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Q�CESÀRO SEQUENCE SPACES DERIVED BY Q�ANALOGUE

SERKAN DEM�R�Z1 AND ADEM �AH�N

Abstract. In the present paper, we mainly focus on q�analogs of the Cesàro se-
quence spaces. The q�Cesàro sequence spaces [~c0] and [~c] which are the BK�spaces
including the spaces c0 and c have been introduced and proved that the spaces [~c0]
and [~c] are linearly isomorphic to the spaces c0 and c, respectively. Additionally, the
��; �� and �duals of the spaces [~c0] and [~c] have been computed and their basis
have been constructed. Finally, the necessary and su�cient conditions on an in�nite
matrix belonging to the classes ([~c] : `p) and ([~c] : c) have been determined, where
1 � p � 1.

1. Introduction

By !, we shall denote the space of all real valued sequences. Any vector subspace of !

is called as a sequence space. We shall write `1; c and c0 for the spaces of all bounded,

convergent and null sequences, respectively. Also by bs; cs; `1 and `p ; we denote the spaces

of all bounded, convergent, absolutely and p� absolutely convergent series, respectively;

where 1 < p <1.

A sequence space � with a linear topology is called a K-space provided each of the

maps pi : � ! C de�ned by pi(x) = xi is continuous for all i 2 N; where C denotes

the complex �eld and N = f0; 1; 2; :::g. A K-space � is called an FK-space provided �

is a complete linear metric space. An FK-space whose topology is normable is called a

BK-space (see [2, p.272-273]).

Let �; � be two sequence spaces and A = (ank) be an in�nite matrix of real or complex

numbers ank, where n; k 2 N. Then, we say that A de�nes a matrix mapping from �

into �, and we denote it by writing A : � ! �, if for every sequence x = (xk) 2 � the

sequence Ax = f(Ax)ng, the A-transform of x, is in �; where

(1.1) (Ax)n =
X
k

ankxk; (n 2 N):

For simplicity in notation, here and in what follows, the summation without limits runs

from 0 to1. By (� : �), we denote the class of all matrices A such that A : �! �. Thus,
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A 2 (� : �) if and only if the series on the right side of (1.1) converges for each n 2 N

and every x 2 �, and we have Ax = f(Ax)ngn2N 2 � for all x 2 �. A sequence x is said

to be A-summable to � if Ax converges to � which is called as the A-limit of x.

If a normed sequence space � contains a sequence (bn) with the property that for every

x 2 � there is a unique sequence of scalars (�n) such that

lim
n!1

kx� (�0b0 + �1b1 + :::+ �nbn)k = 0;

then (bn) is called a Schauder basis (or brie�y basis) for �. The series
P

�kbk which

has the sum x is then called the expansion of x with respect to (bn), and written as

x =
P

�kbk.

For a sequence space �, the matrix domain �A of an in�nite matrix A is de�ned by

(1.2) �A = fx = (xk) 2 ! : Ax 2 �g ;

which is a sequence space. The new sequence space �A generated by the limitation matrix

A from the space � either includes the space � or is included by the space �, in general,

i.e., the space �A is the expansion or the contraction of the original space �. The sequence

space cA := fx = (xk) 2 ! : Ax 2 cg is called the convergence domain of A. The matrix

A is said to be conservative if the convergence of the sequence x implies the convergence

of A(x), (or equivalently c � cA). In addition, if A(x) converges to the limit x, for

each convergent sequence x, then it is called regular. The following theorem states the

well known characterization of conservative matrices and can be found in any standard

summability book [1].

Theorem 1.1. An in�nite matrix A = (ank) n; k = 0; 1; 2; ::: is conservative if and

only if

(i) limn!1 ank = �k for each k = 0; 1; :::

(ii) limn!1

P
k ank = �, and

(iii) supn
P

k jankj �M <1 for some M > 0.

Here, of course, the limits �k and � are �nite. If �k = 0 for all k and � = 1 then

the above theorem reduces to the well known theorem of Silverman and Toeplitz which

provides necessary and su�cient conditions for regularity of the in�nite matrix A =

(ank) n; k = 0; 1; 2; :::.

