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FURTHER RESULTS ON CONVOLUTIONS INVOLVING GAUSSIAN ERROR

FUNCTION erf(|x|1/2)

BRIAN FISHER, FATMA AL-SIREHY AND EMIN ÖZÇAĞ1

ABSTRACT. In the paper we consider some convolutions, which are related to results of
[7], of the Gassuian error function and pseudo-functions.

1. INTRODUCTION

Recall definition of the error function (also called Gaussian error function) erf(x) [16]
defined for x ∈ R by

erf(x) =
2√
π

∫ x

0

e−u2

du =
2√
π

∞
∑

i=0

(−1)i

i!(2i+ 1)
x2i+1.

The error function erf(x) is odd, convex on (−∞, 0], concave on [0,∞) and strictly in-
creasing on R. The reader refer to [1, 2] for the other properties of the error function.

The error function is a special function of sigmoid shape that occurs in probability, sta-
tistics and partial differential equations describing diffusion. It plays an important roles
in problems from mathematical physics, in analytic solutions for problems of thermome-
chanics and mass flow due to diffusion.

Dirschmid and Fischer defined the generalized Gaussian error function by

erfi(x) =
2√
π

∫ x

0

uie−u2

du,

for i ∈ N, [4] and it follows from the definition that

lim
x→0

erfi(x) = 0,

lim
x→∞

erfi(x) =
2√
π

∫ ∞

0

uie−u2

du =
1√
π
Γ
( i+ 1

2

)

=
1√
π
Γ
( i+ 1

2

)

,

lim
x→−∞

erfi(x) =
2√
π

∫ −∞

0

uie−u2

du =
(−1)i+1

√
π

Γ
( i+ 1

2

)

.
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The locally summable functions erf(x+) and erf(x−) are defined by

erf(x+) = H(x)erf(x), erf(x−) = H(−x)erf(x),

where H denotes Heaviside’s function.
The functions erf(|x|1/2), erf(x1/2

+ ) and erf(x
1/2
− ) are similarly defined by

erf(|x|1/2) = 2√
π

∫ |x|1/2

0

exp(−u2) du,

erf(x
1/2
+ ) = H(x)erf(|x|1/2), erf(x

1/2
− ) = H(−x)erf(|x|1/2),

and the functions erf2i(x
1/2
+ ) and erf2i(x

1/2
− ) by

erf2i(x
1/2
+ ) = H(x)erf2i(|x|1/2), erf2i(x

1/2
− ) = H(−x)erf2i(|x|1/2),

for i = 0, 1, 2, . . . .
It is easy to prove the following equations, which we need for our results, by induction:

erf2i(x) =
2√
π

∫ x

0

u2ie−u2

du

= −
i−1
∑

j=0

(2i)!(i− j)!√
π22ji!(2i− 2j)!

x2i−2j−1 exp(−x2) +
(2i)!

22ii!
erf(x)

(1.1)

and

erf2i+1(x) =
2√
π

∫ x

0

u2i+1e−u2

du

= −
i

∑

j=0

i!√
π(i− j)!

x2i−2j exp(−x2) +
i!√
π
,

(1.2)

for i = 0, 1, 2, . . . , where the sum in (1.2) is empty when i = 0.
In classical analysis one often deals with the convolution of two functions f(x) and

g(x) defined as follows:

Definition 1.1. Let f and g be functions. Then the convolution f ∗ g is defined by

(f ∗ g)(x) =
∫ ∞

−∞

f(t)g(x− t) dt =

∫ ∞

−∞

f(x− t)g(t) dt

for all points x for which the integral exist.

It follows easily from the definition that if f ∗ g exists then g ∗ f exists and

f ∗ g = g ∗ f ;
and if (f ∗ g)′ and f ∗ g′ (or f ′ ∗ g) exists, then

(1.3) (f ∗ g)′ = f ∗ g′ (or f ′ ∗ g).
The following result was proved in [10]:

xr
+ ∗ erf+(x) =

1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)ierfi(x)x
r−i+1

+ ,

for r = 0, 1, 2, . . . .
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Further, the next two results were proved in [7]:

xr
+ ∗ erf(x1/2

+ ) =
1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)ierf2i(|x|1/2)xr−i+1
+(1.4)

and

xr
+ ∗ [x−1/2

+ exp(−|x|)] =
√
π

r
∑

i=0

(

r

i

)

(−1)ierf2i(x
1/2
+ )xr−i

+ ,(1.5)

for r = 0, 1, 2, . . . .

