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THRIAD GEODESIC COMPOSITION IN FOUR DIMENSIONAL

SPACE WITH AN AFFINE CONNECTEDNESS WITHOUT A

TORSION AND ADDITIONS

MUSA AJETI

Abstract. Let A4 be an a�nity connected space without a torsion. Following [7]

we introduce the a�nors a
�
�, b

�
� and ec�� = ic

�
� = �ia

�
�b
�
� (i2 = �1) which de�ne the

compositions X2�X2, Y2�Y 2 and Z2�Z2, respectively. The �rst two composition

are conjugate. The composition U2 � U2 generated by the a�nor d
�
� = a

�
� + b

�
� + c

�
�

is considered too. We have found necessary and su�cient condition for any of the
above composition to be of the kind (g � g).

Four dimensional spaces with a symmetric a�ne connection and additional struc-
tures p (paracontact, semi-cyclic) are investigated. The spaces which contain such
structures are de�ned. Nonsymmetric a�ne connections so that the a�nors of the
structures continue to translate paralelly along the lines of the space are introduced
and investigated.

1. Preliminary

Let AN be a space with a symmetric a�ne connectedness without a torsion, de�ned

by �

�� . Let consider a composition Xn � Xm of two di�erentiable basic manifolds Xn

and Xm (n+m = N) in the space AN . For every point of the space of compositions AN

(Xn � Xm) there are two position of the basic manifolds, which we denotes by P (Xn)

and P (Xm) ([3]). The de�ning of composition in the space AN is equivalent to de�ning

of a �eld of an a�nor a
�
� that satis�es the condition [2] and [3].

(1.1) a��a
�
� = ���:

The a�nor a
�
� is called an a�nor of the composition [2]. According to [3] and [5] the

condition for integrability of the structure is a��r[�av� ]
� a��r[�av� ]

= 0. The projective

a�nors
n
a
�

� and
m
a
�

� ([3],[4]), de�ned by the equations
n
a
�

� = 1
2 (�

�
� + a

�
�),

m
a
�

� = 1
2 (�

�
� � a

�
�)

satisfy the condition
n
a
�

�+
m
a
�

� = �
�
�,

n
a
�

��
m
a
�

� = a
�
�. For every vector v� 2 AN (Xn�Xm) we

have v� =
n
a
�

�v
�+

m
a
�

�v
� =

n

V �+
m

V �, where
n

V � =
n
a
�

�v
� 2 P (Xn),

m

V � =
m
a
�

�v
� 2 P (Xm) [4].
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The composition Xn�Xm 2 AN (n+m = N) for which the position P (Xn) and P (Xm)

are paralelly translated along any line Xn and Xm, respectively is called composition of

kind (g � g) ([3]) or geodesic composition [6]. According to [3] the geodesic composition

is characterized with the equality

(1.2) a��r�a
v
� + a��r�a

v
� = 0:

Let A4 be a space with a�ne connectedness without a torsion, de�ned by ���
� (�; �; � =

1; 2; 3; 4). Let v�1 , v
�
2 , v

�
3 , v

�
4 are independent vector �elds in A4. Following [7] we de�ned

the convectors
�
v� by the equalities

(1.3) v
�

��v
�

= ��� , v
�

��v� = ���:

According to [6] and [7] we can de�ne the a�nor

(1.4) a�� = v
1

� 1
v� + v

2

� 2
v� � v

3

� 3
v� � v

4

� 4
v�;

that satis�es the equations (1.1). The a�nor (1.4) de�nes a composition (Xn �Xm) in

A4. The projective a�nors of the composition (Xn �Xm) are ([7]):

1
a
�

� = v
1

� 1
v� + v

2

� 2
v�;

2
a
�

� = v
3

� 3
v� + v

4

� 4
v�:

Following [7] we choose the net (v
1
, v
2
, v
3
, v
4
) for a coordinate one. Then we have