The approach constructing a new sequence space by means of the matrix domain of

a particular limitation method has been recently employed by Wang [7], Ng and Lee [5],

Malkowsky [4] and Altay and Ba³ar [3, 8]. They introduced the sequence spaces (`p)Nq

in [7], (`p)C1
= Xp in [5], (`1)Rt = rt1; cRt = rtc and (c0)Rt = rt0 in [4] and (`p)Er = erp

in [3]; where Nq; C1; R
t and Er denote the Nörlund, arithmetic, Riesz and Euler means,

respectively and 1 � p � 1. �engönül and Ba³ar [9] have studied the sequence spaces

~c0 = (c0)C1
and ~c = cC1

; where C1 denotes the matrix C1 = (cnk) de�ned by

cnk =

8<
:

1

n+ 1
; 0 � k � n;

0; k > n;

for all n; k 2 N, and denote the collection of all �nite subsets of N by F . We will also use

the convention that any term with negative subscript is equal to naught.
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In the present paper, we introduce the sequence spaces [~c0] and [~c] and derive some

results related to those sequence spaces. Furthermore, we construct a basis and compute

the ��; �� and �duals of the spaces [~c0] and [~c]. Finally, we characterize the matrix

classes ([~c] : `p) and ([~c] : c), where 1 � p � 1.

2. q�Cesàro Methods

In this section, we will �rst brie�y mention about the Cesaro methods. Later, we will

give de�nition of q�Cesaro method.

De�nition 2.1. Let � be a real number with �� =2 N then the regular matrices

C� = (c�nk) de�ned by

c�nk =

8>>>>>><
>>>>>>:

�
n� k + �� 1

n� k

�
�
n+ �

n

� ; (0 � k � n)

0; (k > n)

and the associated matrix summability methods, are called the Cesàro matrix and

Cesàro summability method of order �, respectively.

In particular if we choose � = 1, we get the �rst order Cesàro matrix C1 with the

following explicit form,

C1 =

2
66666666666666666664

1 0 0 0 0 0 � � �

1

2

1

2
0 0 0 0 � � �

1

3

1

3

1

3
0 0 0 � � �

...
...

...
...

...
...

...

1

n+ 1

1

n+ 1

1

n+ 1
� � �

1

n+ 1
0 � � �

...
...

...
...

...
. . .

...

3
77777777777777777775

:

Corresponding summability method is called the �rst order Cesàro summability method

and denoted by (C; 1). The Cesàro methods have played a central role in connection

with the applications of summability theory to di�erent branches of mathematics. The

following theorem is the direct result of the theorem of Silverman and Toeplitz which

provides necessary and su�cient conditions for regular matrices.

Theorem 2.1. (i) If � � 0, then C� is regular.

(ii) If � < 0, then C� is not conservative or regular.
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We now give a brief introduction to the symbols of q�mathematics and q�Cesàro

matrices. The subject of q�mathematics has many applications in mathematics and the

beginnings of q�mathematics date back to time of Euler.

De�nition 2.2. The value [r]q denotes the q�integer of r, which is given by

[r]q =

8<
:

1� qr

1� q
; q 2 R+ � f1g

r; q = 1:

For a given q > 0 let us de�ne

Nq = f[r] : r 2 Ng:

We see from the de�nition of [r]q that

(2.1) Nq = f0; 1; 1 + q; 1 + q + q2; 1 + q + q2 + q3; :::g:

Obviously, if we put q = 1 in (2.1), the set of all q�integers Nq reduces to the set of all

natural numbers, the set of nonnegative integers N.

De�nition 2.3. Given a value q > 0, q�shifted factorial is de�ned as

(a; q)n = (1� a)(1� aq):::(1� aqn�1)

for all n � 1 and

(a; q)0 = 1:

The in�nite version of this product is de�ned by

(a; q)1 = lim
n!1

(a; q)n:

Then one can de�ne the q�analogue of the factorial, the q�factorial, as

[n]q! =

8<
:

q � 1

q � 1
�
q2 � 1

q � 1
� ::: �

qn � 1

q � 1
; n = 1; 2; :::

1; n = 0:

De�nition 2.4. For any integer n and k, q�binomial coe�cient is de�ned by

(2.2)

�
n

k

�
=

(q; q)n
(q; q)k(q; q)n�k

for any n � k � 0.