2. RESULTS ON CONVOLUTION

Consider Poission’s classical formula in the theory of heat conduction

(2.1) u(x, t) =
1

2
√
πt

∫ ∞

−∞

exp
(

− (x− ξ)2

4t

)

µ(ξ) dξ.

It is well known that u(x, t) satisfies the heat equation

(2.2)
∂u

∂t
=

∂2u

∂x2
,

with the initial condition u(x, 0) = µ(x). Equation (2.1) can be written in the convolution
form

u(x, t) = µ(x) ∗ 1

2
√
πt

exp(−x2

4t
),

which is a solution of the heat equation (2.2).
As seen in generalized functional analysis, the convolution is of great importance. In

order to define the convolution of two distributions, we first let D be the space of infinitely
differentiable functions with compact support and D

′ be the space of distributions defined
on D.

Definition 2.1. The convolution f ∗ g of two distributions f and g in D
′ is defined by the

equation

〈(f ∗ g)(x), ϕ〉 = 〈f(y), 〈g(x), ϕ(x + y)〉〉
for arbitrary ϕ in D, provided f and g satisfy either of the conditions:

(B1) either f or g has bounded support,
(B2) the supports of f and g are bounded on the same side.

See Gel’fand and Shilov [11] (or [12]).

Note that if f and g are locally summable functions satisfying either of the above
conditions and the classical convolution f ∗g exists, then it is in agreement with Definition
1.1.

Some attempts to define the convolution product of distributions have been made. The
convolution product of distributions may be defined in a more general way without any
restriction on the supports. The most well-known are given by Vladimirov and Jones, see
[17, 14]. However, there still exist many pairs of distributions such that the convolution
products do not exist in the sense of these definitions.

Using the concepts of the neutrix and the neutrix limit due to van der Corput [3],
Fisher gave the general principle for the discarding of unwanted infinite quantities from
asymptotic expansions and this has been exploited in context of distributions, particularly
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in connection with convolution product and distributional multiplication. See [5, 6, 8, 13,
15].

To recall the definition of neutrix convolution product given by Fisher, we first of all
let τ be a function in D satisfying the following properties:

(i) τ(x) = τ(−x),
(ii) 0 ≤ τ(x) ≤ 1,
(iii) τ(x) = 1 for |x| ≤ 1

2
,

(iv) τ(x) = 0 for |x| ≥ 1.

The infinitely differentiable function τn is now defined by

τn(x) =







1, |x| ≤ n,

τ(nnx− nn+1), x > n,

τ(nnx+ nn+1), x < −n,

for n = 1, 2, . . . .

Definition 2.2. Let f and g be distributions in D
′ and let fn = fτn for n = 1, 2, . . . . Then

the neutrix convolution f©∗ g is defined as the neutrix limit of the sequence {fn∗g}, provided

that the limit h exists in the sense that

N−lim
n→∞

〈fn ∗ g, ϕ〉 = 〈h, ϕ〉,

for all ϕ in D, where N is the neutrix (see van der Corput [3]) having domain N ′ =
{1, 2, . . . , n, . . .} and range N ′′ the real numbers, with negligible functions finite linear sums

of the functions

nλ lnr−1 n, lnr n (λ > 0, r = 1, 2, . . .)

and all functions which converge to zero in the usual sense as n tends to infinity.

In this definition the convolution product fn ∗ g exists since the distribution fn has
the bounded support and supp(τn) ⊂ [−n − n−n, n + n−n]. Note that because of the
lack of symmetry in the definition of f ©∗ g, the neutrix convolution is in general non-
commutative.

Now let f and g be distributions in D
′ satisfying either condition (B1) or condition

(B2) of Definition 2.1. Then it was proved in [6] that the neutrix convolution f©∗ g exists
and

f ©∗ g = f ∗ g.
This shows that the neutrix convolution is a generalization of the convolution.

