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INTEGRATED SEMIGROUPS AND ONCE INTEGRATED GROUP OF

ROTATION IN THE COMPLEX PLANE

RAMIZ VUGDALI�

Abstract. We prove two theorems for ��times integrated semigroups
�
� 2 R+

�
;

and analyze the geometric meaning of once integrated group of rotation in the complex
plane.

1. Introduction

The semigroup theory of operators and integrated semigroups of operators in Banach

space is very well developed and many mathematicians have been developing the theory.

Hille and Phillips in [5] have proved several formulas, so called exponentially formulas,

for strongly continuous semigroups. Also, Pazy in [10], Butzer and Berens in [3], and

some other authors have proved those or similar formulas in di�erent ways. Arendt in [1]

introduces the notion of 1�times (or once) integrated semigroup. Later, Kellermann in

[6], Arendt in [2] and Neubrander in [9] have developed the theory of n�times integrated

semigroups (n 2 N): The motivation for de�nition of n�times integrated semigroup was

n�times successive integration of strongly continuous semigroup of operators. Hieber in

[4] introduces ��times integrated semigroups (� 2 R+): In [8] authors have obtained

generalizations of some earlier results and some applications of ��times integrated semi-

groups (� 2 R+): Generalizations of some exponential formulas for strongly continuous

semigroups to integrated semigroups have been proven in [12], [13] and [15]. Maslov

and Fedoryuk in [7] have obtained a result for strongly continuosly group of linear and

bounded operators, using the method of stationary phase. Motivated by that, in [14]

authors have obtained the certain result for once integrated group of linear and expo-

nentially bounded operators in a Banach space. In this paper we give some other results

for ��times integrated semigroups (� 2 R+): Also, we analyze the geometric meaning of

once integrated group of rotation in the complex plane.
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2. Results

Some important preliminaries and results from the theory of semigroups and integrated

semigroups of operators in a Banach space one can �nd for example in [3, 5, 8, 9, 10, 11,

12]. Here we give and prove two theorems for integrated semigroups and later analyze

once integrated group of rotation in the complex plane, and explain geometric meaning

of integrated group of rotation.

De�nition 2.1. The integral of order � of the function f(t) (t � 0) (� 2 R+); or

��times integrated function f(t); is the function g(t) := 1
�(�)

tR
0

(t�s)��1f(s)ds; where

� is the gamma function.

Theorem 2.1. The integral of order 1�� of ��times integrated function f(t) (t � 0)

for 0 < � < 1 is once integrated function.

Proof. The function g(t) := 1
�(�)

tR
0

(t� s)��1f(s)ds is ��times integrated function f(t):

The integral of order 1� � of g(t) is equal

1

�(1� �)

tZ
0

(t� s)(1��)�1g(s)ds =
1

�(1� �)�(�)

tZ
0

(t� s)��ds

sZ
0

(s� u)��1f(u)du:

Therefore, we need to prove that for 0 < � < 1 holds

(2.1)
1

�(1� �)�(�)

tZ
0

(t� s)��ds

sZ
0

(s� u)��1f(u)du =

tZ
0

f(u)du

With that in mind we consider the integral

I =

tZ
0

(t� s)��ds

sZ
0

(s� u)��1f(u)du:

If we interchange the order of integration , then

I =

tZ
0

f(u)du

tZ
u

(t� s)��(s� u)��1ds =

tZ
0

f(u)I1du;

where

I1 =

tZ
u

(t� s)��(s� u)��1ds:

The substitution s� u = z gives

I1 =

t�uZ
0

(t� u� z)��z��1dz:
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The substitution z
t�u

= w gives further

I1 =

1Z
0

(1� w)��w��1dw = B(�; 1� �) =
�(�)�(1� �)

�(�+ 1� �)
;

where B is the beta function. Since �(1) = 1; then we have I1 = �(�)�(1 � �) and

I = �(�)�(1� �)
tR
0

f(u)du: Hence, (2.1) holds. �

Specially, if in Theorem 2.1 we put f(t) = T (t); where T (t) (t � 0) is a strongly

continuous semigroup of operators in a Banach space, then we obtain the next result.

Corollary 2.1. The integral of order 1�� of ��times integrated strongly continuous

semigroup T (t) (t � 0) for 0 < � < 1 is once integrated semigroup S(t) =
tR
0

T (u)du

(t � 0):

The motivation for the following investigation is a Hille-Phillips result for semigroups

of operators of class (0, A) in a Banach space (Theorem 6.3.2. and Theorem 11.6.2. in

[5]) and Theorem 3.3. in [12]. Hille and Phillips in [5] have proved the next theorem.

Theorem 2.2. [5; Theorem 11:6:2:] Let T (t) (t � 0) be a semigroup of class (0,

A) on a Banach space X such that kT (t)k � Me!0t for all t � 0 and for suitable

constants M � 1 and !0 � 0: If A is the in�nitesimal generator of T (t) (t � 0); then

T (t)x = (C; 1)� lim
!!1

1

2�i


+i!Z

�i!

e�tR(�;A)xd�;

for every x 2 X, t � 0; 
 > !0: Here (C,1)-lim means Cesaro-1 limit.