(1.5) v
1

�(1; 0; 0; 0); v
2

�(0; 1; 0; 0); v
3

�(0; 0; 1; 0); v
4

�(0; 0; 0; 1);

v
1
�(1; 0; 0; 0); v

2
�(0; 1; 0; 0); v

3
�(0; 0; 1; 0); v

4
�(0; 0; 0; 1):

Let consider the vectors ([7]):

(1.6) w
1

� = v
1

� + v
3

�; w
2

� = v
2

� + v
4

�; w
3

� = v
1

� � v
3

�; w
4

� = v
2

� � v
4

�:

We de�ne the convectors w� by the equalities

(1.7) w
�

v �w� = �v� , w
�

� �w� = ���:

From (1.3) and (1.7) follows

1
w� =

1

2

�
1
v� +

3
v�

�
;

2
w� =

1

2

�
2
v� +

4
v�

�
;

3
w� =

1

2

�
1
v� �

3
v�

�
;

4
w� =

1

2

�
2
v� �

4
v�

�
:

Let consider the a�nor

(1.8) b�� = w
1

� 1
w� + w

2

� 2
w� � w

3

� 3
w� � w

4

� 4
w�;

which according to [7] satis�es the equality b
�
�b

�
� = �

�
� . Therefore the a�nor (1.8) de�nes

a composition Y2� Y 2 in A4. According to [7] the composition X2�X2 and Y2� Y 2 are

conjugate. By (1.3), (1.6), (1.7) and (1.8) we obtained

(1.9) b�� = v
1

� 3
v� + v

3

� 1
v� � v

2

� 4
v� � v

4

� 2
v�:

Following [7] let consider the a�nor c
�
� = �a

�
�b

�
� , which satis�es the equality c

�
�c

�
� = ��

�
�.

With the help of (1.3), (1.4), (1.9) we establish

(1.10) c�� = v
3

� 1
v� � v

1

� 3
v� + v

4

� 2
v� � v

2

� 4
v�:
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The a�nor ec�� = ic
�
�, where i2 = �1, de�nes a composition Z2 � Z2 in A4.

2. Geodesic composition in space A4

According to [8] we have the following derivative equations

(2.1) r�v
�

� =
�

T
��
v
v

� ; r�

�
v� = �

�

T
v�

v
v� :

Let consider the composition X2�X2 and accept: �, �, , �, v, � 2 f1; 2; 3; 4g; i; j; k; s 2

f1; 2g, i; j; k; s 2 f3; 4g.

Theorem 1. The composition X2 � X2 is of the kind (g � g) if, and only if, the

coe�cients of the derivative equations (2.1) satisfy the conditions

(2.2)
i

T
k�
v
s

� = 0 and
i

T
k
�
v
s

� = 0:

Proof. According to (1.4) and (2.1) we have

r�a
v
� =

�

T
1�
v
�

v 1v� �
1
T
��
v
1

v �v� +
�

T
2�
v
�

v 2v� �
2
T
��
v
2

v �v�

�
�

T
3�
v
�

v 3v� +
3
T
��
v
3

v �v� �
�

T
4�
v
�

v 4v� +
4
T
��
v
4

v �v�:

(2.3)

Taking into account the independence of convector
�
v� and using (1.2), (1.3), (1.4) and

(2.3), we �nd the equalities�
��� + ���

�� 3
T
1�
v
3

v +
4
T
1�
v
4

v

�
= 0; (��� + ���)

�
3
T
1�
v
3

v +
4
T
1�
v
4

v

�
= 0

�
��� � ���

�� 1
T
3�
v
3

v +
2
T
3�
v
4

v

�
= 0; (��� � ���)

�
1
T
4�
v
3

v �
2
T
4�
v
4

v

�
= 0:

(2.4)

Because of the independence of vectors v
�

v it follows an equivalence of (2.4) to the following

equalities.

