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MAJORIZATION OF BEREZIN TRANSFORM

NAMITA DAS1 AND MADHUSMITA SAHOO

ABSTRACT. In this paper, we majorize the Berezin transform of positive invertible operators
defined from the Bergman space L2

a(D) into itself. We also present sufficient conditions on
bounded operators S, T ∈ L(L2

a(D)) such that ρ(|S|) = ρ(T ) in terms of the Schatten
norm of these operators. Here ρ(T ) is the Berezin transform of T . Further, given T ∈
L(L2

a(D)), we find conditions on the existence of a projection operator E ∈ L(L2
a(D))

such that ρ(TE) = 0.

1. INTRODUCTION

Let D = {z ∈ C : |z| < 1} and let dA(z) = 1
πdxdy denote the normalized Lebesgue

area measure on D in the complex plane C. For 1 ≤ p < ∞ and f : D −→ C Lebesgue

measurable let ∥f∥p =

(∫
D
|f |pdA(z)

)1/p

. The Bergman space Lp
a(D) is the Banach space

of analytic functions f : D −→ C such that ∥f∥p < ∞. The Bergman space L2
a(D) is a

Hilbert space; it is a closed subspace [3] of the Hilbert space L2(D, dA) with the inner

product given by ⟨f, g⟩ =

∫
D
f(z)g(z)dA(z), f, g ∈ L2(D, dA). Let P denote the orthog-

onal projection of L2(D, dA) onto L2
a(D). Let K(z, w̄) be the function on D × D defined

by K(z, w̄) = Kz(w) = 1
(1−zw̄)2 . The function K(z, w̄) is called the reproducing kernel

of L2
a(D). For any n ≥ 0, n ∈ Z, let en(z) =

√
n+ 1zn, then {en} forms an orthonor-

mal basis for L2
a(D). Let ka(z) = K(z,ā)√

K(a,ā)
= 1−|a|2

(1−āz)2 . These functions ka are called the

normalized reproducing kernels of L2
a(D); it is clear that they are unit vectors in L2

a(D).
Let L∞(D, dA) be the Banach space of all essentially bounded measurable functions f on
D with ∥f∥∞ = ess sup{|f(z)| : z ∈ D} and H∞(D) be the space of bounded analytic
functions on D. Let L(H) be the space of all bounded linear operators from the separable
Hilbert space H into itself and LC(H) be the space of all compact operators in L(H). An
operator A ∈ L(H) is called positive if ⟨Ax, x⟩ ≥ 0 holds for every x ∈ H in which case
we write A ≥ 0. The absolute value of an operator A is the positive operator |A| defined
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as |A| = (A∗A)
1
2 . If H is infinite-dimensional, the map | · | on L(H) is not Lipschitz con-

tinuous. We define ρ : L(L2
a(D)) −→ L∞(D) by ρ(T )(z) = T̃ (z) = ⟨Tkz, kz⟩, z ∈ D. A

function g(x, ȳ) on D×D is called of positive type (or positive definite), written g ≫ 0, if
n∑

j,k=1

cjckg(xj , xk) ≥ 0

for any n-tuple of complex numbers c1, . . . , cn and points x1, . . . , xn ∈ D. We write g ≫ h
if g − h ≫ 0. We shall say Υ ∈ A if Υ ∈ L∞(D) and is such that

(1.1) Υ(z) = Θ(z, z̄)

where Θ(x, ȳ) is a function on D× D meromorphic in x and conjugate meromorphic in y
and if there exists a constant c > 0 such that

cK(x, ȳ) ≫ Θ(x, ȳ)K(x, ȳ) ≫ 0 for all x, y ∈ D.

It is a fact that (see [7], [8]) Θ as in (1.1), if it exists, is uniquely determined by Υ. In
this paper, we majorize the Berezin transform of positive invertible operators belonging
to L(L2

a(D)). The organization of this paper is as follows: In Section 2, we find con-
ditions on positive invertible operators A,B ∈ L(L2

a(D)) such that ρ(XB−1X) ≤ ρ(A)
where X ∈ L(L2

a(D)) is self-adjoint. In Section 3, we establish that if f is an operator
monotone function on [0,∞) and A ∈ L(L2

a(D)) is positive then Θf(EAE)(x, ȳ)K(x, ȳ) ≫
ΘEf(A)E(x, ȳ)K(x, ȳ) for all x, y ∈ D and ρ(f(EAE)) = ρ(Ef(A)E) if and only if E and
A commute f(0) = 0 and f is not a linear function. Section 4 is devoted to Schatten
norm and contractions. In this section, we obtain sufficient conditions on Schatten norm
of S, T ∈ L(L2

a(D)) such that ρ(|S|) = ρ(T ) and ρ(S) ≤ ρ(T ). Further, we also find
conditions on the existence of projection operator E ∈ L(L2

a(D)) such that ρ(TE) = 0.

