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ON SOME SUBSEQUENCES OF FEJER MEANS FOR INTEGRABLE
FUNCTIONS ON UNBOUNDED VILENKIN GROUPS

NACIMA MEMIC AND ZENAN SABANAC!

ABsTrACT. Following the methods in [2] and [4] we prove the almost everywhere con-
vergence of some subsequences of the form (UGNA1N+GN+1A/[N+1 tan My fIn to
f, for every integrable function f on unbounded Vilenkin groups, under the bouded-
ness condition of an,...,any; and . This result enables us to include every element
of oy, f in some convergent subsequence.

1. INTRODUCTION

On bounded groups, mean convergence holds almost everywhere for integrable func-
tions [5]. However, by means of some different methods on unbounded groups, G. Gat [3]
proved this result for LP functions when p > 1, and obtained in [2] that opr, f — f, a.e.
for every integrable function f. The same author [1] established the mean convergence al-
most everywhere of the full sequence for integrable functions on rarely unbounded groups.
In [4] almost everywhere convergence of subsequences of the form (o4, ary f) N Was estab-
lished, where the numbers ay are bounded, to the integrable function f. In the present
work we provide a more general result concerning this fact. Namely, almost everywhere
convergence is proved for subsequences of the form (0 nytaniiMyir.tanciMy SN,

where [ and ap,...,any4; are bounded. In this way every element of the sequence o, f
belongs to some convergent subsequence.
Let (mg,m1,...,Mp,...) be an unbounded sequence of integers not less than 2. We

denote by P the set of positive integers and let N = PU{0}. Let G :=[[" Zy,,, where
Zpy,, denotes the discrete group of order m,,, with addition mod m,,. Each element from
G can be represented as a sequence (zy,),, where z,, € {0,1,...,m, —1}, for every integer
n > 0. Addition in G is obtained coordinatewise.

The topology on G is generated by the subgroups

In = {J; = (mi)i - G, T; = 07 for i < n},
and their translations
I,(y) =={x = (2:); € G, z; =y;, fori <n}.
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Sometimes we write I,,(y) in the form I, ( )= L.(yo,---,Yn—1)- Also we write L,(y,j) =

Lnv1(yo, -, Yn—1,7), where j € {0,1,...,m, — 1}.

Define the sequence (M), as follows ]V[o =1 and M,11 = m,M,.

If u(I,,) denotes the normalized product measure of I,, then 1t can be easily seen that
u(ln) = Mt

The generalized Rademacher functions are defined by

2miTy

Tn(m) =e mn neN7 $€G7

For every nonnegative integer n, there exists a unique sequence (n;); so that n =

Z n;M;. Put as in [3], n¥) = E n; M,
The system of Vilenkin functlons is given by

x) :Hr?i(m), neN, zedG.

The Fourier coefficients, the partial sums of the Fourier series, the mean values, the
Dirichlet kernels, the Fejér means and the Fejér kernels with respect to the Vilenkin
system are respectively defined as follows

n—1
m = [ Fa)in@)z, Suf =Y {6 Ealf) = Su .
k=0

for every f € L'(G).
It can be easily seen that

- / Duly — @)f(2)de, Dag, (2) = Myl (2),

and

E,f(y) = M, f(z)de.
In(y)

Let [, sg, ..., s;—1 be fixed nonnegative integers and s; > 0. Then define the operator

B 1) = Mas

s

TA_GFYA—j

)

Hr ;dm
Axily 1—7“A ily—z)
for every f € LY(G), j € P and A > j satisfying s; < ma;, for every i € {0,1,...,1}.
We also define

Hyom ) fy) = sup Hyg ™) £ (y).