3
T
1�

+ ���
3
T
1�

= 0;
4
T
1�

+ ���
4
T
1�

= 0;
3
T
2�

+ ���
3
T
2�

= 0;
4
T
2�

+ ���
4
T
2�

= 0;

1
T
3�
� ���

1
T
3�

= 0;
2
T
3�
� ���

2
T
3�

= 0;
1
T
4�
� ���

1
T
4�

= 0;
2
T
4�
� ���

2
T
4�

= 0:

(2.5)

Now it is easy to see that equalities (2.2) follow after contraction by v
1

� and v
2

� for the

�rst four equalities of (2.5) and by v
3

� and v
4

� for the last four equalities of (2.5). Let's

note that the equalities (2.5) are proved in [6] by another approach. �

Corollary 1. If the net (v
1
; v
2
; v
3
; v
4
) is chosen as a coordinate one then the composition

X2 �X2 form the kind (g � g) characterized by the following equalities.

(i) The coe�cient of the derivative equations

(2.6)
i

T
ks

= 0;
i

T
k
s

= 0:
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(ii) The coe�cient of the connectedness

(2.7) �isk = 0; �i
sk

= 0:

Proof. Let choose the net (v
1
; v
2
; v
3
; v
4
) for a coordinate one. Then by (1.5) and (2.2) we

�nd (2.6). According to [1] and (2.1) we can write @�v
�

�+�
�
�vv

�

� =
v

T
��
v
v

� from where using

(1.5) we obtain

(2.8) ���� =
�

T
��
:

The equalities (2.7) follow from (2.6) and (2.8). Let's note that the equalities (2.7) are

obtained in [3] when the coordinates are adaptive with composition X2 � X2. This

happens so, because the chosen coordinate net raises adaptive with the composition

coordinative. �

From (2.7) and Rv
��� = 2@[��

v
�]� � 2��� [��

v
�]� [1] we establish the validity of the fol-

lowing statement:

Fact 1. When the composition X2 � X2 is of the kind (g � g) then the parameters of

the coordinate net (v
1
; v
2
; v
3
; v
4
) the tensor of curvature satisfy the conditions Rs

��� = 0 and

Rs

i j k
= 0.

Theorem 2. The composition Y2 � Y 2 is of the kind (g � g) if, and only if, the

coe�cient od the derivative equations satisfy the condition:�
1
T
1�
�

3
T
3�

�
v
1

� +

�
1
T
3�
�

3
T
1

�
v
3

� = 0;

�
1
T
1�
�

3
T
3�

�
v
3

� +

�
1
T
3�
�

3
T
1

�
v
1

� = 0;�
1
T
1�
�

3
T
3�

�
v
2

� +

�
1
T
3�
�

3
T
1

�
v
4

� = 0;

�
1
T
1�
�

3
T
3�

�
v
1

� +

�
1
T
3�
�

3
T
1

�
v
2

� = 0;�
2
T
1�
�

4
T
3�

�
v
1

� +

�
2
T
3�
�

4
T
1

�
v
3

� = 0;

�
2
T
1�
�

4
T
3�

�
v
3

� +

�
2
T
3�
�

4
T
1

�
v
1

� = 0;�
2
T
1�
�

4
T
3�

�
v
2

� +

�
2
T
3�
�

4
T
1

�
v
4

� = 0;

�
2
T
1�
�

4
T
3�

�
v
4

� +

�
2
T
3�
�

4
T
1

�
v
2

� = 0:

(2.9)

Proof. Because of equalities (1.9) and (2.2) we have

r�b
�
� =

v

T
1�
v
v

� 3
v� �

3
T
v�
v
1

� vv� +
v

T
3�
v
v

� 1
v� �

1
T
v�
v
3

� vv�

+
v

T
3�
v
v

� 4
v� �

4
T
v�
v
2

� vv� +
v

T
4�
v
v

� 2
v� �

2
T
v�
v
4

� vv�:

(2.10)

Transforming the condition b��r�b
v
� + b��r�b

v
� = 0 with the help of (1.3), (1.9), (2.10)

and using the independence of convector v
�

� we obtain the following equalities:

1
T
1�
�

3
T
3�

+ b��(
1
T
3� �

�
3
T
1� �

) = 0;
2
T
1�
�

4
T
3�

+ b��(
2
T
3�
� �

4
T
1� �

) = 0

1
T
1�
�

3
T
4�

+ b��(
1
T
4� �

�
3
T
2� �

) = 0;
2
T
2�
�

4
T
4�

+ b��(
2
T
4� �

�
4
T
2� �

) = 0:

(2.11)

Now, after contraction by v
�

� it is easy to see the equivalence of (2.11) to (2.9). �
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Corollary 2. If the net (v
1
; v
2
; v
3
; v
4
) is chosen as a condition one then the composition

Y � Y 2 form the kind (g � g) characterizes by the following equalities for:

(i) the coe�cients of the derivative equations

1
T
1�
�

3
T
3�

=
3
T
1�
�

1
T
3�
;

2
T
1�
�

4
T
3�

=
4
T
1�
�

2
T
3�
;

1
T
2�
�

3
T
4�

=
3
T
2�
�

1
T
4�
;

2
T
2�
�

4
T
4�

=
4
T
2�
�

2
T
4�
;

(2.12)

(ii) the coe�cient of the connectedness

(2.13) ��11 + ��33 = 2��13; ��22 + ��44 = 2��24; ��12 + ��34 = 2��14 + ��23;

as when � accepst consecutively the values 1; 2; 3; 4, then � accepts the values

3; 4; 1; 2, respectively.

Proof. Let choose the net (v
1
; v
2
; v
3
; v
4
) for a coordinate net. With the help of (1.5) and

(2.9) we �nd (2.12). Then by (2.8) and (2.12) we obtain (2.13). �

Theorem 3. The composition Z2 � Z2 is of the kind (g � g) if, and only if, the

coe�cients of the derivative equations (2.1) satisfy the conditions

(
1
T
1�
�

3
T
3�
)v
1

� = (
1
T
3�

+
3
T
1�
)v
3

�; (
1
T
1�
�

3
T
3�
)v
2

� = (
1
T
3�

+
3
T
1�
)v
4

�;

(
3
T
3�
�

1
T
1�
)v
3

� = (
1
T
3�

+
3
T
1�
)v
1

�; (
3
T
3�
�

1
T
1�
)v
4

� = (
1
T
3�

+
3
T
1�
)v
2

�;

(
2
T
1�
�

4
T
3�
)v
1

� = (
2
T
3�

+
4
T
1�
)v
3

�; (
2
T
1�
�

4
T
3�
)v
2

� = (
2
T
3�

+
1
T
1�
)v
4

�;

(
4
T
3�
�

2
T
1�
)v
3

� = (
2
T
3�

+
1
T
1�
)v
1

�; (
3
T
4�
�

4
T
1�
)v
4

� = (
2
T
3�

+
1
T
1�
)v
2

�:

(2.14)

Proof. By the equalities (1.10) and (2.2) we obtain

r�c
�
� =

v

T
3�
v
v

� 1
v� �

1
T
v�
v
3

� vv� �
v

T
1�
v
v

� 3
v� +

3
T
v�
v
1

� vv�

+
v

T
4�
v
v

� 2
v� �

2
T
v�
v
4

� vv� �
v

T
2�
v
v

� 2
v� �

4
T
v�
v
2

� vv�:

(2.15)

Transforming the condition c��r�c
v
� + c��r�c

v
� = 0 with the help of (1.3) , (1.10), (2.15)

and using the independence of the convectors v�� we obtain the following equalities

3
T
3�
�

1
T
1�

+ c��(
1
T
3�

+
3
T
1�
) = 0;

4
T
3�
�

2
T
1�

+ c��(
2
T
3�

+
4
T
1�
) = 0;

3
T
4�
�

1
T
2�

+ c��(
3
T
2�

+
1
T
4�
) = 0;

4
T
4�
�

2
T
2�

+ c��(
2
T
4�

+
4
T
2�
) = 0:

(2.16)

Now, after contraction by v
�

� it is easy to see the equivalence of (2.16) to (2.14). �

Fact 2: If two of the compositions X2 � X2, Y2 � Y 2, Z2 � Z2 are from the kind

(g � g) then the third composition is also of the kind (g � g).
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Since from (2.7) and (2.13) follows

