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ON THE DETERMINATION OF JUMP BY THE DIFFERENTIATED CONJUGATE
FOURIER-JACOBI SERIES

SAMRA SADIKOVIĆ

ABSTRACT. In the present paper we prove a new result on determination of jump discon-
tinuities by the differentiated conjugate Fourier-Jacobi series. Further, we establish Cesàro
summability of the sequence of partial sums of the conjugate Fourier-Chebyshev series, a

special type of Fourier-Jacobi series which are obtained for α = β = −
1

2
.

1. INTRODUCTION AND PRELIMINARIES

Conjugate Fourier-Jacobi series was introduced by B. Muckenhoupt and E. M. Stein,
see [6], when α = β, and by Zh.-K. Li, see [4], for general α and β. "Conjugacy" is an
important concept in classical Fourier analysis which links the study of the more funda-
mental properties of harmonic functions to that of analytic functions and is used to study
the mean convergence of Fourier series, see [11].

Let P (α,β)
n (x) be the Jacobi polynomial of degree n and order (α, β), α, β > −1, normal-

ized so that P (α,β)
n (1) =

(
n+α
n

)
. They are orthogonal on the interval (−1, 1) with respect

to the measure dµα,β(x) = (1− x)α(1 + x)βdx.

Define R
(α,β)
n (x) =

P (α,β)
n (x)

P
(α,β)
n (1)

, and denote by Lp(α, β), (1 ≤ p < ∞) the space of func-

tions f(x) for which ∥f∥p(α,β) = {
∫ 1

−1
|f(x)|pdµα,β(x)}

1
p is finite.

For functions f ∈ L1(α, β), its Fourier-Jacobi expansion is

f(x) ∼
∞∑

n=0

f̂(n)ω(α,β)
n R(α,β)

n (x),

where

f̂(n) =

∫ 1

−1

f(y)R(α,β)
n (y)dµα,β(y) ,
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are the Fourier coefficients and

ω(α,β)
n = {

∫ 1

−1

[R(α,β)
n (y)]2dµα,β(y)}−1 ∼ n2α+1 .

With x = cos θ, θ ∈ (0, π), in an equivalent way Fourier-Jacobi expansion is given by

(1.1) f(θ) ∼
∞∑

n=0

f̂(n)ω(α,β)
n R(α,β)

n (cos θ),

where

f̂(n) =

∫ π

0

f(φ)R(α,β)
n (cosφ)dµα,β(φ),

(1.2) ω(α,β)
n = {

∫ π

0

[R(α,β)
n (cosφ)]2dµα,β(φ)}−1 ∼ n2α+1,

and correspondingly dµα,β(θ) = 2α+β+1 sin2α+1 θ
2 cos

2β+1 θ
2dθ.

To the Fourier-Jacobi series of the form (1.1), its conjugate series is defined by

(1.3) f̃(θ) ∼ 1

2α+ 2

∞∑
n=1

nf̂(n)ω(α,β)
n R

(α+1,β+1)
n−1 (cos θ) sin θ.

Denote by S
(α,β)
n (f, x) the n−th partial sum of (1.1), and by S̃

(α,β)
n (f, x) the n−th

partial sum of (1.3), where x = cos θ. If α = β = −1

2
, the corresponding Fourier-Jacobi

series becomes Fourier-Chebyshev series, so by S
(− 1

2 ,−
1
2 )

n (f, x) we denote the n-th partial
sum of the Fourier-Chebyshev series of f.

Also, throughout this paper we use the following general notations: L[a, b] is the space
of integrable functions on [a, b] and C[a, b] is the space of continuous function on [a, b]
with the uniform norm ∥ · ∥C[a,b]. W [a, b] is the space of functions on [a, b] which may
have discontinuities only of the first kind and which are normalized by the condition
f(x) = 1

2 (f(x+) + f(x−)).
In this paper first we give a review of the results on determination of jump discontinu-

ities for functions of generalized bounded variation by the differentiated Fourier series,
and then we prove new results on the determination of jump discontinuities by the dif-
ferentiated conjugate Fourier-Jacobi series. Further, we prove that the sequence of the
conjugate partial sums of Fourier-Chebyshev series is Cesàro summable to 0.

