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Q-CESARO SEQUENCE SPACES DERIVED BY Q-ANALOGUE

SERKAN DEMIRiZ! AND ADEM SAHIN

ABSTRACT. In the present paper, we mainly focus on g—analogs of the Cesaro se-
quence spaces. The g—Cesaro sequence spaces [é]| and [&] which are the BK —spaces
including the spaces cg and ¢ have been introduced and proved that the spaces [&]
and [¢] are linearly isomorphic to the spaces co and c, respectively. Additionally, the
oa—,B— and y—duals of the spaces [&] and [¢] have been computed and their basis
have been constructed. Finally, the necessary and sufficient conditions on an infinite
matrix belonging to the classes ([&] : £,) and ([¢] : c) have been determined, where
1<p<oo.

1. INTRODUCTION

By w, we shall denote the space of all real valued sequences. Any vector subspace of w
is called as a sequence space. We shall write £, ¢ and ¢ for the spaces of all bounded,
convergent and null sequences, respectively. Also by bs, cs, ¢; and £, ; we denote the spaces
of all bounded, convergent, absolutely and p— absolutely convergent series, respectively;
where 1 < p < 0.

A sequence space A with a linear topology is called a K-space provided each of the
maps p; : A — C defined by p;(z) = z, is continuous for all + € N; where C denotes
the complex field and N = {0,1,2,...}. A K-space A is called an FK-space provided A
is a complete linear metric space. An FK-space whose topology is normable is called a
BK-space (see [2, p.272-273]).

Let A, u be two sequence spaces and A = (anx) be an infinite matrix of real or complex
numbers a,x, where n,k € N. Then, we say that A defines a matrix mapping from A
into y, and we denote it by writing A : A — u, if for every sequence z = (zx) € X the
sequence Az = {(Az),}, the A-transform of z, is in u; where

(1.1) (Az)n =) ankzi, (n€N).
k

For simplicity in notation, here and in what follows, the summation without limits runs
from 0 to co. By (A : u), we denote the class of all matrices A such that A: A — u. Thus,
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A € (A : p) if and only if the series on the right side of (1.1) converges for each n € N
and every z € A, and we have Az = {(Az)n }tnen € p for all z € X. A sequence z is said
to be A-summable to o if Az converges to o which is called as the A-limit of z.
If a normed sequence space A contains a sequence (b, ) with the property that for every
z € X there is a unique sequence of scalars (o) such that
lim ||z — (aoby + a1by + ... + anby)|| =0,

n—r

then (by) is called a Schauder basis (or briefly basts) for A. The series ) axbg which
has the sum z is then called the expansion of z with respect to (b,), and written as
T = Z Olkbk.

For a sequence space A, the matriz domain A4 of an infinite matrix A is defined by

(1.2) Aa={z=(zx) Ew: Az € A},

which is a sequence space. The new sequence space A4 generated by the limitation matrix
A from the space A either includes the space A or is included by the space A, in general,
l.e., the space A4 is the expansion or the contraction of the original space A. The sequence
space c4 1= {z = (zx) € w: Az € c} is called the convergence domain of A. The matrix
A is said to be conservative if the convergence of the sequence = implies the convergence
of A(z), (or equivalently ¢ C c4). In addition, if A(z) converges to the limit z, for
each convergent sequence z, then it is called regular. The following theorem states the
well known characterization of conservative matrices and can be found in any standard
summability book [1].

Theorem 1.1. An infinite matric A = (anx) n,k = 0,1,2,... s conservative if and
only if

() imy, o0 ank = Ax for each k=10,1, ...

(1) limp o0 Y p Gnk = A, and

(12) sup, >, |ank] < M < 00 for some M > 0.

Here, of course, the limits Ay and A are finite. If Ay = 0 for all £ and A = 1 then
the above theorem reduces to the well known theorem of Silverman and Toeplitz which
provides necessary and sufficient conditions for regularity of the infinite matrix A =
(ank) n,k=0,1,2,....