��ij = ��
i j

= 0; ��13 = ��24 = 0; ��14 + �23
� = 0;

we can formulate

Fact 3: When the compositions X2�X2, Y2�Y 2, Z2�Z are of the kind (g�g) then

in the parameters of the coordinate net (v
1
, v
2
, v
3
, v
4
) the tensor of curvature satis�es

the conditions

RS
ijk = RS

i j k
; R�

133 = R�
244 = R�

311 = R�
422 = R�

143 = R�
234 = R�

321 = R�
412 = 0:

Let consider the a�nor

(2.17) d�� = a�� + b�� + c��:

According to (1.3), (1.4), (1.8) and (1.10) we have

(2.18) a��b
�
� + b��a

�
� = 0; b��c

�
� + c��b

�
� = 0; c��a

�
� + a��c

�
� = 0:

From (2.17) and (2.18) it follows d
�
�d

�
� = a

�
�a

�
� + b

�
�b

�
� + c

�
�c

�
� = �

�
� + �

�
� � �

�
� = �

�
�, which

means that the a�nor d
�
� de�nes a composition U2 � U2 with the positions P (U2) and

P (U2).

Theorem 4. The composition U2�U2 is of the kind (g�g) if, and only if, coe�cients

of the derivative equations (2.1) satisfy the conditions

(2.19)
S

T
k
�

� d��
S

T
k
�

= 0;

(2.20)
S

T
k�

+
S

T
k+2�

�
S�2
T
k�

� 2
S�2
T

k+2�
+ d��

�
S

T
k�

+
S

T
k+2�

�
S�2
T
k�

�
= 0:

Proof. According to (1.2) the composition U2�U2 will be of the kind (g�g) if, and only

if,

(2.21) d��r�d
v
� + d��r�d

v
� = 0:

With the help of (1.4), (1.8), (1.10) and (2.17) we �nd

(2.22) dv� = av� + 2
�
v
3

v 1v� + v
4

v 2v�

�
= v

i

v iv� � v
i

v iv� + 2 v
2+i

v iv�:

Then (2.21) can be written in the form

d��

 
�

T
i�
v
�

v iv� �
i

T
��
v
i

v �v� �
�

T
i
�

v
�

v iv� +
i

T
��
v
i

v �v� + 2
�

T
2+i�

v
�

v iv� � 2
i

T
��

v
2+i

v �v�

!

+d��

 
�

T
i�
v
�

v iv� �
i

T
��
v
i

v �v� �
�

T
i
�

v
�

v iv� +
i

T
��
v
i

v �v� + 2
�

T
2+i�

v
�

v iv� � 2
i

T
��

v
2+i

v �v�

!
= 0:

(2.23)

The equalities received from (2.23) after contraction by v
k
and v

k

� are contracted once

again by
s
vv and

s
vv. As result of these operations we reach (2.19) and (2.20). �
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Corollary 3. If the net (v
1
, v
2
, v
3
, v
4
) is chosen as coordinate one then the composition

U2 � U2 from the kind (g � g) characterizes by the following equalities for:

(i) the coe�cients of the derivative equations

(2.24)
s

T
K

i

= 0;

s

T
ki
+

s

T
k+2i

�
s

T
ki
�

s�2
T

k+2i
+

s

T
ki+2

+
s

T
k+2i+2

�
s�2
T

ki+2
= 0;

(ii) the coe�cients of the connectedness

(2.25) �s
K i

= 0;

�si k + �si k+2 � �s�2i k � �s�2i k+2 + �s�2i+2 k + �s�2i+2 k+2 � �s�2i+2 k = 0:

Proof. Let choose the net (v
2
; v
3
; v
3
; v
4
) as coordinate one. Then taking into account (1.4),

(1.5) and (2.22) we �nd the following presentation of the a�nor d
�
�,

(d��) =

0BB@
1 0 2 0

0 1 0 2

0 0 �1 0

0 0 0 �1

1CCA :(2.26)

From (2.19), (2.20) and (2.26) we obtain the equalities (2.24), from where according to

(2.8) follows (2.25). �

From [2] and the �rst equations of (2.24) it follows the validity of the statement:

Fact 4: If the composition U �U2 is of the kind (g � g), then the composition X2 �X2

is of the kind (X2 � g), i.e., the positions P (X2) are parallel translated along any line of

X2.