2. JUMP OF A FUNCTION AND DIFFERENTIATED FOURIER SERIES

The knowledge of the precise location of the discontinuity points is essential for many
of the methods aiming at obtaining exponential convergence of the Fourier series of a
piecewise smooth function, avoiding the well-known Gibbs phenomenon: the oscillatory
behavior of the Fourier partial sums of a discontinuous function.

If a function f is integrable on [−π, π], then it has a Fourier series with respect to the
trigonometric system {1, cos nx, sin nx}∞n=1, and we denote the n-th partial sum of the
Fourier series of f by Sn(x, f), i.e.,

Sn(x, f) =
a0(f)

2
+

n∑
k=1

(ak(f) cos kx+ bk(f) sin kx),
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where ak(f) =
1

π

π∫
−π

f(t) cos kt dt and bk(f) =
1

π

π∫
−π

f(t) sin kt dt are the k−th Fourier

coefficients of the function f. By S̃n(x, f) we denote the n−th partial sum of the conjugate
series, i.e.,

S̃n(x, f) =
n∑

k=1

(ak(f) sin kx− bk(f) cos kx).

The identity determining the jumps of a function of bounded variation by means of
its differentiated Fourier partial sums has been known for a long time. Let f(x) be a
function of bounded variation with period 2π, and Sn(x, f) be the partial sum of order n
of its Fourier series. By the classical theorem of Fejer [11] the identity

(2.1) lim
n→∞

S′
n(x, f)

n
=

1

π
(f(x+ 0)− f(x− 0))

holds at any point x.
Obviously, Fejér’s identity (2.1) is a statement about Cesàro summability of the se-

quence {kbk cos kx − kak sin kx}, ak = ak(f) and bk = bk(f) being the k-th cosine
and sine coefficient, respectively. As it is well-known, a sequence sn is Cesàro or (C, 1)
summable to s if the sequence σn of its arithmetical means converges to s, i.e. σn =
s0 + s1 + . . .+ sn

n+ 1
→ s, n → ∞.

Analogously, the sequence sn is (C,α), α > −1, summable to s, if the sequence

σ(α)
n =

1(
n+α
n

) n∑
k=0

(
n− k + α− 1

n− k

)
sk,

converges to s.
The concept of higher variation was firstly introduced by N. Wiener, see [10].
A function f is said to be of bounded p-variation, p ≥ 1, on the segment [a, b] and to

belong to the class Vp[a, b] if

V b
a p(f) = sup

Πa,b

{∑
i

|f(xi)− f(xi−1)|p
} 1

p

< ∞,

where Πa,b = {a = x0 < x1 < ... < xn = b} is an arbitrary partition of the segment [a, b].
V b
a p(f) is the p-variation of f on [a, b].

B. I. Golubov, see [2], has shown that identity (2.1) is valid for classes Vp.

Theorem 2.1. Let f(x) ∈ Vp, (1 ≤ p < ∞) and r ∈ N0. Then for any point x one has the
equation

lim
n→∞

S
(2r+1)
n (x, f)

n2r+1
=

(−1)r

(2r + 1)π
(f(x+ 0)− f(x− 0)).

Another type of generalization of the class BV on everywhere convergence of Fourier
series, for every change of variable, was introduced by D. Waterman in [9].

Let Λ = {λn} be a nondecreasing sequence of positive numbers such that
∑ 1

λn
diverges and {In} be a sequence of nonoverlapping segments In = [an, bn] ⊂ [a, b]. A
function f is said to be of Λ-bounded variation on I = [a, b] (f ∈ ΛBV ) if∑ |f(bn)− f(an)|

λn
< ∞
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for every choice of {In}. The supremum of these sums is called the Λ-variation of f on I.
In the case Λ = {n}, one speaks of harmonic bounded variation (HBV ).

The class HBV contains all Wiener classes. M. Avdispahić has shown in [1] that HBV
is the limiting case for validity of the identity (2.1).