It was also proved that if f and g are distributions in D
′ and f ©∗ g exists, then the

neutrix convolution f ©∗ g′ exists and

(f ©∗ g)′ = f ©∗ g′.

Note however that equation (1.3) does not necessarily hold for the neutrix convolution
product and that (f©∗ g)′ is not necessarily equal to f ′©∗ g. However we have the following
lemma which was proved in [6].

Lemma 2.1. Let f and g be distributions in D
′ and suppose that f©∗ g exists. If N−lim

n→∞
〈(fτ ′n)∗

g, ϕ〉 exists and equals 〈h, ϕ〉 for all ϕ ∈ D, then the neutrix convolution f ′ ©∗ g exists and

(f ©∗ g)′ = f ′ ©∗ g + h.
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In order to prove our next results we need to extend our set of negligible functions
given in Definition 2.2 to also include finite linear sums of the function

nrerf [(x+ n)1/2)], r = 1, 2, . . . .

The following results were proved in [7]:

xr ©∗ erf(x
1/2
+ ) =

1

(r + 1)

r+1
∑

i=0

(

r + 1

i

)

(−1)i(2i)!

22ii!
xr−i+1,

xr ©∗ [x
−1/2
+ exp(−|x|)] =

√
π

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)i(r − i+ 1)(2i)!

22ii!
xr−i

for r = 0, 1, 2, . . . .

We now prove

Theorem 2.1. The neutrix convolution erf(x
1/2
+ ) ©∗ xr exists and

erf(x
1/2
+ )©∗ xr=

1

r + 1

r+1
∑

i=1

(

r + 1

i

)

(−1)i(2i)!

22ii!
xr−i+1(2.3)

for r = 0, 1, 2, . . . .

Proof. We put [erf(x
1/2
+ )]n = erf(x

1/2
+ )τn(x) for n = 0, 1, 2, . . . . Since [erf(x

1/2
+ )]n has

compact support, the convolution [erf(x
1/2
+ )]n ∗ xr exists and

√
π

2
[erf(x

1/2
+ )]n ∗ xr =

∫ n

0

(x− t)rerf(t1/2) dt

+

∫ n+n−n

n

(x− t)rτn(t)erf(t
1/2) dt

= I1 + I2.

(2.4)

Now
∣

∣

∣

∫ n+n−n

n

(x − t)rτn(t)erf(t
1/2) dt

∣

∣

∣
≤ (x+ n)rn−ne−n

and so

(2.5) lim
n→∞

I2 = 0.

Further

I1 =

∫ n

0

(x− t)r
∫ t1/2

0

exp(−u2) du dt

=

∫ n1/2

0

exp(−u2)

∫ n

u2

(x− t)r dt du

=
1

r + 1

∫ n1/2

0

[

(x − u2)r+1 − (x− n)r+1
]

exp(−u2) du

=

√
π

2(r + 1)

r+1
∑

i=1

(

r + 1

i

)

(−1)ixr−i+1erf2i(n
1/2)

−
√
π

2(r + 1)

r+1
∑

i=1

(

r + 1

i

)

(−1)ixr−i+1nierf(n1/2).



34 B. FISHER, F. AL-SIREHY AND E. ÖZÇAĞ

It follows from equation (1.1) and the nierf(n1/2) being negligible functions that

N−lim
n→∞

I1 =

√
π

2(r + 1)

r+1
∑

i=1

(

r + 1

i

)

(−1)ixr−i+1erf2i(∞)

=

√
π

r + 1

r+1
∑

i=1

(

r + 1

i

)

(−1)i(2i)!

22i+1i!
xr−i+1,

(2.6)

on noting that erf(∞) = 1. Equation (2.3) now follows from equations (2.4) to (2.6). �

Replacing x by −x in equation (2.3), we get

Corollary 2.1. The neutrix convolution erf(x
1/2
− ) ©∗ xr exists and

erf(x
1/2
− )©∗ xr= − 1

r + 1

r+1
∑

i=1

(

r + 1

i

)

(2i)!