2. ON INVERTIBLE POSITIVE OPERATORS

In this section, we find conditions on positive invertible operators A,B ∈ L(L2
a(D))

such that ρ(XB−1X) ≤ ρ(A) where X ∈ L(L2
a(D)) is self-adjoint. If S ∈ L(L2

a(D)) and S

is positive, then let ΘS(x, ȳ) =
⟨SKy,Kx⟩
⟨Ky,Kx⟩ for all x, y ∈ D.

Theorem 2.1. Let A,B ∈ L(L2
a(D)) are positive and invertible and X ∈ L(L2

a(D)) is self-
adjoint. Then

(2.1) ΘA(x, ȳ)K(x, ȳ) ≫ ΘXB−1X(x, ȳ)K(x, ȳ)

if and only if

(2.2) |⟨XKy,Kx⟩|2 ≤ ⟨AKx,Kx⟩⟨BKy,Ky⟩

for all x, y ∈ D. In this case ρ(XB−1X) ≤ ρ(A).

Proof. Suppose (2.1) holds. Then

⟨AKy,Kx⟩ ≥ ⟨XB−1XKy,Kx⟩

for all x, y ∈ D. The last inequality is valid if and only if
n∑

i,j=1

cj c̄i⟨AKxj
,Kxi

⟩ ≥
n∑

i,j=1

cj c̄i⟨XB−1XKxj
,Kxi

⟩
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where x1, x2, · · · , xn ∈ D and cj , j = 1, 2, · · · , n are constants. Thus (2.1) holds if and
only if⟨

A

 n∑
j=1

cjKxj

 ,

(
n∑

i=1

ciKxi

)⟩
≥

⟨
XB−1X

 n∑
j=1

cjKxj

 ,

(
n∑

i=1

ciKxi

)⟩
.

Since


n∑

j=1

cjKxj ;xj ∈ D, j = 1, · · · , n

 is dense in L2
a(D), hence (2.1) holds if and only

if ⟨Ag, g⟩ ≥ ⟨XB−1Xg, g⟩ for all g ∈ L2
a(D). That is, if and only if A ≥ XB−1X. Now

considering the congruence(
A X
X B

)
∼
(

I −XB−1

0 I

)(
A X
X B

)(
I 0

−B−1X I

)
=

(
A−XB−1X 0

0 B

)

we obtain A ≥ XB−1X if and only if
(

A X
X B

)
is positive. Thus (2.1) holds if and

only if
(

A X
X B

)
is positive. Suppose

(
A X
X B

)
≥ 0 in L(L2

a ⊕ L2
a). Then it follows

from [2], that
∣∣∣∣⟨( A X

X B

)(
Kx

0

)
,

(
0
Ky

)⟩∣∣∣∣2
≤
⟨(

A X
X B

)(
Kx

0

)
,

(
Kx

0

)⟩⟨(
A X
X B

)(
0
Ky

)
,

(
0
Ky

)⟩
for all

x, y ∈ D. A simplification of these inner products yields

|⟨XKx,Ky⟩|2 ≤ ⟨AKx,Kx⟩⟨BKy,Ky⟩

for all x, y ∈ D. That is,

|⟨XKy,Kx⟩|2 ≤ ⟨AKx,Kx⟩⟨BKy,Ky⟩

for all x, y ∈ D. That is, (2.2) holds. Suppose (2.2) holds for all x, y ∈ D. Let f =
n∑

j=1

cjKyj
and g =

m∑
i=1

diKxi
where cj are constants for j = 1, 2, · · · , n and di are con-

stants, xi ∈ D, for i = 1, 2, · · · ,m. Then using Heinz inequality [5] we obtain

(2.3) |⟨Xf, g⟩|2 ≤ ⟨|X|f, f⟩⟨|X|g, g⟩

for all f, g ∈ L2
a(D). Now it follows from (2.3), that⟨(

A X
X B

)(
f
g

)
,

(
f
g

)⟩
= ⟨Af, f⟩+ ⟨Xg, f⟩+ ⟨Xf, g⟩+ ⟨Bg, g⟩

= ⟨Af, f⟩+ ⟨Bg, g⟩+ 2Re⟨Xf, g⟩

≥ 2⟨Af, f⟩1/2⟨Bg, g⟩1/2 + 2Re⟨Xf, g⟩
≥ 2|⟨Xf, g⟩|+ 2Re⟨Xf, g⟩
≥ 2|⟨Xf, g⟩| − 2|⟨Xf, g⟩| = 0
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for all f, g ∈ L2
a(D). Hence