G. Kvernadze in [3] generalized Theorem 2.1 for ΛBV classes:

Theorem 2.2. Let r ∈ Z+ and suppose ΛBV is the class of functions of Λ-bounded variation
determined by the sequence Λ = (λk)

∞
k=1. Then

(a) the identity

lim
n→∞

((Sn(g; θ))
(2r+1)

n2r+1
=

(−1)r

(2r + 1)π
(g(θ+)− g(θ−)).

is valid for every g ∈ ΛBV and each fixed θ ∈ [−π, π] if and only if ΛBV ⊆ HBV.
(b) there is no way to determine the jump at the point θ ∈ [−π, π] of an arbitrary

function g ∈ ΛBV by means of the sequence ((Sn(g; θ))
(2r), n ∈ N0.

Here we also note the result from [3] for the conjugate Fourier series:

Theorem 2.3. Let r ∈ N and suppose ΛBV is the class of functions of Λ-bounded variation
determined by the sequence Λ = (λk)

∞
k=1. Then

(a) the identity

lim
n→∞

(S̃n(g; θ))
(2r)

n2r
=

(−1)(r+1)

2rπ
(g(θ+)− g(θ−)).

is valid for every g ∈ ΛBV and each fixed θ ∈ [−π, π] if and only if ΛBV ⊆ HBV.
(b) there is no way to determine the jump at the point θ ∈ [−π, π] of an arbitrary

function g ∈ ΛBV by means of the sequence ((S̃n(g; θ))
(2r+1), n ∈ N.

3. MAIN RESULTS

Theorem 3.1. Let r ∈ N and suppose ΛBV is the class of functions of Λ-bounded variation

determined by the sequence Λ = (λk)
∞
k=1, and α ≥ −1

2
,

β ≥ −1

2
. Then the identity

lim
n→∞

[S̃
(α,β)
n (f, x)](2r)

n2r
=

(−1)(r+1)

2rπ
(1− x2)−r− 1

2 [f(x+ 0)− f(x− 0)],

is valid for every f ∈ ΛBV and each x ∈ (−1, 1), where S̃
(α,β)
n (f, x) is the n-th partial sum

of the conjugate Fourier-Jacobi series, if and only if ΛBV ⊆ HBV.

Proof. Differentiating an obvious identity, see [8]

S
(− 1

2 ,−
1
2 )

n (f ;x) = Sn(g, θ),

where x = cos θ, g(θ) = f(cos θ) one has(
S(−1/2,−1/2)
n (f, x)

)′
= S′

n(g, θ) ·
−1√
1− x2

.
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Continuing the differentiation of the last identity with respect to x (x = cos θ), we
obtain by induction the following representation (r ∈ N) :

[S
(− 1

2 ,−
1
2 )

n (f ;x)](2r+1) =

(3.1) = (1− x2)−r− 1
2 (Sn(g; θ))

(2r+1) −
2r∑
i=1

di(x)(Sn(g; θ))
(i)

for θ ∈ [0, π], where di, i = 1, 2, . . . , 2r, are infinitely differentiable functions on (−1, 1).
In addition,

(3.2) ∥Sn(g; ·))(i)∥C[−π,π] = o(n2r+1)

for i = 1, 2, . . . , 2r, r ∈ N, since g ∈ W ⊂ L, see [3].

By Theorem 4.1 in [7] we have for α = β = −1

2

lim
n→∞

[
−1

n

(
S(−1/2,−1/2)
n (f, x)

)′
− S̃(−1/2,−1/2)

n (f, x)] = 0

thus taking that into account, dividing (3.1) by n2r+1 and letting n → ∞ we get

lim
n→∞

[S̃
(− 1

2 ,−
1
2 )

n (f, x)](2r)

n2r
= lim

n→∞

1

n2r+1
[(1−x2)−r− 1

2 (Sn(g; θ))
(2r+1)−

2r∑
i=1

di(x)(Sn(g; θ))
(i)].

Using the well-known relation S̃n(g, θ) =
−1

n
S′
n(g, θ), we have

lim
n→∞

[S̃
(− 1

2 ,−
1
2 )

n (f, x)](2r)

n2r
= lim

n→∞
[
−1

n2r
(1−x2)−r− 1

2 (S̃n(g; θ))
(2r)− 1

n2r

2r∑
i=1

di(x)(Sn(g; θ))
(i)].