The approach constructing a new sequence space by means of the matrix domain of
a particular limitation method has been recently employed by Wang [7], Ng and Lee [5],
Malkowsky [4] and Altay and Bagar [3, 8]. They introduced the sequence spaces ({;)n,
in [7], (¢p)c, = Xp in [5], (boo)rt = Thy, crt =t and (co)ge = 7§ in [4] and (&) = €},
in [3]; where Ny, C1, Rt and E" denote the Nérlund, arithmetic, Riesz and Euler means,
respectively and 1 < p < co. Jengdniil and Bagar [9] have studied the sequence spaces
& = (co)e, and & = cp,; where Cy denotes the matrix C; = (cpx) defined by

1

Cnk = ?’L-l—].’
0, k>n,

0<k<n,

for all n, k € N, and denote the collection of all finite subsets of N by F. We will also use
the convention that any term with negative subscript is equal to naught.
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In the present paper, we introduce the sequence spaces [&y] and [¢] and derive some
results related to those sequence spaces. Furthermore, we construct a basis and compute
the a—, f— and y—duals of the spaces [&] and [é]. Finally, we characterize the matrix
classes ([¢] : £p) and ([¢] : ¢), where 1 < p < 0.

2. g—CESARO METHODS

In this section, we will first briefly mention about the Cesaro methods. Later, we will
give definition of ¢—Cesaro method.

Definition 2.1. Let a be a real number with —a ¢ N then the regular matrices

Co = (%) defined by
(n—k—l—a—l)
n_k (0<k<n)

) = =
C%k ( )
n

0, (k>mn)

and the associated matriz summability methods, are called the Cesaro matriz and
Cesaro summability method of order o, respectively.

In particular if we choose o = 1, we get the first order Cesaro matrix C; with the
following explicit form,

1 0 0 0 0 0
1 1 0 0 0 0
2 2
1 1 1 0 0 0
Cy = 3 3
1 1 1 1
0

n+l1 n+l1 n+1 n+1

Corresponding summability method is called the first order Cesaro summability method
and denoted by (C,1). The Cesaro methods have played a central role in connection
with the applications of summability theory to different branches of mathematics. The
following theorem is the direct result of the theorem of Silverman and Toeplitz which
provides necessary and sufficient conditions for regular matrices.

Theorem 2.1. (1) If a > 0, then C, 1s regular.
(i1) If o < 0, then C, ts not conservative or regular.
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We now give a brief introduction to the symbols of g—mathematics and ¢—Cesaro
matrices. The subject of g—mathematics has many applications in mathematics and the
beginnings of g—mathematics date back to time of Euler.

Definition 2.2. The value [r]; denotes the g—integer of r, which is given by

1—4g"
, geRT-{1
Me={ 1-g tH

r, g=1

For a given g > 0 let us define
Ng ={[r] : » € N}.
We see from the definition of [r], that
(2.1) N, ={0,1,14+¢,1+qg+¢*1+qg+¢+ ..}

Obviously, if we put ¢ = 1 in (2.1), the set of all g—integers N, reduces to the set of all
natural numbers, the set of nonnegative integers N.

Definition 2.3. Given a value g > 0, g—shafted factorial is defined as
(a;9)n = (1 - a)(1 - ag)...(1 - ag" ")
for alln > 1 and
(a;q)o = 1.
The infinite version of this product is defined by
(a;9)0 = lim (a;q)n.
n—00

Then one can define the g—analogue of the factorial, the g—factorial, as

g—1 ¢*-1 g" -1 1
| . , n=1,2,..
[plg! =49 ¢—1 g¢g-1 g-1
1, n = 0.

Definition 2.4. For any integer n and k, g—binomzial coefficient 1s defined by

nl__ (@@n
(2.2) { k ] (G DR Dnk

foranyn >k >0.

Another way to write (2.2) is

MEE=T

which satisfies the following two pascal rules:
MR
J J-1 J
e 51
J J-1 J

and

where 1 < 73 <n—1.
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For the last thirty years, studies involving g—integers and their applications (for ex-
ample, g—analogs of positive linear operators and their approximation properties) have
become active research areas. During the same period a large number of research papers
on g—analogs of existing theories, involving interesting results, have been published (see
[11, 12, 13]). The motivation of the present paper is the following question "What kind
of results can be achieved by considering g—analogs of Cesaro matrices in the existing
sequence spaces theory?"

There are many ways to define g—analogs of Cesaro matrices. In the following theorem,
we suggest a suitable g—analog of the Cesaro matrix of order one.

Theorem 2.2. [10, Theorem 6] Ci(g*) = (c.(¢")) with

, 0<k<n
(2.3) qe(@) =9 [+l T

0, kE>n
for alln,k € N.