(
A X
X B

)
is positive. From the first part it follows that

A ≥ XB−1X and
ΘA(x, ȳ)K(x, ȳ) ≫ ΘXB−1X(x, ȳ)K(x, ȳ)

for all x, y ∈ D. The result follows. �

Corollary 2.1. Let 0 < m ≤ A ≤ M and E is a projection operator from L2
a(D) onto a

closed subspace M. Let A−1 |M= A1 and A |M= A2. Then

(2.4) ΘEA1(x, ȳ)K(x, ȳ) ≫ Θ(EA2)−1(x, ȳ)K(x, ȳ)

for all x, y ∈ D. Further ρ(EA1) = ρ((EA2)
−1) if and only if E and A commute.

Proof. The inequality in (2.4) follows from Theorem 2.1. Notice that EA1 and
(I − E)A−1 |M⊥ are invertible and

(EA2)
−1 = EA1 − EA−1((I − E)A−1 |M⊥)−1(I − E)A1.

Now let (EA2)
−1 = EA1. Then (I − E)A1 = 0 and this implies EA−1 = A−1E. Thus

EA = AE. �

3. OPERATOR MONOTONE FUNCTION

In this section, we establish that if f is an operator monotone function on [0,∞) and
A ∈ L(L2

a(D)) is positive then

Θf(EAE)(x, ȳ)K(x, ȳ) ≫ ΘEf(A)E(x, ȳ)K(x, ȳ)

for all x, y ∈ D and ρ(f(EAE)) = ρ(Ef(A)E) if and only if E and A commute f(0) = 0
and f is not a linear function.

Theorem 3.1. Let f be an operator monotone function on [0,∞) and assume f(0) ≥ 0.
Let A ∈ L(L2

a(D)) and A ≥ 0 and E is the projection operator from L2
a(D) onto a closed

subspace M of L2
a(D). Then

Θf(EAE)(x, ȳ)K(x, ȳ) ≫ ΘEf(A)E(x, ȳ)K(x, ȳ)

for all x, y ∈ D. Further, ρ(f(EAE)) = ρ(Ef(A)E) if and only if E and A commute
f(0) = 0 and f is not a linear function.

Proof. Since f is operator monotone on [0,∞), hence f can be represented as

f(s) = a+ bs+

∫ ∞

0

(
1

t
− 1

t+ s

)
dµ(t)

where a = f(0), b ≥ 0 and µ is a positive Borel measure such that∫ ∞

0

1

1 + t2
dµ(t) < ∞.

Let E be the projection operator from L2
a(D) onto the closed subspace M of L2

a(D). Then

⟨Ef(A)Eg, g⟩ = ⟨(a+ bA)Eg,Eg⟩+
∫ ∞

0

(
1

t
I − (tI +A)−1Eg,Eg

)
dµ(t)
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and

⟨f(EAE)g, g⟩ = ⟨(a+ bEAE)g, g⟩+
∫ ∞

0

⟨(
1

t
I − (tI + EAE)−1

)
g, g

⟩
dµ(t)

= ⟨(a+ bEAE)g, g⟩+
∫ ∞

0

⟨(
1

t
E − (E(tI +A) |M )−1

)
Eg,Eg

⟩
dµ(t).

By Corollary 2.1,

1

t
E − (E(tI +A) |M)−1 ≥ 1

t
E − E(tI +A)−1E

for t > 0 implies that f(EAE) ≥ Ef(A)E. Thus

Θf(EAE)(x, ȳ)K(x, ȳ) ≫ ΘEf(A)E(x, ȳ)K(x, ȳ)

for all x, y ∈ D. Now if, f(EAE) = Ef(A)E, then for every g ∈ L2
a(D), ⟨ag, g⟩ =

⟨aEg,Eg⟩ and
⟨(E(tI +A) |M)−1Eh,Eh⟩ = ⟨(tI +A)−1Eh,Eh⟩

for almost every t > 0 with respect to µ. Since L2
a(D) is separable, we obtain

(E(tI +A) |M)−1 = E(tI +A)−1E

for almost every t > 0. Thus by Corollary 2.1, E(tI+A) = (tI+A)E and hence EA = AE
and f(0) = a = 0. �

4. SCHATTEN NORM AND CONTRACTIONS

In this section, we obtain sufficient conditions on Schatten norm of S, T ∈ L(L2
a(D))

such that ρ(|S|) = ρ(T ) and ρ(S) ≤ ρ(T ). Further, we also find conditions on the exis-
tence of E ∈ L2

a(D) such that ρ(TE) = 0. From [5], it follows that if T ∈ L(H), then
|⟨Tx, y⟩|2 ≤ ⟨|T |2αx, x⟩⟨|T ∗|2(1−α)y, y⟩ for all x, y ∈ H and for 0 ≤ α ≤ 1. An operator
T ∈ LC(H) is said to be in the Schatten p-class Sp(H) (1 ≤ p < ∞), if trace(|T |p) < ∞.
Let S∞ be the set of all bounded operators from L2

a(D) into itself. The Schatten p-norm
of T is defined by ∥T∥p = (trace|T |p)1/p. It is well known that if T ∈ Sp(H) then,
∥T∥p = ∥T ∗∥p = ∥|T |∥p. The class S1(H) is also called the trace class of H.

∥T∥1 = trace|T | = ∥T∥tr =

∞∑
k=1

|⟨Tϕk, ϕk⟩|

where {ϕk} is an orthonormal basis for H. Let x and y be two nonzero vectors in H.
Suppose ⟨x, y⟩ = 0. Let T = x⊗ y + y ⊗ x. Then T is self-adjoint on H. Further, ∥T 2∥p =

2
1
p ∥x∥2∥y∥2 and ∥T∥p = 2

1
p ∥x∥∥y∥, where ∥ · ∥p is the Schatten p-class norm for p ≥ 1.

Thus ∥T 2∥p ̸= ∥T∥2p. Notice that T 2 = ∥y∥2x⊗x+ ∥x∥2y⊗ y, so the square root |T | of the
positive operator T 2 is

|T | = ∥x∥∥y∥ x

∥x∥
⊗ x

∥x∥
+ ∥x∥∥y∥ y

∥y∥
⊗ y

∥y∥
.

Proposition 4.1. Let T be a rank k normal operator on H with {λ}kj=1 the k eigenvalues of
T repeated according to multiplicity. Then

trace|T 2| ≤ (trace|T |)2 ≤ ktrace|T 2|.
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Proof. Notice that ∥T∥tr =

k∑
j=1

|λj |. Since T 2 is also of rank k and normal with the eigen-

values {λ2
j}kj=1, by functional calculus, ∥T 2∥tr =

k∑
j=1

|λj |2. So the first inequality is trivial.

The second inequality follows from the Cauchy-Schwarz inequality. �
Proposition 4.2. Let S, T ∈ L(L2

a(D)). If tr(ESE) = tr(ETE) for every rank-one projec-
tion E ∈ L(L2

a(D)), then ρ(S) = ρ(T ).

Proof. For z ∈ D, let E = kz ⊗kz where kz ∈ L2
a(D) is the normalized reproducing kernel.

Then E is a rank-one projection and every rank-one projection takes this form. By the
assumption, we have

⟨Skz, kz⟩ = tr(Skz ⊗ kz)

= tr(ESE) = tr(ETE)

= tr(Tkz ⊗ kz) = ⟨Tkz, kz⟩.
Thus for all z ∈ D, ⟨Skz, kz⟩ = ⟨Tkz, kz⟩ and ρ(S) = ρ(T ). �
Lemma 4.1. Let S, T ∈ Sp for some p ∈ [1,∞). If 0 ≤ S ≤ T and ∥S∥p = ∥T∥p, then
S = T .

Proof. For proof see [6]. �
Let F1(H) be the set of all rank-one projections on the Hilbert space H.

Theorem 4.1. Let S ∈ L(L2
a(D)) be a positive operator. The following hold:

(i) lim
b→∞

(∥S + bE∥ − b) = tr(SE) for all E ∈ F1(L
2
a(D)), b > 0.

(ii) If S ∈ Sp, 1 < p < ∞, then lim
b→∞

(∥S + bE∥p − b) = tr(SE) holds for all E ∈
F1(L

2
a(D)), b > 0.