3. Spaces A4 with additional structures.

Let us consider the following a�nor

(3.1) L�� = v
1

� i
v� � v

3

� 3
v�:

From (1.1) and Corollay 2(i) we obtain L
�
�L

�
� = �

�
� � v

4

� 4
v�, which means that the a�nor

(3.1) de�nes a paracontact structure in A4. According to (1.5) and (3.1) in the parameters

of the coordinate net fv
a
g the matrix (L

�
�) has the following presentation:

(L��) =

0BB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 0

1CCA :(3.2)
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Theorem 5. The equality r�L
�
� = 0 is ful�lled if, and only if, the coe�cients from

the derivative equations satisfy the conditions

(3.3)
i

T
S�

=
i

T
S
�
=

3
T
4�

=
4
T
3�

= 0:

Proof. By (2.1) and (3.1) we write the equality

(3.4) L�r�L
�
� = 0

in the following way

v

T
i�
v
v

� i
v� �

i

T
v�
v
i

� i
v� �

v

T
3
�
v
v

� 3
v� +

3
T
v�
v
3

� vv� = 0:

Using the contraction of the last equality with v
s

� and v
s

� and reading the independence

of the vector �elds v
�

� we obtain the equivalence of (3.3) and (3.4). �

From the Theorem 5 and (2.7) it follows

Corollary 4. In the parameters of the coordinate net fv
a
g the equalities (3.3) accept

the presentation

(3.5) �i�s = �i�s = �3
�4 = �4

�3 = 0:

Corollary 5. If the a�nor L
�
� satis�es the condition L�r�L

�
� = 0 then the compo-

sitions X2 �X2 and X3 �X1 are of the type (g � g1).

Let us consider in the space A4 with an additional paracontact structure L
�
� the fol-

lowing new nonsymmetric connection

(3.6) 1�v�� = �v�� +
1 Sv�� ;

where Sv[��] is the tensor of the torsion in the new connection. Denote by 1r and 1Rv
���

the covariant derivative and the tensor of the curvature for the connection 1�v�� , respec-

tively.

Theorem 6. If r�L
�
� = 0, then 1r�L

�
� = 0 if, and only if, the tensor 1Sv�� satis�es

the conditions

(3.7) 1Si�s =
1 Si�s =

1 S3
�4 =

1 S4
�3 = 0

in the parameters of the coordinate net fv
a
g.

Proof. Let the equalities (3.4) and

(3.8) 1r�L
�
� = 0

are ful�lled. From (3.4) and (3.6) it follows 1r�L
�
� = K

�
�� = 0 are equivalent. Let choose

the net fv
a
g as a coordinate one. From (3.2) and (3.8) we �nd for the components of the

tensor K
�
��, which are di�erent from zero, the following presentation

(3.9) 1Ki

�j
= �1Si

�j
; Ki

�j = �1Si�j ; K3
�4 = v1S3

�4; K4
�3 = t1S4

�3;
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where �; �; v; t = �1;�2. Now from (3.9) it follows (3.7).

By (3.5), (3.6) and (3.7) we establish

(3.10) 1�i
�j

= �i
�j
; 1�i

�j
= �i

�j
= 0; 1�3

�4 = �3
�4 = 0; 1�4

�3 = �4
�3 = 0:

By (3.7) and (3.10) we �nd for the components of the tensors R���
v and Rv

���:

1Ri

��j
= Ri

��j
= 1R

i

��j = Ri
��j =

1R
3
��4 = R3

��4 =
1R

4
��3 = R4

��3 = 0:

�
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