A:si<moayq,i€{0,1,...,l}
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2. MAIN RESULTS

Lemma 1. For every fized l, so, ..., si, the operator fI](SO’Sl """ ) is bounded on L.
Proof. Let f € L?. Using the proof of [2, Lemma 2.3.] we can write

l
AP f = Hya(f 170,
1=0

from which we get

i=0 1=0
Since
Hy o f =BG (Bagian f),
and
Hyy™ ™ (Bas f) = 0,
it follows
[ sup AP 3
A:si<moagq,i€{0,1,...,1}
= sup AP (Bpsin f — Banif)lI3
Aisi<moayii€{0,1,...,1}
< 3 15" (Basiin f — Eaf)|3

Aisi<mayi,i€{0,1,...,0l}

<O N(EBatirf — Eanh)l3 < CI1I5.
A

([
Lemma 2. For every fized I, sg, ..., s; the operator H(SO suest) g of weak type (L, LY).

Proof. We use the same decomposition as in [4] and [6]. Namely, for an arbitrary function
f e L', if A > 0is such that ||f||1 < A and (ag)x is a sequence of integers defined by

ar = —s; if 5§ < my and o = 0 otherwise, there exist mutually disjoint intervals
J; = ﬁi Ak, (29,1), j € P, and integrable functions b and g such that

(2) ||g||oo < O),

(3) llgl < Cllf\ll,

(4) supp(b) C U352, Jj,

(5) fJJ bdp = fJ brk " dy = 0, for every j € P,

(6) f |bldu < C’fJ |fldp, for every j € P,

() T2 () < 14k,

Let the sets (6.J;) and (6F) be defined as in [2, Lemma 2.4.].

In [6, Lemma 2] it was proved that for every j € P there exist constants ay,; and by,
such that

b(z) = f(x) —ax, — b}cjfzjkj (x),VYx € J;.
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We introduce the functions

-ty o ] i) [

t=0 t=0
_J )1 =50 =51 =S| s0 s1 s1 .
&' u(J5)) (/J JTR ATk 2 'Tkj+1+l> Tk k2 o Thy gl Ly (2), 5 € P,
j

Where ag = 1if 544+ < mp;4¢ for every t € {0,1,..., i}, and 6{ = 0 otherwise, similarly
el = 1if sy <my, 114+ for every t € {0,1,...,1}, and &/ = 0 otherwise.
Then, it is easily seen that

l
[T R Y N Ey R A
Jj Jj ' Jj = i t=0
for every i € {1,...,1}.

Suppose that y € G\ I, (7). Then y € ij,l“,l(zj) \ ij,lﬂ'(zj), for some i €
{l—k‘j-i-l,...,l}.

Hence,

l i
AP Ohy(y) = Hy g, 144 <hj HFZE—H@'H) (y) = Hu gy —14i (h]— II 7*2;1#) ()
= t=—I+i
= Hij—H‘i ( H’r}it:}t z) = 0,

if ¢ > 0, because

j ) —Sl_itt _J Sl—itt —
si/hJHrkH du—ei/ JHTkth dp = 0.
Ji 4= Ty —144(27)

t=0
Now if ¢ = 0, we get

AP by (y) = gy rsi(hsTit ) () = 0,

/ hj’ljlscl_ du = / hjle_ d/,é =0.
Jj ! I j—14i(29) ’

because

For i < 0, we obtain

Hl(so,817..~;sl)hj(y) — Hij_H_i < H sztilt 7) I{1 k:'—l-i-lh ( ) = O’
t=—I1+1

because ij hdp = flkrm(zj) hjdp = 0.
Ifye Ik]. (Zj) \ (GJJ), then

Ay (y) = Hi 1 ( Hrk +1+t>

Since
l

el /J h; HFZ;HHdu =0,

J t=0
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using the method of [2, Lemma 2.4.], we get
[y <Clisli<c [ iflan vier
G\(67;) J;

Repeating the steps of the proof of [4, Lemma 2.2.], the result immediately follows. O

Lemma 3. There exists an absolute constant C > 0 such that for all j € P, f € L' and
A >0, we have

-2
r7(80,81,5--+s s J C
p (A0 > 0) < S e

Proof. Since

Jj—1
H(SO’Sl’M’Sl)f _ sup H(61278174--781)f < E sup [:[(,6;2’81"“’51)f

J . 3 - . ’