The matrix method C;(¢*) and the corresponding summability method are called
g—Cesaro matrix and ¢—Cesaro sumimability method of order one, respectively.

In the rest of this paper we shall focus on the matrix C;(g*) which has the following
explicit form;

1 0 0 0 0 0
1 qa
2, 2, °or v
1 q q?
— 2 2 0 0 0
Ci(d") = [3lq [3lq [3lq
1 q ¢ 7 0
[n+ 1]q [n + 1]q [n + 1]q [n+ 1]q

Theorem 1.1 give us the following characterization for C;(g*):

Theorem 2.3. [10, Lemma 7] (2) C1(q"*) is conservative for each q € RT,
(1) C1(q*) is regular for each q¢ > 1.

3. THE ¢q—CESARO SEQUENGCE SPACES [&] AND [¢]

We introduce the sequence spaces [é] and [¢], as the set of all sequences such that
C1(¢*)—transforms of them are in the spaces co and c, that is
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[é] = {$=(xk) €w: lim

n—oo

e =]

qk 0
and

¢ = {w =(z) €Ew: lim ———— Zq Ty ex1sts}

n—oo n—|—1qk :

where C;(g*) denotes the method of g—Cesaro matrix of order one defined by (2.3). With
the notation of (1.2), we can redefine the spaces [¢q] and [£] by

(3.1) [50] = {Co}cl(qk) and [E’] = {C}Cl(qk).
If X is any normed sequence space then we call the matrix domain {A}c,(gx) as the

g— Cesaro sequence space. Define the sequence y = (yi), which will be frequently used,
as the C;(¢*)—transform of a sequence z = (z), i.e

(52) = L re (en),

Now, we may begin with the following theorem which is essential in the text.

Theorem 3.1. The sets [&] and [¢] are linear spaces with coordinatewise addition
and scalar multiplication that are BK —spaces with norm ||z||jz) = ||z||jg) = ||z]]e..

Proof. The proof of the first part of the theorem is a routine verification, and so we
omit it. Furthermore, since (3.1) holds, ¢y and ¢ are BK —spaces with respect to their
natural norm (see [14, pp.217-218]), and the matrix C;(g*) is normal, i.e., ¢}, (¢*) # 0
and ct,(¢*) = 0, k > n, for all k,n € N, Theorem 4.3.2 of Wilansky [15, pp.61] implies
that the spaces [é] and [¢] are BK —spaces. O

Theorem 3.2. The g—Cesaro sequence spaces [&] and [€] are linearly isomorphic to
the spaces ¢y and c, respectively, t.e., [&] 2 co and [é] = c.

Proof. To prove this, we should show the existence of a linear bijection between the
spaces [&] and cg. Consider the transformation T' defined, with the notation of (3.2),
from [&] to cg by @ — y = Tz. The linearity of T is clear. Further, it is trivial that
z=0=(0,0,0,...) whenever Tz = # and hence T is injective.

Let y € ¢y and define the sequence z = (z}) by

k+1 k
[qk ]qyk_%yk—l; (k € N).

9 _
T, =

Then, we have

” k+1 k :
Zq’“{[ ]qyk—[,]fykl}z lim y, =0
q n—00

2 I
n—>oo n+1 Zq k= n—>00[n+1]qk:0 gk

la k=0
which says us that z € [&]. Additionally, we observe that
1 ¢ k{[k+1]q [k]q H
Yy % Y~ — Y1
[n+1]q ,;) gk gk
= sup |ya| = [[ylle, < o0.
neEN

(E2IES sup

neN
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Consequently, we see from here that T is surjective and is norm preserving. Hence, T
is a linear bijection which therefore shows us that the spaces [&y] and c¢p are linearly
isomorphic, as was desired. |

We can now give theorems on inclusion relations concerning the spaces [&] and [€].
Theorem 3.3. The inclusion ¢ C [] strictly holds for each ¢ € RT.