Another way to write (2.2) is �
n

k

�
=

[n]!

[n� k]![k]!

which satis�es the following two pascal rules:�
n

j

�
=

�
n� 1

j � 1

�
+ qj

�
n� 1

j

�

and �
n

j

�
= qn�j

�
n� 1

j � 1

�
+

�
n� 1

j

�

where 1 � j � n� 1.
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For the last thirty years, studies involving q�integers and their applications (for ex-

ample, q�analogs of positive linear operators and their approximation properties) have

become active research areas. During the same period a large number of research papers

on q�analogs of existing theories, involving interesting results, have been published (see

[11, 12, 13]). The motivation of the present paper is the following question "What kind

of results can be achieved by considering q�analogs of Cesàro matrices in the existing

sequence spaces theory?"

There are many ways to de�ne q�analogs of Cesàro matrices. In the following theorem,

we suggest a suitable q�analog of the Cesàro matrix of order one.

Theorem 2.2. [10, Theorem 6] C1(q
k) = (c1nk(q

k)) with

(2.3) c1nk(q
k) =

8<
:

qk

[n+ 1]q
; 0 � k � n

0; k > n

for all n; k 2 N.

The matrix method C1(q
k) and the corresponding summability method are called

q�Cesàro matrix and q�Cesàro summability method of order one, respectively.

In the rest of this paper we shall focus on the matrix C1(q
k) which has the following

explicit form;

C1(q
k) =

2
666666666666666666666664

1 0 0 0 0 0 � � �

1

[2]q

q

[2]q
0 0 0 0 � � �

1

[3]q

q

[3]q

q2

[3]q
0 0 0 � � �

...
...

...
...

...
...

...

1

[n+ 1]q

q

[n+ 1]q

q2

[n+ 1]q
� � �

qn

[n+ 1]q
0 � � �

...
...

...
...

...
. . .

...

3
777777777777777777777775

:

Theorem 1.1 give us the following characterization for C1(q
k):

Theorem 2.3. [10, Lemma 7] (i) C1(q
k) is conservative for each q 2 R+,

(ii) C1(q
k) is regular for each q � 1.

3. The q�Cesàro sequence spaces [~c0] and [~c]

We introduce the sequence spaces [~c0] and [~c], as the set of all sequences such that

C1(q
k)�transforms of them are in the spaces c0 and c, that is
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[~c0] =

�
x = (xk) 2 ! : lim

n!1

1

[n+ 1]q

nX
k=0

qkxk = 0

�

and

[~c] =

�
x = (xk) 2 ! : lim

n!1

1

[n+ 1]q

nX
k=0

qkxk exists

�
;

where C1(q
k) denotes the method of q�Cesàro matrix of order one de�ned by (2.3). With

the notation of (1.2), we can rede�ne the spaces [~c0] and [~c] by

(3.1) [~c0] = fc0gC1(qk) and [~c] = fcgC1(qk):

If � is any normed sequence space then we call the matrix domain f�gC1(qk) as the

q�Cesàro sequence space. De�ne the sequence y = (y
q
k), which will be frequently used,

as the C1(q
k)�transform of a sequence x = (xk), i.e.,

(3.2) y
q
k =

1

[k + 1]q

kX
j=0

qjxj ; (k 2 N):

Now, we may begin with the following theorem which is essential in the text.

Theorem 3.1. The sets [~c0] and [~c] are linear spaces with coordinatewise addition

and scalar multiplication that are BK�spaces with norm kxk[~c0] = kxk[~c] = kxk`1 .

Proof. The proof of the �rst part of the theorem is a routine veri�cation, and so we

omit it. Furthermore, since (3.1) holds, c0 and c are BK�spaces with respect to their

natural norm (see [14, pp.217-218]), and the matrix C1(q
k) is normal, i.e., c1nn(q

k) 6= 0

and c1nk(q
k) = 0, k > n, for all k; n 2 N, Theorem 4.3.2 of Wilansky [15, pp.61] implies

that the spaces [~c0] and [~c] are BK�spaces. �

Theorem 3.2. The q�Cesàro sequence spaces [~c0] and [~c] are linearly isomorphic to

the spaces c0 and c, respectively, i.e., [~c0] �= c0 and [~c] �= c.