By Theorem 2.3 and (3.2) we have further

lim
n→∞

[S̃
(− 1

2 ,−
1
2 )

n (f, x)](2r)

n2r
= −(1− x2)−r− 1

2
(−1)(r+1)

2rπ
(g(θ+)− g(θ−)).

Taking into account that f(x±) = g(θ∓), θ ∈ [0, π], we get

lim
n→∞

[S̃
(− 1

2 ,−
1
2 )

n (f, x)](2r)

n2r
= (1− x2)−r− 1

2
(−1)(r+1)

2rπ
[f(x+ 0)− f(x− 0)].

Finally, using the equiconvergence formula

∥S̃(α,β)
n (f, x)− S̃(−1/2,−1/2)

n (f, x)∥C[∆(ν,ε)] = o(1),

where α ≥ −1

2
and β ≥ −1

2
, proved in [7] (for an arbitrary function f ∈ HBV and

a fixed ε ∈ (0, xν+1−xν

2 ), ν = 0, 1, 2, ...,M, where it is assumed that x0 = −1, xM+1 = 1
and ∆(ν; ε) = [xν + ε;xν+1 − ε],) we prove the result. �

For α = β = −1

2
the corresponding Fourier-Jacobi series becomes Fourier-Chebyshev

series, so by S̃
(− 1

2 ,−
1
2 )

n (f, x) we denote the n-th partial sum of the conjugate Fourier-
Chebyshev series of f. Further, we prove that the sequence of the conjugate partial sums
of Fourier-Chebyshev series is Cesàro summable to 0.
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Theorem 3.2.

lim
n→∞

S̃
(−1/2,−1/2)
1 (f, x) + S̃

(−1/2,−1/2)
2 (f, x) + . . .+ S̃

(−1/2,−1/2)
n−1 (f, x)

n
= 0,

for every f ∈ L1(−1/2,−1/2) and each −1 < x < 1.

Proof. According to (1.3)

S̃
(− 1

2 ,−
1
2 )

n (f, x) =

n∑
k=1

k · f̂(k)ω(− 1
2 ,−

1
2 )

k ·R( 1
2 ,

1
2 )

k−1 (cos θ) sin θ.

The sum

S̃
(−1/2,−1/2)
1 (f, x) + S̃

(−1/2,−1/2)
2 (f, x) + . . .+ S̃

(−1/2,−1/2)
n−1 (f, x)

can be written as

1(n− 1)a1 + 2(n− 2)a2 + . . .+ (n− 1)1an−1,

where ai = f̂(i)ω
(− 1

2 ,−
1
2 )

i R
( 1
2 ,

1
2 )

i−1 (cos θ) sin θ. First we will use the Stolz-Cesàro theorem,
so

lim
n→∞

1(n− 1)a1 + 2(n− 2)a2 + . . .+ (n− 1) · 1 · an−1

n
= lim

n→∞
nan.

In order to prove the equiconvergence we use (1.2), the approximation [8, Theorem
8.21.8]

P (α,β)
n (cos θ) = n−1/2k(θ)cos(Nθ + γ) +O(n−3/2),

k(θ) = π
−
1

2 (sin
θ

2
)
−α−

1

2 (cos
θ

2
)
β−

1

2 ,

N = n+
α+ β + 1

2
,

γ = −(α+
1

2
)
π

2
, 0 < θ < π,

and [5, Lemma 2.3.]

lim
n→∞

nα+ 1
2

∫ 1

−1

f(y)R(α,β)
n (y)dµα,β(y) = 0,

for α, β > −1, f ∈ L1(min(α, α/2− 1/4),min(β, β/2− 1/4)), which is a direct generaliza-
tion of the Riemann-Lebesgue theorem. Finally we get

lim
n→∞

nan = lim
n→∞

nf̂(n)ω
(− 1

2 ,−
1
2 )

n R
( 1
2 ,

1
2 )

n−1 (cos θ) sin θ

= lim
n→∞

nf̂(n)ω
(− 1

2 ,−
1
2 )

n
P

( 1
2 ,

1
2 )

n−1 (cos θ)

P
( 1
2 ,

1
2 )

n−1 (1)
sin θ

= 0,

as P ( 1
2 ,

1
2 )

n−1 (1) ∼ (n− 1)1/2.
�
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