De�nition 2.2. [5; 12] Let f(!) be a function on [0;1) with values in a complex

Banach space X; such that for every � > 0; e��!f(!) 2 L ([0;1) ; X) (the space of

linear bounded functions from [0;1) into X). Then, for � > 0; the Cesaro-� limit

of the function f(!) as ! !1 is de�ned

(C; �)� lim
!!1

f(!) := lim
T!1

�

T �

TZ
0

(T � !)
��1

f(!)d!:

In [12] it is proved the next result for integrated semigroups.

Theorem 2.3. [12; Theorem 3:3:] Let S(t) (t � 0) be an ��times integrated expo-

nentially bounded semigroup de�ned on a Banach space X (� 2 R+); with generator

A: Let M � 0 and !0 2 R satisfy kS(t)k � Me!0t for all t � 0: Let 0 < � < 1: If


 > max (!0; 0) ; x 2 X and t � 0; then we have

S(t)x = (C; �)� lim
!!1

1

2�i


+i!Z

�i!

e�t
R(�;A)x

��
d�;

and the limit is uniform in t on any bounded interval [a; b] � [0;1) :
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Remark 2.1. From Corollary 3.1. in [12] it follows that the assertion of Theorem

2.3 holds for every � > 0:

In this paper we want to prove the assertion specially for � = 1 in a di�erent way.

Theorem 2.4. Let S(t) (t � 0) be an ��times integrated exponentially bounded

semigroup de�ned on a Banach space X (� 2 R+); with generator A; and let R(�;A)

be the resolvent of operator A: Let the constants M � 1 and !0 � 0 satisfy kS(t)k �

Me!0t for all t � 0: If 
 > !0; x 2 X and t � 0; then we have

S(t)x = (C; 1)� lim
!!1

1

2�i


+i!Z

�i!

e�t
R(�;A)x

��
d�:

Proof. First of all we want to prove that for every x 2 X it holds

(2.2)

(C; 1)� lim
!!1

1

2�i


+i!Z

�i!

e�t
R(�;A)x

��
d� = lim

T!1

1

2�

TZ
�T

�
1�

j� j

T

�
e(
+i�)t

R(
 + i�; A)x

(
 + i� )
� d�

Using De�nition 2.2 for � = 1 and interchanging the order of integration we obtain

(C; 1)� lim
!!1

1

2�i


+i!Z

�i!

e�t
R(�;A)x

��
d� = lim

T!1

1

T

TZ
0

d!
1

2�i


+i!Z

�i!

e�t
R(�;A)x

��
d�

= lim
T!1

1

2�T

TZ
0

d!

!Z
�!

e(
+i�)t
R(
 + i�; A)x

(
 + i� )
� d�

= lim
T!1

1

2�T

2
4

0Z
�T

e(
+i�)t
R(
 + i�; A)x

(
 + i� )
� d�

TZ
��

d! +

TZ
0

e(
+i�)t
R(
 + i�; A)x

(
 + i� )
� d�

TZ
�

d!

3
5

= lim
T!1

1

2�T

2
4

0Z
�T

(T + � ) e(
+i�)t
R(
 + i�; A)x

(
 + i� )
� d� +

TZ
0

(T � � ) e(
+i�)t
R(
 + i�; A)x

(
 + i� )
� d�

3
5

= lim
T!1

1

2�

TZ
�T

�
1�

j� j

T

�
e(
+i�)t

R(
 + i�; A)x

(
 + i� )
� d�

Hence, (2.2) holds. It is known that for all � 2 C with Re� > !0 it holds

(2.3)
R(�;A)

��
=

1Z
0

e��tS(t)dt

For that � it is



R(�;A)��




 � M

Re��!0
: Then, for � = 
+ i� it is




e�t R(�;A)��




 � e
t M

�!0

:

Hence, for every ! 2 R and for every x 2 X; the integral

+i!R

�i!

e�t
R(�;A)x

��
d� absolute
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converges. Let � = 
 + i� and 
 > !0: Then from (2.3) we have

(2.4)
R(
 + i�; A)

(
 + i� )
� =

1Z
0

e�(
+i�)tS(t)dt

For any �xed x 2 X and t � 0 consider the function

(2.5) S1(t; T )x =
1

2�

TZ
�T

�
1�

j� j

T

�
e(
+i�)t

R(
 + i�; A)x

(
 + i� )
� d�

Now we use (2.4) and later interchange the order of integration, and obtain

(2.6) S1(t; T )x =
1

2�

TZ
�T

�
1�

j� j

T

�
e(
+i�)td�

1Z
0

e�(
+i�)uS(u)xdu

=
1

2�

1Z
0

e
(t�u)S(u)xdu

TZ
�T

�
1�

j� j

T

�
ei�(t�u)d�

The interior integral equals

TZ
�T

�
1�

j� j

T

�
ei�(t�u)d� =

TZ
�T

ei�(t�u)d� �

TZ
0

�

T
ei�(t�u)d� �

0Z
�T

��

T
ei�(t�u)d�

=
ei�(t�u)

i(t� u)
jT
�T �

TZ
0

2�

T
cos � (t� u)d� =

2

T

1� cosT (t� u)