Proof. To prove this, we should show the existence of a linear bijection between the

spaces [~c0] and c0. Consider the transformation T de�ned, with the notation of (3.2),

from [~c0] to c0 by x 7! y = Tx. The linearity of T is clear. Further, it is trivial that

x = � = (0; 0; 0; :::) whenever Tx = � and hence T is injective.

Let y 2 c0 and de�ne the sequence x = (x
q
k) by

x
q
k =

[k + 1]q
qk

yk �
[k]q
qk

yk�1; (k 2 N):

Then, we have

lim
n!1

1

[n+ 1]q

nX
k=0

qkx
q
k = lim

n!1

1

[n+ 1]q

nX
k=0

qk
�
[k + 1]q
qk

yk �
[k]q
qk

yk�1

�
= lim

n!1
yn = 0

which says us that x 2 [~c0]. Additionally, we observe that

kxk[~c0] = sup
n2N

���� 1

[n+ 1]q

nX
k=0

qk
�
[k + 1]q
qk

yk �
[k]q
qk

yk�1

�����
= sup

n2N
jynj = kykc0 <1:
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Consequently, we see from here that T is surjective and is norm preserving. Hence, T

is a linear bijection which therefore shows us that the spaces [~c0] and c0 are linearly

isomorphic, as was desired. �

We can now give theorems on inclusion relations concerning the spaces [~c0] and [~c].

Theorem 3.3. The inclusion c � [~c] strictly holds for each q 2 R+.

Proof. To prove the validity of the inclusion c � [~c], let us take any y 2 c. Since, the

method C1(q
k) is conservative for each q 2 R+ we immediately observe that C1(q

k)y 2 c

which means that y 2 [~c]. Hence, the inclusion c � [~c] holds. Furthermore, let us consider

the sequence x = fxk(q)g de�ned by

xk(q) =

8><
>:

1

q
; k = 0; 2; :::

�1

q2
; k = 1; 3; :::

for each q 2 R+. Then, since

fC1(q
k)xgn =

1

[n+ 1]q

nX
k=0

qkxk(q) =

8<
:

0; n = 1; 3; :::
qn�1

[n+ 1]q
; n = 0; 2; :::

we obtain

lim
n!1

fC1(q
k)xgn =

8<
:

0; q � 1
q � 1

q2
; q > 1

:

This shows that x is in [~c] but not in c. Hence, the inclusion c � [~c] is strict. This

completes the proof. �

Theorem 3.4. The inclusion c0 � [~c0] strictly holds for q � 1.

Proof. To prove the validity of the inclusion c0 � [~c0], let us take any y 2 c0. Then,

bearing in mind the regularity of the method C1(q
k) for q � 1 we immediately observe

that C1(q
k)y 2 c0 which means that y 2 [~c0]. Hence, the inclusion c0 � [~c0] holds. Now,

let us consider the sequence u = fuk(q)g de�ned by

uk(q) =
(�1)k

q

for each q � 1. Then, we obtain that

C1(q
k)u =

1

[n+ 1]q

nX
k=0

qk(�1)k
1

q
=

1� (�1)n+1

2[n+ 1]q

which shows that C1(q
k)u! 0 as n!1. That is to say that u 2 [~c0]nc0. �

Theorem 3.5. The inclusion [~c0] � [~c] strictly holds.

Proof. It is clear that the inclusion [~c0] � [~c] holds. Further, to show that this inclusion

is strict, consider the sequence x = (xk) = (1) for all k 2 N. Then, we obtain by (3.2) for

all k 2 N that

C1(q
k)x =

1

[n+ 1]q

nX
k=0

qkxk = 1
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which shows that C1(q
k)x ! 1 as n ! 1 . That is to say that C1(q

k)x 2 cnc0. Thus,

the sequence x is in [~c] but not in [~c0]. Hence, the inclusion [~c0] � [~c] is strict.

�

Theorem 3.6. The space `1 does not include the spaces [~c0] and [~c] for q � 1.