Proof. To prove the validity of the inclusion ¢ C [¢], let us take any y € c. Since, the
method C;(g*) is conservative for each ¢ € RT we immediately observe that C;(¢*)y € ¢
which means that y € [¢]. Hence, the inclusion ¢ C [¢] holds. Furthermore, let us consider
the sequence z = {zx(q)} defined by

1
] k= 07 27
ze(g) = ¢ L
qT) k=1,3,
for each ¢ € RT. Then, since
T 0, n=1,3,
C k n = k — n—1
{ l(q )$} [n+1]qzq xk(q) q 7 77’_0727
k=0 [n+ 1,
we obtain
. 0, g<1
i = g1
Ao = a1y
q
This shows that z is in [¢] but not in c. Hence, the inclusion ¢ C [¢] is strict. This
completes the proof. a

Theorem 3.4. The inclusion ¢y C [&o] strictly holds for ¢ > 1.

Proof. To prove the validity of the inclusion ¢ C [&], let us take any y € ¢p. Then,
bearing in mind the regularity of the method C;(g*) for ¢ > 1 we immediately observe
that C;(¢*)y € co which means that y € [é]. Hence, the inclusion ¢y C [&)] holds. Now,
let us consider the sequence u = {ux(g)} defined by

ug(q) =
x(9) p
for each ¢ > 1. Then, we obtain that
1 - 11— (-1t
C1(¢")u = (-1 =
1(q) [n+1]qu% (=1 q 2[n + 1],
which shows that C;(g*)u — 0 as n — co. That is to say that u € [&]\co. O

Theorem 3.5. The inclusion [&] C [£] strictly holds.

Proof. 1t is clear that the inclusion [&] C [¢] holds. Further, to show that this inclusion
is strict, consider the sequence z = (zx) = (1) for all £ € N. Then, we obtain by (3.2) for
all k € N that

1 n
Ci(gd®)z = E ke, =1
1(q )x [n+ 1]q k:Oq T
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which shows that C;(¢*)z — 1 as n — oo . That is to say that C;(¢*)z € c\cp. Thus,
the sequence z is in [¢] but not in [&)]. Hence, the inclusion [&] C [€] is strict.
a

Theorem 3.6. The space £, does not include the spaces [&y] and [¢] for ¢ < 1.

Proof. For any fixed ¢ < 1, choosing an index sequence as r; = 7771 (j €N) and g = 0,
unbounded sequence v = {vr(q)} with

7
1
—, k=0,2,...andr; <k<7;
;q(ﬂrl) 7=
ve(q) = i 1 )
— = k=1,3,..andr, <k<r,
Z;¥@+D’ 3 BDATS S8 < T

is C1(¢*)—summable to 0. Hence, the sequence v = {v(g)} is in the space [&] but is not
in the space £o. This shows that the space £, does not include both the space [&] and
the space [¢], as desired. O

Because of the isomorphism T, defined in Theorem 3.2, is onto the inverse image of
the basis of those spaces cg and ¢ are the basis of the new spaces [&y] and [¢], respectively.
Therefore, we have the following:

Theorem 3.7. Define the sequence b'¥)(q) = {b%’c)(q)}neN of the elements of the space
(o] by

< <
(3.3) b¥)(g) = ksnsk+l

0, 0<n<korn>k+1

for every fized k € N. Then:
(i) The sequence {b®)(q)}rcn is a basis for the space [&] and any z € [&)] has a
untque representation of the form

2= Ml

where A\;(q) = {C1(¢®)z}x for all k € N.
(11) The set {z,b%)(q)} is a basis for the space [¢] and any z € [¢] has a unique
representation of the form

a:_lz—l—Z)\k ) — 15" (g),

where z = (1/¢%) and | = limy_. 00 {C1(q*)z}%.
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4. THE a—,f— AND Y—DUALS OF THE SPACES [&] AND [{]

In this section, we state and prove the theorems determining the a—, f— and y—duals
of the sequence spaces [&] and [€].
For the sequence spaces A and u, define the set S(A, u) by

(4.1) S p)={z=(2) Ew:zz = (z12) € pfor all z € A}

With the notation of (4.1), the a—, f— and y—duals of a sequence space A, which are
respectively denoted by A*, A\? and A7, are defined by

A* = S(\£1), M =S8(\es) and N = S(),bs).

We shall begin with to quote the lemmas, due to Stieglitz and Tietz [6], which are
needed in proving Theorems 4.3-4.5, below.

Lemma 4.1. A€ (cg:41) = (c:¥41) +f and only if

ZZank < o

neN keK

sup
N,KEF

Lemma 4.2. A€ (c:¢) if and only of

(4.2) lim app = ax, (k€N),
n—oo
(4.3) sup Z |ank| < oo,
neN
(4.4) nh_)ngo Zank ezists.