Proof. To prove (i), Suppose f ∈ (RangeE) ∩ L2
a(D) with ∥f∥ = 1 and ϵ > 0. Assume

T = (⟨Sf, f⟩+ ϵ)E + bE⊥ where E⊥ = I − E. Then

T−1/2ST−1/2 =
1

⟨Sf, f⟩+ ϵ
ESE +

1
√
t
√
⟨Sf, f⟩+ ϵ

ESE⊥+

1
√
t
√
⟨Sf, f⟩+ ϵ

E⊥SE +
1

t
E⊥SE⊥ =

1

⟨Sf, f⟩+ ϵ
ESE + Vb

where Vb is the sum of the last three terms. Notice that

ESEf = ES(⟨f, f⟩f) = ⟨f, f⟩ESf = ESf = ⟨Sf, f⟩f.
Thus ∥ESEf∥ = ⟨Sf, f⟩. Hence

∥T−1/2ST−1/2∥ ≤ ⟨Sf, f⟩
⟨Sf, f⟩+ ϵ

+ ∥Vb∥.

Letting b −→ ∞, we obtain

∥T−1/2ST−1/2∥ ≤ ⟨Sf, f⟩
⟨Sf, f⟩+ ϵ

≤ 1

since ∥Vb∥ −→ 0 as b −→ ∞. Thus T−1/2ST−1/2 ≤ I and therefore

S ≤ (⟨Sf, f⟩+ ϵ)E + bE⊥.
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Hence we obtain the inequality ∥(S + bE∥ ≤ ∥⟨Sf, f⟩ + ϵ + b)E + bE⊥∥ which holds for
sufficiently large b ≥ 0. Further, ⟨Sf, f⟩+ b ≤ ∥S + bE∥ and

∥(⟨Sf, f⟩+ ϵ+ b)E + bE⊥∥ = max{⟨Sf, f⟩+ ϵ+ b, b} = ⟨Sf, f⟩+ ϵ+ b.

Thus for sufficiently large b ≥ 0, we obtain

0 ≤ ∥S + bE∥ − ⟨Sf, f⟩ − b ≤ ⟨Sf, f⟩+ ϵ+ b− ⟨Sf, f⟩ − b = ϵ.

Hence we get,
lim
b→∞

(∥S + bE∥ − b) = ⟨Sf, f⟩ = tr(SE).

To prove (ii), first notice that ∥bE∥p = b and

∥S + bE∥p − b =
∥ 1
bS + E∥p − ∥E∥p

1
b

.

From [1], it follows that the Schatten-norm ∥ · ∥p is Fréchet differentiable at any point of
Sp(L

2
a(D)) and computing the derivative at the point E in the direction of S, we obtain

lim
b→∞

(∥S + bE∥p − b) = lim
b→∞

∥ 1
bS + E∥p − ∥E∥p

1
b

= tr
(
|E|p−1U∗S

∥E∥p−1
p

)
where U is the partial isometry in the polar decomposition of E. Clearly, U = E, |E|p−1 =
E and ∥E∥p = 1 and hence we obtain that

lim
b→∞

(∥S + bE∥p − b) = tr(SE)

for E ∈ F1(L
2
a(D)). �

Theorem 4.2. Suppose S, T ∈ L(L2
a(D)). The following hold:

(i) Suppose S is self-adjoint, T ≥ 0 and ±S ≤ T. If further S, T ∈ Sp for some p with
1 ≤ p < ∞ and ∥S∥p = ∥T∥p then ρ(|S|) = ρ(T ).

(ii) If S ≥ 0, T ≥ 0, S, T ∈ Sp for 1 < p ≤ ∞, then ∥S + bE∥p ≤ ∥T + bE∥p holds for
all b ≥ 0 and E ∈ F1(L

2
a(D)) if and only if S ≤ T. In this case, ρ(S) ≤ ρ(T ).

Proof. (i) Since S = S∗, the space L2
a(D) can be written as L2

a(D) = X+ ⊕ X− so that

S =

(
S+ 0
0 S−

)
, where S+ and S− are positive operators on X+ and X− respectively.

Let T =

(
T1 T2

T ∗
2 T3

)
relative to the decomposition X = X+ ⊕ X−. Since T ≥ ±S, it

follows that

(4.1)
(

T1 − S+ T2

T ∗
2 T3 + S−

)
≥ 0 and

(
T + S+ T2

T ∗
2 T3 − S−

)
≥ 0.

Hence

(4.2) T1 ≥ S+ and T3 ≥ S−.

By [6], (4.2) and the min-max principle, we obtain

(4.3) ∥T∥p ≥
∥∥∥∥( T1 0

0 T3

)∥∥∥∥
p

=
(
∥T1∥pp + ∥T3∥pp

)1/p ≥
(
∥S+∥pp + ∥S−∥pp

)1/p
= ∥S∥p.
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Now suppose that ∥S∥p = ∥T∥p. Then it follows from (4.2) and (4.3) that

(4.4) ∥T1∥p = ∥S+∥p and ∥T3∥p = ∥S−∥p.