J<As;<mag; ! r—0JSAsi<mayi I

A=Ek(mod j)
J—11+1
F7(50,51,--+,51)
< CspHES,
k=0 2—0 J<A8i<mat;

A=k+zj (mod (14+2)7)

following the steps of [4, Lemma 2.3.], it suffices to prove that for every k € {0,1,...,j—1},
z2€{0,1,...,l + 1} the operators

97 sup HJ(»iZ’Sl’.“’Sl)f
JSASNj+k
A=k+zj (mod (1+2)j)

are of weak type (L', L') uniformly on N € N. We consider the permutations

e a,(n)=n,ifn>Nj+korn#k+zj+t(l+2)j,k+ (z+1)j—1+¢(+2)],
for any t € N,

o o (k+2j+t(l+2)j)=k+ (2 +1)j — 1+t +2)j,if 2+t +2) <N,

o o (bt (z+1)j — 1+ t(I+2)j) =k+zj+t(l+2)j,if 2+t +2) < N.

Let G. be the Vilenkin group generated by the sequence (mq_;))i-

Then, for A< Nj+k, A=k+ (z+1)j (mod (I1+2)j), we have a, (A —j) = A -1,
a(A—-1) = A—j, but a,(A+1i) = A+, for every i € {0,1,...,1}. Besides if
A=k+t(l+2)j for some t > 1, then

s (A—j) = o, (k+(t(1+2)—1)j) = az(k+(I+1)j+({E—1)(1+2)j) = k+t(+2)j—1 = A—1
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and

B ) = Mas | [

U TA(Yo,- s YA—j—1,BA—j YA—jt+1ssYA—1)
TA_GFYA—j
l 1
f(z HF‘” (2)——————dx
( )i=0 A—H( )1 77{‘A—j(y71')

U T (yg

’ ’ ’ ’
00 yA,j,l,yA,jvyA,Hl,~»-~,IA,1)
aly 1 #Y,

A—1 A—1

l 84
f'(@) (H r’/m(x)) ! dz’

L—ry 4y —2')

=0
MA,‘ 50,81 5.ens s — 5 77(80,81,-1s s
= S W) < 2 ET ),
A-1

where (2}); = (Za,(5))i € G-, for every x € G, (r7,)n is the convenient set of Rademacher
functions for G, and f’ is defined on G, by f'(z') = f(x).
Following the steps of [2, Lemma 2.5.] we get that

2j sup HJ(_:‘iZw‘?la---ySl)f
J<A<Nj+k i
A=k+zj (mod (142)j)

is of weak type (L', L') uniformly on N. O
Theorem 1. Let f € L', L, S € P fized. Then
SanMy+ans1Myi1otansiMyp S = f
almost everywhere uniformly on
1<I<L, ayyt €{0,1,...,min(S,my4¢ — 1)},
forte{1,2,...,1—1},

ay € {1,2,...,min(S,my — 1)}
and
an+i €{1,2,...,min(S,my4; — 1)}
Proof. By induction, since S,y ay f — f almost everywhere uniformly on
ay € {1,2,...,min(S,my — 1)},
(see [4, Theorem 2.5.]), it suffices to prove that

SaN+1MN+1+aN+2MN+2~-+aN+IJWN+lf — f
implies that
SGNA1N+11N+1MN+1~--+(1N+1MN+Lf — f
Let n =anMy +anv+1Mnyy1 ... +anv+iMy4i, we write
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aNfl

S
Dy, = D,v+v) + Ypiviny Doy vy = Dpoveny + ¥v+0 Dy + g Vv TN Dy -

s=1

Clearly, it suffices to prove that

an—1
(1/1n(N+1)DMN + Z ’L/)n(N+1)T‘}qVDMN> * f—0,

s=1

almost everywhere. Since

an—1
<¢H(N+1)DMN + Z 1/Jn<N+1)T}SVDMN> x*g— 0,

s=1

almost everywhere, whenever g is a polynomial, then we only need to prove that for every

fixed [, sq, ..., s;—1 being nonnegative integers and s; > 0, we have
1
s,
sup HTA}H.DMN * g
N:s;<mpn4; i=0
i=0,...,1

is of weak type (L', L!) uniformly on N.