Theorem 4.1. The a—dual of the spaces [&] and [€] is the set

cl(q):{a:(ak) w: sup Z Z n k[k+1] BT,

NEKEF | N kek

<oof.

Proof. Let a = (ap,) € w and define the matrix B = (b,x) via the sequence a = (a,) by

nfk[k—’_l]q
- LA | _1<k<
by = (-1) o an, n—1<k<n . (nkEN).
0, 0<k<n-—-lork>n

Bearing in mind the relation (3.2) we immediately derive that

(4.5) anTn = »  (-1)" [k;rl] anr = (By)n, (n€N).
k=n—1

We therefore observe by (4.5) that az = (a,z,) € {; whenever = € [&] or [¢] if and only
if By € £; whenever y € ¢cg or c. Then, we derive by Lemma 4.1 that

sup ZZ nkk+1] La,| < oo

NEKEF | eN kek

which yields the result that {[é]}* = {[¢]}* = c1(q)- O
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23] <=}

ca(g) = {a = (ar) € w: ([k + 1qax) € Lo},

ag (227 k41
AlZE) =2
( gk ) ¢ gkt

for all k € N. Then, {[&]}° = ca(q) Ncs and {[&]}° = ca(q) Nea(q)-

Theorem 4.2. Define the sets c2(q) and c3(q) by

ex(0) = {a = () €w: b -+1]

k

and

where

Proof. Because of the proof may also be obtained for the space [&] in the similar way,
we omit it and give the proof only for the space [¢]. Consider the equation

n
§ QT =
k=0

%{Ue + Ugyp — [Klgye1}

=
1>
= O

3

a
= S+ 1]qA(q’,:)yk [+ Tgontn

k=0
(4.6) = (Ty)n, (n€N),
where T = (%) is defined by
[k+1]qA<Z:), 0<k<n—1
(4.7) bk = in + 1yan, ke ; (n,k €N).
0, kE>n

Thus, we deduce from Lemma 4.2 with (4.6) that az = (ax2i) € cs whenever z = (z3) €
[€] if and only if Ty € ¢ whenever y = (yx) € c. It is obvious that the columns of that
matrix T, defined by (4.7), are in the space c¢. Therefore, we derive the consequences

from (4.2), (4.3) and (4.4) that
ak

a = (ax) € cs,

> lk+1]

k

and

respectively. This shows that {[¢]}# = c2(g) Ncs. a
Theorem 4.3. The y—dual of the spaces [éy] and [E] is the set ca(g) N cs(q).-

Proof. The proof of this Theorem is similar to the proof the Theorem 4.2 and so we leave
the detail to the reader. O
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5. SOME MATRIX MAPPINGS RELATED TO ¢—CESARO SEQUENCE SPACES

In this section, we characterize the matrix mappings from [€] into some of the known
sequence spaces.
We shall write throughout for brevity that

~ a a a
Gnk = [k + 1]A (’;’“) [k + 1], ( ok ",;’ff)
q q q
for all n,k € N. We will also use the similar notation with other letters and use the
convention that any term with negative subscript is equal to naught. We shall begin with

two lemmas due to Wilansky [15, p.57 and p.128] which are needed in the proof of our
theorems.

Lemma 5.1. The matriz mappings between the BK—spaces are continuous.

Lemma 5.2. A € (c:4p) if and only if

(5.1) sup Z S g

FeF kEF

Theorem 5.1. A € ([¢] : ¢p) +f and only if

<oo, (1<p<oo)

() For 1 <p < oo,

(5.2) sup ank < 00,
B2
(5.3) Z |Gnk| < 00 for alln € N,
k

(5.4) {[k + 1]qank tren € cs for alln € N.

(vt) For p = o0, (5.4) holds, and
(5.5) sup Z |Gnk| < 00.

neN

Proof. Suppose the conditions (5.2)-(5.4) hold and take any z € [¢]. Then, {ank }ren €
{[&]}” for all n € N and this implies that Az exists. Let us define the matrix B = (b,y)
with by, = Gng for all n, k € N. Then, since (5.1) is satisfied for that matrix B we have
B € (c: £,). Let us now consider the following equality obtained from the m'" partial
sum of the series >, aniZs:

m
E AnkTr
k=0

-1

3

NGl

,_.o

3

(56) = &nkyk + [m + 1]qanmym; (n,m € N)

T
o

Following the way that used in the proof of Theorem 4.2, one can derive by combining
the conditions (5.3) and (5.4) that {[m + 1]qanm }men € co for each n € N. Thus, bearing
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in mind this fact if we pass to limit in (5.6) as m — oo then the second term on the right
hand term tends to zero and we derive that

(57) Z Anklr = Zankykn (n € N)
k k

which yields by taking £, —norm that
[ Azle, = [|BYlle, < co.