Proof. For any �xed q � 1, choosing an index sequence as rj = jj+1 (j 2 N) and r0 = 0,

unbounded sequence v = fvk(q)g with

vk(q) =

8>>>><
>>>>:

jX
i=0

1

q(i+ 1)
; k = 0; 2; ::: and rj � k < rj+1

jX
i=0

�1

q2(i+ 1)
; k = 1; 3; ::: and rj � k < rj+1

;

is C1(q
k)�summable to 0. Hence, the sequence v = fvk(q)g is in the space [~c0] but is not

in the space `1. This shows that the space `1 does not include both the space [~c0] and

the space [~c], as desired. �

Because of the isomorphism T , de�ned in Theorem 3.2, is onto the inverse image of

the basis of those spaces c0 and c are the basis of the new spaces [~c0] and [~c], respectively.

Therefore, we have the following:

Theorem 3.7. De�ne the sequence b(k)(q) = fb
(k)
n (q)gn2N of the elements of the space

[~c0] by

(3.3) b(k)n (q) =

8<
:

(�1)k�n
[k + 1]q
qk

; k � n � k + 1

0; 0 � n < k or n > k + 1

for every �xed k 2 N. Then:

(i) The sequence fb(k)(q)gk2N is a basis for the space [~c0] and any x 2 [~c0] has a

unique representation of the form

x =
X
k

�k(q)b
(k)(q);

where �k(q) = fC1(q
k)xgk for all k 2 N.

(ii) The set fz; b(k)(q)g is a basis for the space [~c] and any x 2 [~c] has a unique

representation of the form

x = lz +
X
k

[�k(q)� l]b(k)(q);

where z = (1=qk) and l = limk!1fC1(q
k)xgk.
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4. The ��; �� and �duals of the spaces [~c0] and [~c]

In this section, we state and prove the theorems determining the ��; �� and �duals

of the sequence spaces [~c0] and [~c].

For the sequence spaces � and �, de�ne the set S(�; �) by

(4.1) S(�; �) = fz = (zk) 2 ! : xz = (xkzk) 2 � for all x 2 �g:

With the notation of (4.1), the ��; �� and �duals of a sequence space �, which are

respectively denoted by ��; �� and � , are de�ned by

�� = S(�; `1); �� = S(�; cs) and � = S(�; bs):

We shall begin with to quote the lemmas, due to Stieglitz and Tietz [6], which are

needed in proving Theorems 4.3-4.5, below.

Lemma 4.1. A 2 (c0 : `1) = (c : `1) if and only if

sup
N;K2F

����
X
n2N

X
k2K

ank

���� <1:

Lemma 4.2. A 2 (c : c) if and only if

(4.2) lim
n!1

ank = �k; (k 2 N);

(4.3) sup
n2N

X
k

jankj <1;

(4.4) lim
n!1

X
k

ank exists:

Theorem 4.1. The ��dual of the spaces [~c0] and [~c] is the set

c1(q) =

�
a = (ak) 2 ! : sup

N;K2F

����
X
n2N

X
k2K

(�1)n�k
[k + 1]q
qn

an

���� <1

�
:

Proof. Let a = (an) 2 ! and de�ne the matrix B = (bnk) via the sequence a = (an) by

bnk =

8<
:

(�1)n�k
[k + 1]q
qn

an; n� 1 � k � n

0; 0 � k < n� 1 or k > n
; (n; k 2 N):

Bearing in mind the relation (3.2) we immediately derive that

(4.5) anxn =

nX
k=n�1

(�1)n�k
[k + 1]q
qn

anyk = (By)n; (n 2 N):

We therefore observe by (4.5) that ax = (anxn) 2 `1 whenever x 2 [~c0] or [~c] if and only

if By 2 `1 whenever y 2 c0 or c. Then, we derive by Lemma 4.1 that

sup
N;K2F

����
X
n2N

X
k2K

(�1)n�k
[k + 1]q
qn

an

���� <1

which yields the result that f[~c0]g
� = f[~c]g� = c1(q). �
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Theorem 4.2. De�ne the sets c2(q) and c3(q) by

c2(q) =

�
a = (ak) 2 ! :

X
k

[k + 1]q

�����
�
ak
qk

����� <1

�

and

c3(q) = fa = (ak) 2 ! : ([k + 1]qak) 2 `1g;

where

�

�
ak
qk

�
=

ak
qk

�
ak+1

qk+1

for all k 2 N. Then, f[~c]g� = c2(q) \ cs and f[~c0]g
� = c2(q) \ c3(q).