(t� u)2

Therefore, from (2.6) we have

S1(t; T )x =
1

2�

1Z
0

e
(t�u)
2

T

1� cosT (t� u)

(t� u)2
S(u)xdu

= e
t

1Z
0

2

�T

sin2 T (t�u)
2

(t� u)2
e�
uS(u)xdu:

Put h(u) = e�
uS(u)x for u � 0 and h(u) = 0 for u < 0: Then, for 
 > !0; h(u) 2

L ((�1;1) ; X) ; and for Fejer's kernel F (�; T ) = 2
�T

sin2 �T

2

�2
it holds

(2.7) S1(t; T )x = e
t

1Z
0

F (t� u; T )h(u)du

From theorem 6.3.2. in [5] we see that the Fejer's kernel satis�es the necessary condi-

tions such that

(2.8) lim
T!1

1Z
0

F (t� u; T )h(u)du = h(t)



128 R. VUGDALI�

Using (2.7), (2.8) and h(t) = e�
tS(t)x for t � 0; we obtain

(2.9) lim
T!1

S1(t; T )x = S(t)x (t � 0)

On the other hand, using (2.2) and (2.5) it follows

(2.10) lim
T!1

S1(t; T )x = (C; 1)� lim
!!1

1

2�i


+i!Z

�i!

e�t
R(�;A)x

��
d� (t � 0)

From (2.9) and (2.10) we conclude that for every x 2 X and all t � 0 it holds

S(t)x = (C; 1)� lim
!!1

1

2�i


+i!Z

�i!

e�t
R(�;A)x

��
d�:

�

Now we want to consider the geometric meaning of once integrated group of rotation

in the complex plane. It is known that the �eld of all complex number C is itself a Banach

space with norm equals to the absolute value (modulus). The strongly continuous group

of rotation T (t) (t 2 R) about the origin in the complex plane is given with T (t)z = eitz

(z 2 C) ; where t 2 R is the angle of rotation and i is the imaginary unit. This family

of operators is the group of operators because it is obviously T (0) = I; I is the identity

operator on C; and T (t + s) = T (t)T (s) for all t; s 2 R: The in�nitesimal generator of

the group T (t) (t 2 R) is the operator A = i � I because

Az := lim
t!0+

T (t)z � z

t
= lim

t!0+

�
eit � 1

�
z

t
= i � z:

If we de�ne the family of operators S(t) (t 2 R) with

S(t)z =

tZ
0

T (s)zds = z

tZ
0

eisds (t 2 R; z 2 C ) ;

then this family of operators is once integrated group of linear and bounded operators

on C; and hold the properties

S(0) = 0 and S(r)S(t) =

r+tZ
0

S(u)du�

rZ
0

S(u)du�

tZ
0

S(u)du (r; t 2 R) :

We have for every t 2 R and all z 2 C;

S(t)z =
eit � 1

i
z = [sin t+ i (1� cos t)] z = iz � i (cos t+ i sin t) z = i � [z � T (t)z]

= ei
�
2 � [z � T (t)z] = T

��
2

�
[z � T (t)z] = T

��
2

�
z � T

��
2
+ t

�
z;

i.e.

(2.11) S(t) = T
��
2

�
� T

��
2
+ t

�
(t 2 R)

The relation (2.11) shows the connection between the group of rotation and once

integrated group of rotation in the complex plane. It means that the point S(t)z 2 C we

obtain by rotating the point z�T (t)z about the origin by the angle of �
2 : If the points in
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the complex plane we identify with their radius vectors, then the vector S(t)z we obtain

as a di�erence of vectors T
�
�
2

�
z and T

�
�
2 + t

�
z; and the vector S(t)z is perpendicular

to z � T (t)z for every t 6= 0 and every z 6= 0: Because of

jS(t)zj = j[sin t+ i (1� cos t)] zj = (2� 2 cos t) � jzj = jzj () cos t =
1

2
;

we conclude that the operator S(t) is an isometry on C only for t = ��
3 +2k� (k 2 Z) :

The semigroup theory and the theory of integrated semigroups and integrated groups of

linear bouded operators in a Banach space has many respectable applications in functional

analysis, algebra and geometry. Particularly important applications of this theory are in

solving of some types of ordinary and partial di�erential equations. Every obtained result

in this paper, and in general, has a special interpretation in the theory of the functions

of real or complex variable. We think that the further investigation of integrated groups

of rotations in the complex plane can give some other interesting relations and meanings

in geometry.
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