This means that A € ([¢] : £p).
Conversely, suppose that A € ([¢] : £p). Then, since [¢] and ¢, are the BK —spaces we
have from Lemma 5.1 that there exists some real constant X > 0 such that

(5.8) [Azle, < K - [l

for all z € [é]. Since the inequality (5.8) is also satisfied for the sequence z = (zx) =
DokeF b(¥)(q) belonging to the space [¢], where b(*)(q) = {b%k)(q)}neN is defined by (3.3),
we thus have for any F € F that

P\ 1/p

) <K-lalg

nmm=(2

n

§ ank

keF

which shows the necessity of (5.2).

Since A is applicable to the space [¢] by the hypothesis, the necessities of (5.3) and
(5.4) are trivial. This completes the proof of the part (i) of Theorem.

Since the part (ii) may also be proved in the similar way that of the part (i), we leave
the detailed proof to the reader. a

Theorem 5.2. A € ([¢]: ¢) if and only if (5.4) and (5.5) hold, and
(5.9) lim &, = ar for each k € N,

n—00
(5.10) lim. Z E—
k

Proof. Suppose that A satisfies the conditions (5.4), (5.5), (5.9) and (5.10). Let us take
any z = (z) in [€]. Then, Az exists and it is trivial that the sequence y = (yi) connected
with the sequence z = (z) by the relation (3.2) is in ¢ such that yx — [ as k — oo0. At
this stage, we observe from (5.9) and (5.5) that

k
Z los| < supz |Gn;| < o0
=0 neEN J

holds for every k € N. This leads us to the consequence that (o) € ¢;. Considering
(5.7), let us write

k k k

In this situation, by letting n — oo in (5.11) we see that the first term on the right tends
to >, ax(ye — 1) by (5.5) and (5.9), and the second term tends to la by (5.10) and we
thus have that

(Az), — Z ar(ye — ) + la
k
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which shows that A € ([¢] : ¢).
Conversely, suppose that A € ([¢] : ¢). Then, since the inclusion ¢ C £y holds, the
necessities of (5.4) and (5.5) are immediately obtained from Theorem 5.1. To prove the

necessity of (5.9), consider the sequence z = z(*) = {mgzk)(q)}neN € [¢] defined by

k1]
—1’“‘[7‘1, kE<n<k+1
Mg =] Y q* ==

0, 0<n<k—-lorn>k+1

for each k € N. Since Az exists and is in ¢ for every = € [¢], one can easily see that
Az®) = {&,1 Inen € c for each k € N which shows the necessity of (5.9).

Similarly by putting = e in (5.7), we also obtain that Az = {}", @nk}necy which
belongs to the space ¢ and this shows the necessity of (5.10). This step concludes the
proof. O

6. CONCLUSION

For the last thirty years, studies involving g—integers and their applications (for ex-
ample, g—analogs of positive linear operators and their approximation properties) have
become active research areas. During the same period a large number of research papers
on g—analogs of existing theories, involving interesting results, have been published (see
[11, 12, 13, 16, 17]). The motivation of the present paper is the following question "What
kind of results can be achieved by considering g—analogs of Cesaro matrices in the ex-
isting sequence spaces theory?" In the present paper, we introduce the sequence spaces
[6o] and [¢] and derive some results related to those sequence spaces. Furthermore, we
construct a basis and compute the a—, §— and y—duals of the spaces [&] and [¢]. Finally,
we characterize the matrix classes ([¢] : £,) and ([¢] : ¢), where 1 < p < 0.

Finally, we should note from now on that the investigation of the domain of some
particular g—limitation matrices, namely g—Cesaro means of order o, g—Fuler means of
order r, g—Riesz means, etc., in the spaces cp,c, 4 and ¢, will lead us to new results
which are not comparable with the present results.
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