Proof. Because of the proof may also be obtained for the space [~c0] in the similar way,

we omit it and give the proof only for the space [~c]. Consider the equation

nX
k=0

akxk =

nX
k=0

ak
qk
�
[k + 1]qyk � [k]qyk�1

	

=

n�1X
k=0

[k + 1]q�

�
ak
qk

�
yk + [n+ 1]qanyn

= (Ty)n; (n 2 N);(4.6)

where T = (tnk) is de�ned by

(4.7) tnk =

8>><
>>:

[k + 1]q�

�
ak
qk

�
; 0 � k � n� 1

[n+ 1]qan; k = n

0; k > n

; (n; k 2 N):

Thus, we deduce from Lemma 4.2 with (4.6) that ax = (akxk) 2 cs whenever x = (xk) 2

[~c] if and only if Ty 2 c whenever y = (yk) 2 c. It is obvious that the columns of that

matrix T , de�ned by (4.7), are in the space c. Therefore, we derive the consequences

from (4.2), (4.3) and (4.4) that

X
k

[k + 1]q

�����
�
ak
qk

����� <1

and

a = (ak) 2 cs;

respectively. This shows that f[~c]g� = c2(q) \ cs. �

Theorem 4.3. The �dual of the spaces [~c0] and [~c] is the set c2(q) \ c3(q).

Proof. The proof of this Theorem is similar to the proof the Theorem 4.2 and so we leave

the detail to the reader. �
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5. Some Matrix Mappings Related to q�Cesàro Sequence Spaces

In this section, we characterize the matrix mappings from [~c] into some of the known

sequence spaces.

We shall write throughout for brevity that

~ank = [k + 1]q�

�
ank
qk

�
= [k + 1]q

�
ank
qk

�
an;k+1

qk+1

�

for all n; k 2 N. We will also use the similar notation with other letters and use the

convention that any term with negative subscript is equal to naught. We shall begin with

two lemmas due to Wilansky [15, p.57 and p.128] which are needed in the proof of our

theorems.

Lemma 5.1. The matrix mappings between the BK�spaces are continuous.

Lemma 5.2. A 2 (c : `p) if and only if

(5.1) sup
F2F

X
n

����
X
k2F

ank

����
p

<1; (1 � p <1):

Theorem 5.1. A 2 ([~c] : `p) if and only if

(i) For 1 � p <1,

(5.2) sup
F2F

X
n

����
X
k2F

~ank

����
p

<1;

(5.3)
X
k

j~ankj <1 for all n 2 N;

(5.4) f[k + 1]qankgk2N 2 cs for all n 2 N:

(ii) For p =1, (5.4) holds, and

(5.5) sup
n2N

X
k

j~ankj <1:

Proof. Suppose the conditions (5.2)-(5.4) hold and take any x 2 [~c]. Then, fankgk2N 2

f[~c]g� for all n 2 N and this implies that Ax exists. Let us de�ne the matrix B = (bnk)

with bnk = ~ank for all n; k 2 N. Then, since (5.1) is satis�ed for that matrix B we have

B 2 (c : `p). Let us now consider the following equality obtained from the mth partial

sum of the series
P

k ankxk:

mX
k=0

ankxk =

m�1X
k=0

[k + 1]q�

�
ank
qk

�
yk + [m+ 1]qanmym

=

m�1X
k=0

~ankyk + [m+ 1]qanmym; (n;m 2 N):(5.6)

Following the way that used in the proof of Theorem 4.2, one can derive by combining

the conditions (5.3) and (5.4) that f[m+1]qanmgm2N 2 c0 for each n 2 N. Thus, bearing
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in mind this fact if we pass to limit in (5.6) as m!1 then the second term on the right

hand term tends to zero and we derive that

(5.7)
X
k

ankxk =
X
k

~ankyk; (n 2 N)

which yields by taking `p�norm that

kAxk`p = kByk`p <1:

This means that A 2 ([~c] : `p).