22ii!
xr−i+1(2.7)

for r = 0, 1, 2, . . . .

Noting that

erf(|x|1/2) = erf(x
1/2
+ ) + erf(x

1/2
− )

and using equations (2.3) and (2.7), we get

Corollary 2.2. The neutrix convolution erf(|x|1/2) ©∗ xr exists and

erf(|x|1/2)©∗ xr=
1

r + 1

r+1
∑

i=1

(

r + 1

i

)

[(−1)i − 1](2i)!

22ii!
xr−i+1(2.8)

for r = 0, 1, 2, . . . .

Corollary 2.3. The neutrix convolution erf(|x|1/2) ©∗ xr
+ exists and

erf(|x|1/2)©∗ xr
+ =

1

r + 1

r+1
∑

i=1

(

r + 1

i

)

(−1)ierf2i(|x|1/2)[xr−i+1

+ − (−1)rxr−i+1

− ]

− 1

r + 1

r+1
∑

i=1

(

r + 1

i

)

(2i)!

22ii!
xr−i+1

(2.9)

for r = 0, 1, 2, . . . .

Proof. Note that

erf(|x|1/2)©∗ xr
+ = erf(x

1/2
+ ) ∗ xr

+ + erf(x
1/2
− )©∗ xr

+

= erf(x
1/2
+ ) ∗ xr

+ + erf(x
1/2
− )©∗ xr − (−1)rerf(x

1/2
− )©∗ xr

−.

Then replacing x by −x in equation (2.8), we get

(2.10) xr
− ∗ erf(x1/2

− ) =
1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)ierf2i(|x|1/2)xr−i+1
−
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and using equations (1.4), (2.7) and (2.10), we get

erf(|x|1/2)©∗ xr
+ =

1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)ierf2i(|x|1/2)xr−i+1
+

− 1

r + 1

r+1
∑

i=1

(

r + 1

i

)

(2i)!

22ii!
xr−i+1

− 1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)r+ierf2i(|x|1/2)xr−i+1
− .

Equation (2.9) follows. �

Replacing x by −x in equation (2.9), we get

Corollary 2.4. The neutrix convolution erf(|x|1/2)©∗ xr
− exists and

erf(|x|1/2)©∗ xr
− =

1

r + 1

r+1
∑

i=1

(

r + 1

i

)

(−1)ierf2i(|x|1/2)[xr−i+1

− − (−1)rxr−i+1

+ ]

+
1

r + 1

r+1
∑

i=1

(

r + 1

i

)

(−1)r−i(2i)!

22ii!
xr−i+1

for r = 0, 1, 2, . . . .

Theorem 2.2. The neutrix convolution [x
−1/2
+ exp(−|x|)]©∗ xr exists and

(2.11) [x
−1/2
+ exp(−|x|)]©∗ xr =

√
πr

r + 1

r
∑

i=1

(

r + 1

i

)

(−1)i(r − i+ 1)(2i)!

22ii!
xr−i

for r = 1, 2, . . . and

(2.12) [x
−1/2
+ exp(−|x|)]©∗ 1 = 0.

Proof. Differentiating the convolution [erf(x
1/2
+ )]n ∗ xr , we get

1√
π
[x

−1/2
+ exp(−|x|)τn(x)] ∗ xr + [erf(|x|1/2)τ ′n(x)] ∗ xr

= r[erf(x
1/2
+ )]n ∗ xr−1,

(2.13)

for r = 1, 2, . . . .
Now

∣

∣

∣
[erf(|x|1/2)τ ′n(x)] ∗ xr

∣

∣

∣
=

∣

∣

∣

∣

∣

∫ n+n−n

n

(x − t)rerf(|t|1/2)τn(t) dt
∣

∣

∣

∣

∣

≤ (x+ n)rn−ne−n

and so

(2.14) lim
n→∞

[erf(|x|1/2)τ ′n(x)] ∗ xr = 0.
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It now follows from equations (2.3), (2.13) and (2.14) that

N−lim
n→∞

[x
−1/2
+ exp(−|x|)τn(x)] ∗ xr =

√
πrerf(x

1/2
+ )©∗ xr−1

=

√
πr

r + 1

r
∑

i=1

(

r + 1

i

)

(−1)i(r − i+ 1)(2i)!

