.(_Q)'z’””l,

+1 — i 22i4]

forr=0,1,2,....
Proof. We put (z"), = 2"7,(x) for n = 1,2,.... Since (2"),, has compact support, the

. . ” /2y .
classical convolution (z"), * erf(z,/”) exists and

1/2 ) x+n
(2")p xerf(x)/”) = NG / (z —t)" erf(t'/?) dt +
r+n+n—
/ — )" (z — t) erf(t/?) dt
= L+ Is.
It is easily seen that
n—o0

Further,

$1/2

L = / (x —t)" / exp(—u?) du dt

:chn 1/2 z+n
= / exp(—u?) / (x —t)" dtdu

2

3\

3\

(z-‘rn)l/2 ) . ) 2(_n)r+1 (z-‘rn)l/2 )
= m/o (x —u?) T exp(—u?) du — m/o exp(—u®) du

- = il <T K 1> (—1)" erfas[(z +n)"/2)]z" "+

7°+1i:0 )

—n r+1
—% erf[(z +n)'/?].
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It follows easily from Lemma 1 and on noting that erf(oo) = % Io° exp(—u?) du =1, we

have

N—lim erfo[(z 4 n)/?] = (29)!

n—00 22141’
and so

r4+1 i .
, 1 r41\ (1) (20)!

N-liml, = —— i
im I r+1;( i ) 22l

n—oo
fori=0,1,2,.... Equation (2.2) follows.
Replacing & by —z in equation (2.2), we get

Corollary 4. The neutriz convolution z" (x) erf(xl_/Q) exists and

r+1 .
1 1Y (24)! )
(2.3) xf®erf<z£/2>ﬁz<r+' )(—Z)WH
T
=0

i 22i4]
forr=0,1,2,....

Corollary 5. The neutriz convolution x” & erf(|z|'/?) exists and

1 & 1D\ (D)= 12!,
o  @uapny = 1y 5 (7 ) I e
forr=0,1,2,....
Proof. Note that
" ® erf(|z]V/?) = 2" ® erf(xi/Q) +z" ® erf(xi/Q).
Then equation (2.4) follows from Equations (2.2) and (2.3).
Theorem 5. The neutriz convolution x", ® erf(|z|'/?) ezists and

r+1

T 1 r+1 i, r—1 r,r—i
ot @ert(al ) = 30 (7T e et ol )
i=0
r+1 .
1 r+1\ (20! .
2. — AL
(25) 7’+1;( i )22%!””
forr=0,1,2,....
Proof. Using equation (2.2), we have
zt ® erf(lz]'/?) = zi*erf(z}r/Q)Jrzi@erf(zl,m)
r+1
_ 1 r+1 i, r—itl 1/2

(2.6) 2, @ erf(z'/?).
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Using equations (1.3) and (2.3), we have
" ® erf(:z:ip) = 2. ® erf(xi/Q) + (=1)"z" « erf(xi/Q)
= 2\ ® erf(xl_/2)

. Tr+1 r . )

r+1 = 7
r+1 .
1 r+1\ (29)! ,_,
2.7 = — R A
27) r+1;< i )22u'!x

Equation (2.5) now follows from equations (2.6) and (2.7).
Replacing x by —z, we get

Corollary 6. The neutriz convolution x” &) erf(|z|'/?) exists and

r+1
1 1 ) ) )
" ® erf(|z]/?) = 1 ; (T—i— )(—1)1[33:_%|r1 — (1) erfai (| )
r+1 .
1 r+1 )
—_1)r—¢ . r—i+1
+r+1;< i )( )
forr=0,1,2,....

Theorem 6. The neutriz convolution x” %) [:I:jrl/Q exp(—|x|)] exists and

N XT: (r + 1) (=1)%(r —i + 1)(2i)!$r—i

(28) " @ o} exp(—|a])] =

r+1 22i4] ’
forr=0,1,2,....
Proof. Differentiating equation (2.2) using equation (2.1), we get
1 _
0" @erf@*) = —=a" @ a7 exp(a])]
1 1\ (=1)f(r —i+1)(2d)! ,_,
Ly (re) Ui e
r+le\ 2244

and equation (2.8) follows for r =0,1,2,....

Replacing & by —z in equation (2.8), we get
~1/2

Corollary 7. The neutriz convolution x” &) [x exp(—|x|)] exists and
T

r -1/2 T
(2.9) 2" ® [x_ " exp(—|x])] = Y (

r+1

r+1\(r—i+ 1)(2@')!96T_Z
iz \ ¢ )

i 22i4] ’
forr=0,1,2,....
Adding equations (2.8) and (2.9) we get

Corollary 8. The neutriz convolution x" &) [|z|~/2

" @ [|a] 72 exp(—|a])] =
VT (rH N\ L+ (C)0 — i+ D@0
T+1Z( i ) *

2244

exp(—|z|)] exists and

=0
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forr=0,1,2,....

Taking equation (2.9) from equation (2.8), we get
Corollary 9. The neutriz convolution x” &) [sgnz.|z|~'/? exp(—|z|)] exists and
" @ [sgna.|z| 712 exp(—|z)] =

T 1\ (1) =1 — i+ 1)(20) .
:f;(;r)[( ) — U —i+ DE)!

r+1 22|
forr=0,1,2,....
Theorem 7. The neutriz convolution 2", & [sgn.|z| /2 exp(—|z|)] ezists and

@l @ [sgna.Jz| 712 exp(~e])] =

r+1 T r—i 1/2
7“+1Z< > ) (r =i+ Dl = (<1) 2l erfa (2] /?)

1 Eor+1
i, r+1 T 7‘+1
rrrr 2 () 0 e e

(7‘ + 1) (r—i+1)2i) ,_,

(2.10) S z

r+1 P
forr=0,1,2,....
Proof. Differentiating equation (2.5) using equation (2.1), we get

[} ® exf(ja]'/?)) = Lwl ® [sgna.|z| /% exp(—|z])]

Jr

7

-1 Z (T + 1) (=1)i(r—i+ 1)[:Ei_i + (=1)"z" " erfo; (|| 1/?)

7’+1i:0

1 (1 if,r—itl ror—it1y, i
(1) e et

1 «— 1 — i+ 1)(20)! ..
_ 3 r+ (r H.‘)( D) i
T+1i:0 7 2214

and equation (2.10) follows.
Replacing x by —z, we get:
Corollary 10. The neutriz convolution x” (&) [sgnx.|z|~/? exp(—|z|)] ezists and
2 @ g .||V exp(—|a])] =

VT (T I (—1)'(r — i+ D)[27" + (= 1) 2 T erfo; (|2]*/?)

1 E/r+1 S R
+r+1§< ; )(—1) 277 = (=1)"2 " exp(—|a])
VIS (P EDTTI i+ D@

()

224!
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forr=0,1,2,....
For further related results, see [10, 11].
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