Conversely, suppose that A 2 ([~c] : `p). Then, since [~c] and `p are the BK�spaces we

have from Lemma 5.1 that there exists some real constant K > 0 such that

(5.8) kAxk`p � K � kxk[~c]

for all x 2 [~c]. Since the inequality (5.8) is also satis�ed for the sequence x = (xk) =P
k2F b

(k)(q) belonging to the space [~c], where b(k)(q) = fb
(k)
n (q)gn2N is de�ned by (3.3),

we thus have for any F 2 F that

kAxk`p =

�X
n

����
X
k2F

~ank

����
p�1=p

� K � kxk[~c]

which shows the necessity of (5.2).

Since A is applicable to the space [~c] by the hypothesis, the necessities of (5.3) and

(5.4) are trivial. This completes the proof of the part (i) of Theorem.

Since the part (ii) may also be proved in the similar way that of the part (i), we leave

the detailed proof to the reader. �

Theorem 5.2. A 2 ([~c] : c) if and only if (5.4) and (5.5) hold, and

(5.9) lim
n!1

~ank = �k for each k 2 N;

(5.10) lim
n!1

X
k

~ank = �:

Proof. Suppose that A satis�es the conditions (5.4), (5.5), (5.9) and (5.10). Let us take

any x = (xk) in [~c]. Then, Ax exists and it is trivial that the sequence y = (yk) connected

with the sequence x = (xk) by the relation (3.2) is in c such that yk ! l as k ! 1. At

this stage, we observe from (5.9) and (5.5) that

kX
j=0

j�j j � sup
n2N

X
j

j~anj j <1

holds for every k 2 N. This leads us to the consequence that (�k) 2 `1. Considering

(5.7), let us write

(5.11)
X
k

ankxk =
X
k

~ank(yk � l) + l
X
k

~ank:

In this situation, by letting n!1 in (5.11) we see that the �rst term on the right tends

to
P

k �k(yk � l) by (5.5) and (5.9), and the second term tends to l� by (5.10) and we

thus have that

(Ax)n !
X
k

�k(yk � l) + l�
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which shows that A 2 ([~c] : c).

Conversely, suppose that A 2 ([~c] : c). Then, since the inclusion c � `1 holds, the

necessities of (5.4) and (5.5) are immediately obtained from Theorem 5.1. To prove the

necessity of (5.9), consider the sequence x = x(k) = fx
(k)
n (q)gn2N 2 [~c] de�ned by

x(k)n (q) =

8<
:

(�1)k�n
[k + 1]q
qk

; k � n � k + 1

0; 0 � n � k � 1 or n > k + 1

for each k 2 N. Since Ax exists and is in c for every x 2 [~c], one can easily see that

Ax(k) = f~ankgn2N 2 c for each k 2 N which shows the necessity of (5.9).

Similarly by putting x = e in (5.7), we also obtain that Ax = f
P

k ~ankgn2N which

belongs to the space c and this shows the necessity of (5.10). This step concludes the

proof. �

6. Conclusion

For the last thirty years, studies involving q�integers and their applications (for ex-

ample, q�analogs of positive linear operators and their approximation properties) have

become active research areas. During the same period a large number of research papers

on q�analogs of existing theories, involving interesting results, have been published (see

[11, 12, 13, 16, 17]). The motivation of the present paper is the following question "What

kind of results can be achieved by considering q�analogs of Cesàro matrices in the ex-

isting sequence spaces theory?" In the present paper, we introduce the sequence spaces

[~c0] and [~c] and derive some results related to those sequence spaces. Furthermore, we

construct a basis and compute the ��; �� and �duals of the spaces [~c0] and [~c]. Finally,

we characterize the matrix classes ([~c] : `p) and ([~c] : c), where 1 � p � 1.

Finally, we should note from now on that the investigation of the domain of some

particular q�limitation matrices, namely q�Cesàro means of order �, q�Euler means of

order r, q�Riesz means, etc., in the spaces c0; c; `1 and `p will lead us to new results

which are not comparable with the present results.
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