22ii!
xr−i,

for r = 1, 2, . . . , proving equation (2.11).
When r = 0, equation (2.13) is replaced by

1√
π
[x

−1/2
+ exp(−|x|)τn(x)] ∗ 1 + [erf(|x|1/2)τ ′n(x)] ∗ 1 = 0,

and it follows that
1√
π
N−lim
n→∞

[x
−1/2
+ exp(−|x|)τn(x)] ∗ 1 =

1√
π
[x

−1/2
+ exp(−|x|)]©∗ 1 = 0,

proving equation (2.12). �

Replacing x by −x in equations (2.11) and (2.12), we get

Corollary 2.5. The neutrix convolution [x
−1/2
− exp(−|x|)]©∗ xr exists and

(2.15) [x
−1/2
− exp(−|x|)]©∗ xr =

√
πr

r + 1

r
∑

i=1

(

r + 1

i

)

(r − i+ 1)(2i)!

22ii!
xr−i

for r = 1, 2, . . . and

(2.16) [x
−1/2
− exp(−|x|)]©∗ 1 = 0.

Noting that

|x|−1/2 exp(−|x|) = x
−1/2
+ exp(−|x|) + x

−1/2
− exp(−|x|)

and using equations (2.11), (2.12), (2.15) and (2.16), we get

Corollary 2.6. The neutrix convolution [|x|−1/2 exp(−|x|)]©∗ xr exists and

(2.17) [|x|−1/2 exp(−|x|)]©∗ xr =

√
πr

r + 1

r
∑

i=1

(

r

i

)

[1 + (−1)i](r − i+ 1)(2i)!

22ii!
xr−i

for r = 1, 2, . . . and

(2.18) [|x|−1/2 exp(−|x|)]©∗ 1 = 0.

Corollary 2.7. The neutrix convolution [|x|−1/2 exp(−|x|)]©∗ xr
+ exists and

[|x|−1/2 exp(−|x|)]©∗ xr
+ =

√
π

r
∑

i=1

(

r

i

)

(2i)!

22ii!
xr−i

+
√
π

r
∑

i=0

(

r

i

)

(−1)ierf2i(|x|1/2)xr−i
+

−
√
π

r
∑

i=0

(

r

i

)

(−1)r+ierf2i(|x|1/2)xr−i
−

(2.19)

for r = 1, 2, . . . and

(2.20) [|x|−1/2 exp(−|x|)]©∗ H(x) = 0.
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Proof. Note that

[|x|−1/2 exp(−|x|)]©∗ xr
+ = [x

−1/2
+ exp(−|x|)] ∗ xr

+ + [x
−1/2
− exp(−|x|)]©∗ xr

+

= [x
−1/2
+ exp(−|x|)] ∗ xr

+ + [x
−1/2
− exp(−|x|)]©∗ xr

− (−1)r[x
−1/2
− exp(−|x|)] ∗ xr

−

and replacing x by −x in equation (1.5), we get

(2.21) xr
− ∗ [x−1/2

− exp(−|x|)] =
√
π

r
∑

i=0

(

r

i

)

(−1)ierf2i(x
1/2
− )xr−i

− .

Then

[|x|−1/2 exp(−|x|)]©∗ xr
+ =

√
π

r
∑

i=0

(

r

i

)

(−1)ierf2i(x
1/2
+ )xr−i

+

+

√
πr

r + 1

r
∑

i=1

(

r + 1

i

)

(r − i+ 1)(2i)!

22ii!
xr−i

−
√
π

r
∑

i=0

(

r

i

)

(−1)r−ierf2i(x
1/2
− )xr−i

− ,

on using equations (1.5), (2.15) and (2.21). Equation (2.19) follows for r = 1, 2, . . . .
Equation (2.20) follows similarly. �

In the particular case r = 0, we have

[|x|−1/2 exp(−|x|)]©∗ H(x) =
√
π sgn(x)erf(|x|1/2),

on using equations (2.17), (2.18) and (2.19).
For further related results, see [9, 10].
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