From Lemma 4.1, it follows from (4.2) and (4.4) that T1 = S+ and T3 = S−. From (4.1),
it follows that T2 = 0 and so ρ(T ) = ρ(|S|).
(ii) Suppose 1 < p < ∞ and assume S ≤ T. It follows from the monotonicity of Schatten-
p-norms [9] that ∥S + bE∥p ≤ ∥T + bE∥p for all b ≥ 0 and for all E ∈ F1(L

2
a(D)). Now

assume that

(4.5) ∥S + bE∥p ≤ ∥T + bE∥p
holds for all b ≥ 0 and for all E ∈ F1(L

2
a(D)). From Theorem 4.1, it follows that

lim
b→∞

(∥S + bE∥p − b) = tr(SE). Thus we obtain from (4.5) that tr(SE) ≤ tr(TE) for

all E ∈ F1(L
2
a(D)). Thus it follows that

⟨Sf, f⟩ = tr(S(f ⊗ f)) ≤ tr(T (f ⊗ f)) = ⟨Tf, f⟩

for all f ∈ L2
a(D) and ρ(S) ≤ ρ(T ). For p = ∞, S ≤ T implies ∥S + bE∥ ≤ ∥T + bE∥

for all b ≥ 0 and for all E ∈ F1(L
2
a(D)). It follows from the monotonicity of the operator

norm. Now suppose ∥S + bE∥ ≤ ∥T + bE∥ for all t ≥ 0 and for all E ∈ F1(L
2
a(D)). From

Theorem 4.1, it follows that lim
b→∞

(∥S + bE∥ − b) = tr(SE). Thus tr(SE) ≤ tr(TE). Hence

⟨Sf, f⟩ = lim
b→∞

(∥S + b(f ⊗ f)∥ − b)

≤ lim
b→∞

(∥T + b(f ⊗ f)∥ − b) = ⟨Tf, f⟩

for all f ∈ L2
a(D). Therefore S ≤ T and ρ(S) ≤ ρ(T ). The theorem follows. �

Definition 4.1. An operator A ∈ L(L2
a(D)) is a contraction if ∥A∥ ≤ 1.

Theorem 4.3. Suppose T ∈ L(L2
a(D)) is a contraction and |T |2 ≤ |T 2|. Then ρ(Kn+1) ≤

ρ(Kn) for all n ∈ N where K = |T 2|− |T |2. Further {Kn} converges strongly to a projection
operator E and ρ(Kn) → ρ(E) and ρ(TE) = 0.

Proof. Since |T |2 ≤ |T 2|, hence K > 0. Further, since T ∈ L(L2
a(D)) it follows from [4]

that ∥|T |1/2∥2 = ∥T∥ and ∥|T |f∥ = ∥Tf∥ for all f ∈ L2
a(D). Let S = K1/2 be the unique

[4] non-negative square root of K. Now because T is a contraction, we obtain

∥|T 2|1/2∥2 = ∥T 2∥ ≤ 1.

Thus

⟨Kn+1f, f⟩ = ∥Sn+1f∥2

= ⟨KSnf, Snf⟩

= ∥|T 2|1/2Snf∥2 − ∥|T |Snf∥2

≤ ∥Snf∥2 − ∥TSnf∥2 ≤ ∥Snf∥2 = ⟨Knf, f⟩.

Therefore ⟨Kn+1kz, kz⟩ ≤ ⟨Knkz, kz⟩, for all z ∈ D. That is ρ(Kn+1) ≤ ρ(Kn) for all
n ∈ N and {Kn} is a monotonically decreasing sequence of bounded positive operators.
Now since K ≥ 0, it follows from [2] that {Kn} converges strongly to a projection E.
Moreover,

m∑
n=0

∥TSnf∥2 ≤
m∑

n=0

(
∥Snf∥2 − ∥Sn+1f∥2

)
= ∥f∥2 − ∥Sm+1f∥2 ≤ ∥f∥2
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for all non-negative integers m and f ∈ L2
a(D). Therefore, ∥TSnf∥ −→ 0 as n −→ ∞,

and hence
TEf = T ( lim

n→∞
Knf) = lim

n→∞
TS2nf = 0,

for every f ∈ L2
a(D). Thus ρ(TE) = 0. �
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