Using the decomposition of Lemma 2, we have f = >~ h; + G.
j=1
It can be easily seen that if y € G\ (6F), we have that

l
(H TN iDmy * hj) (y) =0,

=0

for every N,j € P.
Following the steps of [4, Lemma 2.4.], it can be easily seen that

l

S
sup HTNJriDMN * g
N:s;<mpn4i i—0
i=0,...,0

is bounded on L?. Then it can be concluded as in |4, Lemma 2.4.] that

l

Sq
sup Hr]\;+iDI\/[N * g
N:s;<mpn4i i—0
i=0,...,0

is of weak type (L', L') uniformly on N and | < L,
an+t € {0,1,...,min(S,myy+ — 1)},
for t € {1,2,...,1 -1},
any € {1,2,...,min(S,my — 1)}
and

anN4] € {1, 2,... ,min(S, MmNl — 1)}
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Theorem 2. Let f € L', L,S € P fized. Then

TanMy+ansi Myi1otano My S = 1
almost everywhere uniformly onl < L,
an+t €{0,1,...,min(S,my1: — 1)},
forte{1,2,...,1—1},
any € {1,2,...,min(S,my — 1)}
and
an+; € {1,2,...,min(S,my4; — 1)}.
Proof. By induction, since o4, nmy f — f almost everywhere uniformly on
any € {1,2,...,min(S,my — 1)},

it suffices to prove that

UaN+1MN+1+aN+2MN+2~~+GN+11\4N+1f - f
implies that
O-GNMN+GN+1]\JN+1~'+(1N+ZMN+lf — f
Let n =anMy +anv+1Mny1 ... +anviMpy4, we write

n(V+1)

n
Koty ol S b
i=n(N+1)+1
(N+1) M M
n a a
= - Kn(N+1)+ N ND,,.L(N+1)+ N N?/Jn(N+1)KaNMN.

From Lemma 1, we only need to prove that
Uiy Kaymy * f =0,

almost everywhere.
In other words, we need to prove that
l

Hrl\;—i-iKawaN * g
i=1

sup
N:s; <mN+1
1=0,.

is of weak type (L', L!) uniformly on N and s; < S.
We use the decomposition of K, ar, obtained in [4, Theorem 2.6.], we have

aNl aNl

1
HTJS\;+iKaNMN HTN-H Z DJMN %KMN Z rgVKMN
i=1
an—1 7j—1 an—1
HTNH > (DMN +Z7“NDMN> +H7"N+Z KMN +H7“N+Z Z Ky

j=1 t=1 i=1 i=1

In Theorem 1, it was proved that
1

HTN+ZDMN *g
=0

sup
N:s; <mNJrz
i=0,...,1

is of weak type (L', L') uniformly on s; < S and N.
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Therefore, it suffices to prove that

sup HTN+’LKMN * g
N:s; <mN+L i—0
i=0,...,1

is of weak type (L', L!) uniformly on s; < S and N. We write

l
L% * f | () /KMN - HTN-H (z)dz
1=0

l

< KMN (y — x) H 'F‘JS\;_;,_Z' (x)f(x)dl‘

In(y) i=0
N-—-1 l

S / Kty (y — 2) [ Pt () f ()
=0 It(y)\1t+1(y)

1=0
< Surlf1(y ZMt /

Uz, 2y, I8 W05yt —1,4,9t 4150 ,YN —1)

H 7o 71 dx
N'H 1 —ri(y —x)

2

< Sary | fI(y ZH(S"’“’ 0 f(y) = Syl f1(y Z ot £y).

Hence,

1
Sup HTN—HKMN f (y) < sup SMN‘f| + ZH(Smsh 7sl)f( )

N: s-L<mN+1 i=0 N:si<MmpN4i
i=0,...,1 i=0,...,1
Following the steps in the proof of [2, Theorem 2.1.] and replacing H; by E[](-SO’S“'”’S’)
the result follows by applying Lemma 3. O
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